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Abstract— Cloud datacentres are large datacentres with 
thousands of servers that consume excessive energy and have 
significant carbon footprints. The increasing cloud users, on the 
other hand, are demanding more services with better response 
time. Hence, resources allocation, power management as well as 
better service delivery to users are challenging tasks for cloud 
providers. The problem has been formulated as a Bin Packing 
problem and many algorithms have been proposed with the aim of 
attaining maximum throughput and minimum computation time 
in order to achieve an energy efficient datacentre. In this study, a 
new algorithm called Neighbour-Fit was proposed to address the 
aforementioned problem. A model based on the algorithm, for 
Virtual Machine (VM) allocation, was designed. A web-based 
simulator was also developed using HTML, CSS and PHP to 
simulate the proposed model. The proposed algorithm was 
benchmarked with five existing allocation algorithms using 
throughput and computation time. The Neighbour-Fit algorithm 
is about 90 percent faster than the Almost Worst-Fit, Best-Fit, 
First-Fit and Worst-Fit algorithms. Although the Next-Fit 
algorithm is about 20 percent faster than the Neighbour-Fit 
algorithm, Neighbour-Fit algorithm utilizes 4 percent less number 
of servers than the Next-Fit algorithm. This performance infers 
that the Neighbour-Fit algorithm with a moderate computational 
time and a high throughput optimizes server utilization. This in 
turn reduces the power consumed by the servers in cloud 
datacentres. 

Index Terms—Cloud Computing, Datacentre, Energy Efficient, 
Neighbour-Fit, Placement Algorithm.  

I. INTRODUCTION

The growth of cloud computing has led to the setting up of 
massive datacentres with thousands of servers which in turn has 
increased the datacentres energy consumption. The resource 
and power management at this scale becomes an issue because 
cloud providers are interested in effective utilization of 
datacentre resources. Effective utilization of computing 
resources in a cloud datacentres entails reducing the number of 
running servers which, in effect, will reduce the energy 
consumption and consequently the operational expenses. 

The economy of datacentre, according to [1], depends on three 
major building blocks. These building blocks are the electricity 
supply, networking infrastructure and cooling resources. In 
addition to the major building blocks are the cost of physical 
space (an estate) that is required to host the building and 
equipment, the operational expenditures incurred that are 
related to personnel, software licenses, and equipment 
depreciation. Thus, the economy of a datacenter can be 
summarized as follows: 

Costtotal =  Costestate +  Costpower + Costnetworking

+ Costcooling  + Costoperation (1)

Reference [2] further decomposed the cost of power in (1) into 
the cost of power consumed by servers plus the cost of power 
consumed by switches plus the cost of power consumed by 
storage. This is summarized as follows: 

Costpower_hardware  =  Costpower_servers + Costpower_switches  
+ Costpower_storage    (2) 

The cost of power consumed by servers is further decomposed 
into the addition of the cost of power consumed by the CPU, 
memory, disk, mainboard, and Network Interface Card (NIC). 
Equation 3 summarized the cost of power consumption by a 
server. 

Costpower_servers = Costpower_CPU  + Costpower_memory  
+ Costpower_disk  + Costpower_mainboard 

+ Costpower_NIC    (3) 

Reference [3] concluded that the CPU of a server consumes the 
most important amount of power and the relationship between 
power and CPU utilization is linear. The mathematical model is 
as shown in (4). 

  P = ቂ
௖

஼
ሺ1െ∝ሻ൅	∝ቃ ௣ܲ    (4) 

P is total power consumption of a Physical Machine (PM) at 
time t, Pp is peak power consumption, c is the total number of 
cores required by the resident VMs, C is the total number of 
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cores of a PM and  ∝ is the percentage of idle power versus the 
peak power (this is usually 50 percent in a typical PM).  
Hence, the economy of a datacentre depends largely on CPU 
utilization. Therefore, effective CPU utilization will cut down 
the running cost of a datacenter. 

The Server and Energy Efficiency report states that more than 
15% of servers in cloud datacentres are running without being 
used actively on a daily basis [4]. The United State (U.S.) 
Environmental Protection Agency (EPA) reported that the 
energy consumed by datacentres has doubled in the period of 
2000 and 2006 and estimated another two fold increase over the 
next few years if the servers are not used in an improved 
operational scenario [5]. According to the Greenpeace 
International, some datacentres (including Akamai, Amazon, 
Apple, Facebook, Google, HP, IBM, Microsoft, Twitter, and 
Yahoo) use as much electricity as 250,000 European homes. 
Figure 1 shows the electricity consumption of various countries 
and the datacentres. 
 

 
Fig. 1.  Electricity consumption statistics of various countries 
in the year 2007.  Source: [6]. 
 
 
It was found that if the cloud datacentres were a country its 
electricity demand would be more than the total electricity 
consumed by a big country like India, ranked 5th in the world, 
and is expected to triple by 2020 [6].  
 
Cloud users, on the other hand, are interested in minimizing 
service response time and optimizing overall application 
throughput [7]. It becomes a very challenging task in cloud 
environment to allocate the resources with minimum operating 
time along with effective utilization of available resources.  
 
Scheduling is responsible for allocating servers in cloud 
datacentre to users’ resource requests and it is at the heart of 
resource management. The basic unit of scheduling in cloud 
datacentres is Virtual Machine (VM), a software-defined 
computer. Users’ resource requests are submitted in the form of 
VMs and the resources in cloud datacentre are allocated using 
a number of VM scheduling techniques. VM scheduling 
techniques is an on-going research. Its aim is to minimize 
running servers as well as time taken in carrying out their 
operations. However, existing models take long time in 
scheduling servers for VM requests in a cloud datacentre. 
Hence, there is the need to allocate VMs in the cloud 

environment within a minimum time and using a minimum 
number of servers. 
 

II. REVIEW OF LITERATURE 

Reference [8] explained that more than half of the electrical 
power in a datacenter is consumed by the IT loads (see Fig. 2). 
Servers consume 80% of the total IT load and 40% of total data 
center power consumption. The rest of power is consumed by 
other devices like transformers, distribution wiring, air 
conditioners, pumps, and lighting. Therefore the easiest and 
most obvious way to save energy is to run fewer PMs [9]. 
 

 
Fig. 2.  Energy Consumption in a Datacentre.  
Source:[8]. 
 
Cloud schedulers are implemented by placement algorithms. In 
recent years, several techniques like Constraint Programming, 
Integer Linear Programming, Genetics, Fuzzy, and Bin Packing 
techniques have been proposed for VMs placement in cloud 
datacentres [10]. Bin Packing technique is studied further in this 
work because of its usefulness in dynamic VM placement, 
especially where the demand is highly sporadic. Bin Packing is 
a heuristic based technique. It always generates a good solution 
in considerable amount of time. A Bin Packing technique is 
really useful when all PMs have the same amount of memory 
and processing capabilities. 
 
Placement of VMs in a datacentre can be viewed as a Bin 
Packing problem. The PMs can be considered as bins having n- 
dimensions (CPU, RAM, and Disk). Similarly, the VMs can be 
considered as objects (having n- dimensions) to be packed into 
these bins. These dimensions correspond to resource 
requirements and capacities of the VMs and PMs respectively. 
In Bin Packing problem, there is always the need to find a 
mapping between these objects and bins such that the total 
number of bins required is minimized. By applying this 
technique in datacentre, it is possible to minimize the cost of 
running datacentre by packing the VMs required to be running 
at a time onto the least number of PMs. Some attempts of 
heuristic Bin Packing algorithms proposed by several authors 
are explained below: 
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Next-Fit algorithm, according to [11], places VMs in the order 
in which they arrive. It places the next VM in the request queue 
into the current PM if it fits. If it does not, leaves that PM, starts 
a new PM and then places the VM in it. For instance, assuming 
S = {4, 8, 5, 1, 7, 6, 1, 4, 2, 2} is a given set of VMs’ CPU 
requests and CPU of datacentre’s PMs are of size 10, placing 
the VMs into the PMs using Next Fit algorithm is shown in Fig. 
3. 
 

 

Fig. 3.  VMs Placement under Next-Fit Algorithm. 
 
 
The first request, four (4), was placed on PM1 leaving six as the 
remaining capacity of the PM. Eight (8) was checked against 
the remaining capacity of PM1 but the placement failed. 
Therefore, PM2 was started and became the current PM. The 
request, eight (8), was placed in this PM leaving two (2) as the 
remaining capacity. The new request, five (5), was placed in 
PM3 because PM2 can not accommodate it. The next request, 
one (1), was placed in PM3 because PM3 which was the current 
PM can accommodate it. Seven (7) is the next request. It was 
placed on PM4 because the remaining capacity on PM3 was four 
and is less than the request (7). PM5 becomes the current PM 
after six (6), the new request, has been placed on it. One (1) is 
placed on PM5 and PM5 remains the current PM. The next 
request, four (4), was placed on PM6 because the remaining 
capacity on PM5 was three (3). The next request two (2) was 
placed on PM6 and the final request, two (2), in the queue was 
placed on PM6.  At this point, PM6 remains the current PM 
because it still has two (2) unused capacities.  
A total of six PMs are required to pack the VMs under Next Fit. 
This algorithm wastes PMs because some PMs may not be fully 
utilized (such as the first PM in Fig. 3). However, computation 
time for the Next-Fit algorithm is less because it does not 
perform any search during VM placement.  
 
Reference [12] proposed an efficient VM assignment 
algorithm, the Resource-based First Fit Algorithm (RFFA), to 
assign VMs to PMs. Also dynamic placement of VMs to 
minimize SLA violations is studied in [13]. The authors 
modeled the problems as a Bin Packing problem and use the 
well-known First Fit algorithm to place the VMs to datacentre’s 
PMs periodically. 
 
First-Fit algorithm potentially assigns a VM to one of PMs with 
smaller identifiers. Therefore, the PMs with larger identifiers 
could be shut down and then the number of running PMs can be 
minimized. In another words, the algorithm places VMs in the 
order in which they arrive. It places the next item into the lowest 
numbered PM in which it fits. If it does not fit into any opened 
PM, it then starts a new PM. Figure 4 shows how First-Fit 

algorithm allocates VMs to PMs using the same set of VM 
requests and the same capacity of PMs as above. 
 
 

 

Fig. 4.  VMs Placement under First-Fit Algorithm. 
 
 
The first request, four (4), was placed on PM1 leaving six as the 
remaining capacity of the PM. Eight (8) was checked against 
the remaining capacity of PM1 but the placement failed. 
Therefore, PM2 was started and the request, eight (8), was 
placed in this PM leaving two (2) as the remaining capacity. 
The new request, five (5), was checked against the remaining 
capacity of PM1. The request, five (5) was placed on PM1 
leaving one (1) as the remaining capacity. The next request, one 
(1), was checked against the remaining capacity of PM1. This 
request (1) was placed on PM1 leaving zero as the remaining 
capacity of PM1. The next request, seven (7), was checked 
against the remaining capacity of PM1 but the placement failed.  
Then, it was checked against the remaining capacity of PM2 but 
the placement failed. PM3 was started and the request was then 
checked against the remaining capacity. Seven (7) was then 
placed on PM3 leaving three (3) as the remaining capacity of 
PM3. The next request, six (6) was checked against the 
remaining capacities of PM1, PM2 and PM3 consecutively. The 
placement failed but PM4 was started and six (6) was placed on 
it. Four (4), the next request, was checked against the remaining 
capacities on PM1, PM2, PM3 and PM4 consecutively. 
The placement of four failed on PM1, PM2 and PM3 but was 
successful on PM4 leaving no remaining capacity on PM4. The 
next request, one (1) was checked against the remaining 
capacities of PM1. The placement failed but when it was 
checked against the remaining capacity on PM2, One (1) was 
placed on PM2 leaving no remaining capacity on PM2. The next 
request, four (4), was checked against the remaining capacities 
on PM1, PM2, PM3 and PM4 consecutively. The placement of 
the request, four (4) failed on PM1, PM2 and PM3 but was 
successful on PM4 leaving no remaining capacity on PM4. Two 
(2), was then picked and checked against the remaining 
capacities on PM1, PM2 and PM3 consecutively. The placement 
failed on PM1 and PM2 but was successful on PM3 leaving one 
(1) as the remaining capacity on PM3. The last request, two (2), 
was checked against the remaining capacities on PM1, PM2, 
PM3 and PM4 consecutively. The placement failed, then a new 
PM was started and the request, two (2), was placed on it (PM5).  
This algorithm uses less number of PMs compared to the Next 
Fit algorithm but its computation time is far more than the Next 
Fit algorithm. 
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Reference [14] proposed Modified Best Fit Decreasing 
(MBFD) algorithms for resource allocation. This algorithm 
sorts all VMs in decreasing order of utilization and allocates 
each VM to a PM that provides the least increase of utilization 
due to this allocation. If a VM does not fit in any of the running 
PMs, a new PM is started. Figure 5 shows how Best-Fit 
Decreasing algorithm allocates VMs to PMs using the same set 
of VM requests and the same capacity of PMs as above. 
 

 

Fig. 5.  Packing under Best-Fit Decreasing Algorithm. 
 
 
The VM requests became S = {8, 7, 6, 5, 4, 4, 2, 2, 1, 1} after 
sorting. The first request, eight (8) was placed in PM1 leaving 
two (2) as the remaining capacity of the PM. The next request, 
seven (7) was checked against the remaining capacity on PM1 
but the placement failed. PM2 was started the request was 
placed on it. The next request, six (6), was checked against the 
remaining capacities on PM1 and PM2. None of the PMs could 
accommodate the request. Therefore, PM3 was started and the 
request, six (6) was placed on it. The next request, five (5), was 
checked against the remaining capacities on PM1, PM2 and 
PM3. None of the PMs could accommodate the request. 
Therefore, PM4 was started and the request, five (5), was placed 
on it. The next request, four (4), was checked against the 
remaining capacities on PM1, PM2, PM3 and PM4. Only PM3 
and PM4 could accommodate the request but PM3 would have 
the least remaining capacity after placement of the request. 
Therefore, the request, four (4), was placed on PM3 leaving no 
remaining capacity on it. The next request, four (4), was 
checked against the remaining capacities on PM1, PM2, PM3 
and PM4 and only PM4 could accommodate the placement. 
Therefore, the request, four (4), was placed on PM4 leaving one 
(1) as the remaining capacity on it. The next request, two (2), 
was checked against the remaining capacities on PM1, PM2, 
PM3 and PM4. Only PM1 and PM2 could accommodate the 
request but PM1 would have the least remaining capacity after 
placement of the request. Therefore, the request, two (2), was 
placed on PM1 leaving no remaining capacity on it. The next 
request, two (2), was checked against the remaining capacities 
on PM1, PM2, PM3 and PM4 and only PM2 could accommodate 
the placement. Therefore, the request, two (2), was placed on 
PM2 leaving one (1) as the remaining capacity on it. The next 
request, one (1), was checked against the remaining capacities 
on PM1, PM2, PM3 and PM4. Only PM2 and PM4 could 
accommodate the request and would have the least remaining 
capacities after placement of the request. Therefore, the 
placement was done on PM2, being the PM with smaller 
identifier. The last request, one (1), was checked against the 

remaining capacities on PM1, PM2, PM3 and PM4 and only PM4 
could accommodate the placement. Therefore, the request, one 
(1), was placed on PM4 leaving no remaining capacity on it.  
 
Reference [15] has studied round robin algorithm to schedule 
and consolidate VMs. They have proposed a new strategy for 
VMs placement and migration that is called Dynamic Round-
Robin (DRR). DDR as the extension of the Round-Robin 
method tries to reduce the number of active physical machines 
using two rules. In the first rule, if the running of a VM on a 
server has finished and there are still other VMs on the same 
physical machine, this physical machine will not accept new 
VMs.  
In the second rule, if a physical machine remains in the first rule 
for a sufficiently long period of time, instead of waiting for the 
VMs to finish, the physical machine will be forced to migrate 
the rest of its VMs to other physical machines which in turn 
leads to shut down of physical machine after the migration 
completion. 
 
Reference [16] proposed Most Full First algorithm. With this 
algorithm, PMs are sorted from most full to least full. Once 
sorting has been done, the VMs are allocated using First Fit. 
 
Many of these placement/scheduling algorithms, apart from the 
Next-Fit and Round Robin algorithms, spend a considerable 
amount of time in sorting and searching before allocation of 
PMs to VMs is done. Also, the exempted algorithms allocate 
more PMs to VMs than other studied algorithms. Hence, this 
work intends producing a new heuristic (Neighbour-Fit) 
algorithm to strike the balance by allocating minimum number 
of PMs to VM requests and using minimum time. 
 

III. METHODOLOGY 

The activity diagram of the Virtual Machine allocation model 
as shown in Fig. 6 describes the movement of users’ VM 
requests from the control node of the Cloud Providers to the 
pool of their servers (PMs).  
 

 
Fig. 6.  On-demand VM Allocation Model. 
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Generally, VM requests arrive at the cloud scheduler and 
admitted into a queue of requests. The requests are then checked 
for placement on the pool of PMs in the datacentre by the 
placement algorithm (in this study, the proposed Neighbour-Fit 
algorithm) using the information gathered at the monitoring 
module. If allocation is successful, the VM dispatcher creates 
the VMs on the PMs. If otherwise, the VM request is rejected 
and the algorithm proceeds to the next request in the queue. 
 
Neighbour-Fit algorithm is a heuristic algorithm that can be 
used to address Bin Packing problems. It was inspired through 
the behaviour of the well known Next-Fit algorithms. Unlike 
the Next-Fit algorithm which places objects in the current bin if 
it fits or open a new (next) bin if otherwise, Neighbour-Fit 
algorithm places objects in the previous bin if it fit, and behaves 
like Next-Fit algorithm if otherwise. This behaviour is shown 
in Fig. 7.  
 

Fig. 7.  Behaviour of Neighbour-Fit Algorithm in a Single 
Iteration. 
 
Subscript k and s represent the current VM’s request and current 
server (PM) respectively. The algorithm tries to allocate PMs-1 
to VMk. If the allocation fails, it tries to allocate PMs to VMk. If 
the allocation fails, it tries to allocate PMs+1 to VMk. If the 
allocation fails, it rejects the request (VMk) and picks another 
request by incrementing k by one. Wherever the allocation is 
successful, the PM (PMs-1, PMs, or PMs+1) is updated, made the 
current server and k is incremented by one.  The Neighbour-Fit 
algorithm and its sub function (bin filling function) is provided 
in Fig. 8 and Fig. 9 respectively. 
 
Assuming S = {4, 8, 5, 1, 7, 6, 1, 4, 2, 2} is a given set of VMs’ 
CPU requests and CPU of datacentre’s PMs are of size 10, 
placing the VMs into the PMs using Neighbour-Fit algorithm is 
as shown in Fig. 10. 
 

 
Fig. 8.  Neighbour-Fit Algorithm. 
 

 
Fig. 9.  Sub Function of Neighbour-Fit Algorithm. 
 
 

 
Fig. 10.  Allocation Scenario According to Neighbour-Fit 
Algorithm. 
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The first item in the request queue (4) is placed in PM1 leaving 
six (6) as the remaining capacity of PM1. The second item in 
the request queue (8) is higher than the remaining capacity on 
PM1 therefore, it is placed in PM2. PM2 became the current 
server. When the third item (5) is picked by the algorithm, it 
checked PM1 if it can accommodate the request. This item (5) 
is placed in PM1 leaving one (1) as the remaining capacity of 
PM1. The fourth item (1) is placed on PM1. The fifth item (7) is 
placed on PM3 because the remaining capacity on PM1 and PM2 
are less than the current request. The sixth item (6) is placed on 
PM4 because the remaining capacity on PM3 is less than the 
current request. The seventh item (1) is placed on PM3 because 
the remaining capacity on PM3 was three (3) leaving two as the 
remaining capacity of PM3. PM3 becomes the current server. 
When the eight item (4) is picked by the algorithm, it checked 
PM2 if it can accommodate the request. The placement failed 
and the algorithm checked PM3. The placement also failed but 
successful when PM4 was checked. PM4 became the current 
server. When the ninth item (2) is picked by the algorithm, it 
checked PM3 if it can accommodate the request. The placement 
is successful and PM3 became the current server. When the 
tenth item (2) is picked by the algorithm, it checked PM2 if it 
can accommodate the request. The placement is successful and 
PM2 became the current server. 

A. Asymptotic Analysis of the Neighbour-Fit Algorithm 

Allocation is the mapping of PMs to VMs. It can be represented 
as shown in (5). 

 
Allocation = Map(PMs,VMs)         (5)

   
 

Each PM has three parameters (C, R and D). The C, R, and D 
are the capacities (in percentage) of CPU, RAM, and Disk for 
each PM. Also, each VM has three parameters (c, r, and d). The 
c, r, d are the requirements (in percentage) of CPU, RAM, and 
Disk for each VM request. The summation of c must not equal 
or greater than the available C. The summation of r must not 
equal or greater than the available R.  Likewise, the summation 
of d must not equal or greater than the available D. In addition 
to the previous conditions, the remaining capacities 

௦ܥ)
௥௘௠௔௜௡௜௡௚, ܴ௦

௥௘௠௔௜௡௜௡௚, and ܦ௦
௥௘௠௔௜௡௜௡௚) of each PM can not 

be negative (that is, less than zero). These conditions are stated 
in (6) and (7). 
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Assuming C, R, and D are initially 100 percent empty and are 
switched off except the first server (PM) in the array. 
 
In the main Neighbour-Fit algorithm, ck, rk and dk are compared 
with the ܥ௦

௥௘௠௔௜௡௜௡௚, ܴ௦
௥௘௠௔௜௡௜௡௚, and ܦ௦

௥௘௠௔௜௡௜௡௚ respectively. 
Whenever ܥ௦

௥௘௠௔௜௡௜௡௚, ܴ௦
௥௘௠௔௜௡௜௡௚, and ܦ௦

௥௘௠௔௜௡௜௡௚ are greater 
than the ck, rk and dk ; ck, rk and dk values are then passed as 
argument into the function fill_bin. Function fill_bin has a loop 
that can iterate for the value of the argument (any of ck, rk and 
dk). Therefore, the maximum iteration of function fill_bin is the 
maximum of the VM requirements (ck, rk and dk) and is 
presented in (8). 
 

N = max (c, r, d)               (8) 
 
The number of iterations of Neighbour-Fit algorithm depends 
on the number of VM requests (K) and the number of PMs (S) 
in the datacenter. A loop that can iterate from zero to K-1 was 
constructed. Within the loop, statements that check for the 
attainments of S were provided. If any of the statements returns 
true, the loop will terminate. Therefore, the number of iterations 
of Neighbour-Fit is the minimum of K and S. This is presented 
in (9). 

 
M = min(K,S)               (9) 

 
Combining the two time complexities together, the asymptotic 
time complexity of Neighbour-Fit algorithm is in the order of 
N*M or Ο(N*M). 

IV. RESULT AND DISCUSSION 

The allocation algorithms under study were simulated 10 times 
with 2500, 5000, and 10000 VM requests respectrively. In a 
single run of the simulation, for 2500 VM requests, Fig. 11 
shows the number of allocated PMs and Fig. 12 shows the 
computational time of each algorithm. 
 
On the average, for 2500 VM requests, the number of allocated 
PMs by each algorithm and the computational time of each 
algorithm were recorded as shown in Table 1 and Table 2 
respectively. Neighbour-Fit, Almost Worst-Fit, Best-Fit and 
First-Fit algorithm allocated 111 PMs to the requests. Next-Fit 
algorithm allocated 115 PMs and Worst-Fit algorithm allocated 
110 PMs to the requests. Neighbour-Fit spent 0.33 second to 
allocate PMs to the requests. Almost Worst-Fit and Worst-Fit 
spent 3.58 second. Best-Fit and First-Fit spent 3.51 second and 
2.38 second respectively. The Next-Fit algorithm spent 0.2 
second to allocate PMs to the requests. Apart from the Next-Fit 
algorithm which was a little bit faster than the proposed 
algorithm (Neighbour-Fit), Neighbour-Fit proved to be 
significantly faster than other allocation algorithms. 
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Fig. 11.  Number of Allocated Servers for 2500 VM Requests 
at Intervals. 
 
 

 
Fig. 12.  Computation Time for 2500 VM Requests by Each 
Algorithm at Intervals. 
 
Table 1. Number of Allocated PMs for 2500 VM Requests. 

 
 
 
Table 2. Computational Time and Throughput of Each 
Algorithm for Placing 2500 VM Requests. 

 
Throughput according to [17] is the number of VMs that are 
successfully allocated per time unit. Therefore, for 2500 VM 
requests, the throughput of each allocation algorithm was 
calculated using (4) below and the results were also presented 
in Table 2.  
 

ݐݑ݌݄݃ݑ݋ݎ݄ܶ  ൌ 	
ே௨௠௕௘௥	௢௙	௔௟௟௢௖௔௧௘ௗ	௏ெ௦

஼௢௠௣௨௧௔௧௜௢௡௔௟	்௜௠௘
       (4) 

 
Neighbour-Fit had a throughput of 7607 VM/s which is 
significantly higher than other allocation algorithms under 
study except the Next-Fit. Although the Next-Fit algorithm is 
about 20 percent faster than the Neighbour-Fit algorithm, 
Neighbour-Fit algorithm utilizes 4 percent less number of 
servers than the Next-Fit algorithm. Figure 12 shows the 
throughput of each allocation algorithm. 
 

 
Fig. 13. Throughput of Each Allocation Algorithm. 
 
 

V. CONCLUSION 

In this study, a new VM placement algorithm (Neighbour-Fit) 
has been proposed. It is a step towards the implementation of a 
full-fledged cloud scheduler. It covers only the initial placement 
of VMs on a datacentre’s PMs. 
 
The results of the simulation have shown that the Neighbour-
Fit algorithm is about 90 percent faster than the Almost Worst-
Fit, Best-Fit, First-Fit and Worst-Fit algorithms. Although the 
Next-Fit algorithm is about 20 percent faster than the 
Neighbour-Fit algorithm, Neighbour-Fit algorithm utilizes 4 
percent less number of servers than the Next-Fit algorithm. 
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Therefore, the proposed algorithm is better than the other 
under-studied algorithms in terms of computational time and 
server utilization which in turn reduces power consumption of 
cloud datacentres. In the future, the algorithm could be 
implemented in an open-source cloud manager like 
Opennebula. Consolidation of PMs in cloud datacentres using 
the proposed algorithm will also be carried out. 
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