


Abstract— Cloud datacentres are large datacentres with
thousands of servers that consume excessive energy and have
significant carbon footprints. The increasing cloud users, on the
other hand, are demanding more services with better response
time. Hence, resources allocation, power management as well as
better service delivery to users are challenging tasks for cloud
providers. The problem has been formulated as a Bin Packing
problem and many algorithms have been proposed with the aim of
attaining maximum throughput and minimum computation time
in order to achieve an energy efficient datacentre. In this study, a
new algorithm called Neighbour-Fit was proposed to address the
aforementioned problem. A model based on the algorithm, for
Virtual Machine (VM) allocation, was designed. A web-based
simulator was also developed using HTML, CSS and PHP to
simulate the proposed model. The proposed algorithm was
benchmarked with five existing allocation algorithms using
throughput and computation time. The Neighbour-Fit algorithm
is about 90 percent faster than the Almost Worst-Fit, Best-Fit,
First-Fit and Worst-Fit algorithms. Although the Next-Fit
algorithm is about 20 percent faster than the Neighbour-Fit
algorithm, Neighbour-Fit algorithm utilizes 4 percent less number
of servers than the Next-Fit algorithm. This performance infers
that the Neighbour-Fit algorithm with a moderate computational
time and a high throughput optimizes server utilization. This in
turn reduces the power consumed by the servers in cloud
datacentres.

Index Terms—Cloud Computing, Datacentre, Energy Efficient,
Neighbour-Fit, Placement Algorithm.

I. INTRODUCTION

The growth of cloud computing has led to the setting up of
massive datacentres with thousands of servers which in turn has
increased the datacentres energy consumption. The resource
and power management at this scale becomes an issue because
cloud providers are interested in effective utilization of
datacentre resources. Effective utilization of computing
resources in a cloud datacentres entails reducing the number of
running servers which, in effect, will reduce the energy
consumption and consequently the operational expenses.

The economy of datacentre, according to [1], depends on three
major building blocks. These building blocks are the electricity
supply, networking infrastructure and cooling resources. In
addition to the major building blocks are the cost of physical
space (an estate) that is required to host the building and
equipment, the operational expenditures incurred that are
related to personnel, software licenses, and equipment
depreciation. Thus, the economy of a datacenter can be
summarized as follows:

Costtotal = Costestate + Costpower + Costnetworking

+ Costcooling + Costoperation (1)

Reference [2] further decomposed the cost of power in (1) into
the cost of power consumed by servers plus the cost of power
consumed by switches plus the cost of power consumed by
storage. This is summarized as follows:

Costpower_hardware = Costpower_servers + Costpower_switches
+ Costpower_storage (2)

The cost of power consumed by servers is further decomposed
into the addition of the cost of power consumed by the CPU,
memory, disk, mainboard, and Network Interface Card (NIC).
Equation 3 summarized the cost of power consumption by a
server.

Costpower_servers = Costpower_CPU + Costpower_memory
+ Costpower_disk + Costpower_mainboard

+ Costpower_NIC (3)

Reference [3] concluded that the CPU of a server consumes the
most important amount of power and the relationship between
power and CPU utilization is linear. The mathematical model is
as shown in (4).

 P = ቂ
௖

஼
ሺ1െ∝ሻ൅	∝ቃ ௣ܲ (4)

P is total power consumption of a Physical Machine (PM) at
time t, Pp is peak power consumption, c is the total number of
cores required by the resident VMs, C is the total number of

Energy-Efficient Virtual Machine Placement
Algorithm

Bello Sururah Apinke, Gazali Abdulwakil Adekunle, and Aderounmu Ganiyu Adesola

Computer Science and Engineering Department, Obafemi Awolowo University,
Ile-Ife. Osun State, Nigeria

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.6875 68

2017 International Journal of Computer Science Issues

http://crossmark.crossref.org/dialog/?doi=10.20943/01201705.6875&domain=pdf

cores of a PM and ∝ is the percentage of idle power versus the
peak power (this is usually 50 percent in a typical PM).
Hence, the economy of a datacentre depends largely on CPU
utilization. Therefore, effective CPU utilization will cut down
the running cost of a datacenter.

The Server and Energy Efficiency report states that more than
15% of servers in cloud datacentres are running without being
used actively on a daily basis [4]. The United State (U.S.)
Environmental Protection Agency (EPA) reported that the
energy consumed by datacentres has doubled in the period of
2000 and 2006 and estimated another two fold increase over the
next few years if the servers are not used in an improved
operational scenario [5]. According to the Greenpeace
International, some datacentres (including Akamai, Amazon,
Apple, Facebook, Google, HP, IBM, Microsoft, Twitter, and
Yahoo) use as much electricity as 250,000 European homes.
Figure 1 shows the electricity consumption of various countries
and the datacentres.

Fig. 1. Electricity consumption statistics of various countries
in the year 2007. Source: [6].

It was found that if the cloud datacentres were a country its
electricity demand would be more than the total electricity
consumed by a big country like India, ranked 5th in the world,
and is expected to triple by 2020 [6].

Cloud users, on the other hand, are interested in minimizing
service response time and optimizing overall application
throughput [7]. It becomes a very challenging task in cloud
environment to allocate the resources with minimum operating
time along with effective utilization of available resources.

Scheduling is responsible for allocating servers in cloud
datacentre to users’ resource requests and it is at the heart of
resource management. The basic unit of scheduling in cloud
datacentres is Virtual Machine (VM), a software-defined
computer. Users’ resource requests are submitted in the form of
VMs and the resources in cloud datacentre are allocated using
a number of VM scheduling techniques. VM scheduling
techniques is an on-going research. Its aim is to minimize
running servers as well as time taken in carrying out their
operations. However, existing models take long time in
scheduling servers for VM requests in a cloud datacentre.
Hence, there is the need to allocate VMs in the cloud

environment within a minimum time and using a minimum
number of servers.

II. REVIEW OF LITERATURE

Reference [8] explained that more than half of the electrical
power in a datacenter is consumed by the IT loads (see Fig. 2).
Servers consume 80% of the total IT load and 40% of total data
center power consumption. The rest of power is consumed by
other devices like transformers, distribution wiring, air
conditioners, pumps, and lighting. Therefore the easiest and
most obvious way to save energy is to run fewer PMs [9].

Fig. 2. Energy Consumption in a Datacentre.
Source:[8].

Cloud schedulers are implemented by placement algorithms. In
recent years, several techniques like Constraint Programming,
Integer Linear Programming, Genetics, Fuzzy, and Bin Packing
techniques have been proposed for VMs placement in cloud
datacentres [10]. Bin Packing technique is studied further in this
work because of its usefulness in dynamic VM placement,
especially where the demand is highly sporadic. Bin Packing is
a heuristic based technique. It always generates a good solution
in considerable amount of time. A Bin Packing technique is
really useful when all PMs have the same amount of memory
and processing capabilities.

Placement of VMs in a datacentre can be viewed as a Bin
Packing problem. The PMs can be considered as bins having n-
dimensions (CPU, RAM, and Disk). Similarly, the VMs can be
considered as objects (having n- dimensions) to be packed into
these bins. These dimensions correspond to resource
requirements and capacities of the VMs and PMs respectively.
In Bin Packing problem, there is always the need to find a
mapping between these objects and bins such that the total
number of bins required is minimized. By applying this
technique in datacentre, it is possible to minimize the cost of
running datacentre by packing the VMs required to be running
at a time onto the least number of PMs. Some attempts of
heuristic Bin Packing algorithms proposed by several authors
are explained below:

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.6875 69

2017 International Journal of Computer Science Issues

Next-Fit algorithm, according to [11], places VMs in the order
in which they arrive. It places the next VM in the request queue
into the current PM if it fits. If it does not, leaves that PM, starts
a new PM and then places the VM in it. For instance, assuming
S = {4, 8, 5, 1, 7, 6, 1, 4, 2, 2} is a given set of VMs’ CPU
requests and CPU of datacentre’s PMs are of size 10, placing
the VMs into the PMs using Next Fit algorithm is shown in Fig.
3.

Fig. 3. VMs Placement under Next-Fit Algorithm.

The first request, four (4), was placed on PM1 leaving six as the
remaining capacity of the PM. Eight (8) was checked against
the remaining capacity of PM1 but the placement failed.
Therefore, PM2 was started and became the current PM. The
request, eight (8), was placed in this PM leaving two (2) as the
remaining capacity. The new request, five (5), was placed in
PM3 because PM2 can not accommodate it. The next request,
one (1), was placed in PM3 because PM3 which was the current
PM can accommodate it. Seven (7) is the next request. It was
placed on PM4 because the remaining capacity on PM3 was four
and is less than the request (7). PM5 becomes the current PM
after six (6), the new request, has been placed on it. One (1) is
placed on PM5 and PM5 remains the current PM. The next
request, four (4), was placed on PM6 because the remaining
capacity on PM5 was three (3). The next request two (2) was
placed on PM6 and the final request, two (2), in the queue was
placed on PM6. At this point, PM6 remains the current PM
because it still has two (2) unused capacities.
A total of six PMs are required to pack the VMs under Next Fit.
This algorithm wastes PMs because some PMs may not be fully
utilized (such as the first PM in Fig. 3). However, computation
time for the Next-Fit algorithm is less because it does not
perform any search during VM placement.

Reference [12] proposed an efficient VM assignment
algorithm, the Resource-based First Fit Algorithm (RFFA), to
assign VMs to PMs. Also dynamic placement of VMs to
minimize SLA violations is studied in [13]. The authors
modeled the problems as a Bin Packing problem and use the
well-known First Fit algorithm to place the VMs to datacentre’s
PMs periodically.

First-Fit algorithm potentially assigns a VM to one of PMs with
smaller identifiers. Therefore, the PMs with larger identifiers
could be shut down and then the number of running PMs can be
minimized. In another words, the algorithm places VMs in the
order in which they arrive. It places the next item into the lowest
numbered PM in which it fits. If it does not fit into any opened
PM, it then starts a new PM. Figure 4 shows how First-Fit

algorithm allocates VMs to PMs using the same set of VM
requests and the same capacity of PMs as above.

Fig. 4. VMs Placement under First-Fit Algorithm.

The first request, four (4), was placed on PM1 leaving six as the
remaining capacity of the PM. Eight (8) was checked against
the remaining capacity of PM1 but the placement failed.
Therefore, PM2 was started and the request, eight (8), was
placed in this PM leaving two (2) as the remaining capacity.
The new request, five (5), was checked against the remaining
capacity of PM1. The request, five (5) was placed on PM1
leaving one (1) as the remaining capacity. The next request, one
(1), was checked against the remaining capacity of PM1. This
request (1) was placed on PM1 leaving zero as the remaining
capacity of PM1. The next request, seven (7), was checked
against the remaining capacity of PM1 but the placement failed.
Then, it was checked against the remaining capacity of PM2 but
the placement failed. PM3 was started and the request was then
checked against the remaining capacity. Seven (7) was then
placed on PM3 leaving three (3) as the remaining capacity of
PM3. The next request, six (6) was checked against the
remaining capacities of PM1, PM2 and PM3 consecutively. The
placement failed but PM4 was started and six (6) was placed on
it. Four (4), the next request, was checked against the remaining
capacities on PM1, PM2, PM3 and PM4 consecutively.
The placement of four failed on PM1, PM2 and PM3 but was
successful on PM4 leaving no remaining capacity on PM4. The
next request, one (1) was checked against the remaining
capacities of PM1. The placement failed but when it was
checked against the remaining capacity on PM2, One (1) was
placed on PM2 leaving no remaining capacity on PM2. The next
request, four (4), was checked against the remaining capacities
on PM1, PM2, PM3 and PM4 consecutively. The placement of
the request, four (4) failed on PM1, PM2 and PM3 but was
successful on PM4 leaving no remaining capacity on PM4. Two
(2), was then picked and checked against the remaining
capacities on PM1, PM2 and PM3 consecutively. The placement
failed on PM1 and PM2 but was successful on PM3 leaving one
(1) as the remaining capacity on PM3. The last request, two (2),
was checked against the remaining capacities on PM1, PM2,
PM3 and PM4 consecutively. The placement failed, then a new
PM was started and the request, two (2), was placed on it (PM5).
This algorithm uses less number of PMs compared to the Next
Fit algorithm but its computation time is far more than the Next
Fit algorithm.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.6875 70

2017 International Journal of Computer Science Issues

Reference [14] proposed Modified Best Fit Decreasing
(MBFD) algorithms for resource allocation. This algorithm
sorts all VMs in decreasing order of utilization and allocates
each VM to a PM that provides the least increase of utilization
due to this allocation. If a VM does not fit in any of the running
PMs, a new PM is started. Figure 5 shows how Best-Fit
Decreasing algorithm allocates VMs to PMs using the same set
of VM requests and the same capacity of PMs as above.

Fig. 5. Packing under Best-Fit Decreasing Algorithm.

The VM requests became S = {8, 7, 6, 5, 4, 4, 2, 2, 1, 1} after
sorting. The first request, eight (8) was placed in PM1 leaving
two (2) as the remaining capacity of the PM. The next request,
seven (7) was checked against the remaining capacity on PM1
but the placement failed. PM2 was started the request was
placed on it. The next request, six (6), was checked against the
remaining capacities on PM1 and PM2. None of the PMs could
accommodate the request. Therefore, PM3 was started and the
request, six (6) was placed on it. The next request, five (5), was
checked against the remaining capacities on PM1, PM2 and
PM3. None of the PMs could accommodate the request.
Therefore, PM4 was started and the request, five (5), was placed
on it. The next request, four (4), was checked against the
remaining capacities on PM1, PM2, PM3 and PM4. Only PM3
and PM4 could accommodate the request but PM3 would have
the least remaining capacity after placement of the request.
Therefore, the request, four (4), was placed on PM3 leaving no
remaining capacity on it. The next request, four (4), was
checked against the remaining capacities on PM1, PM2, PM3
and PM4 and only PM4 could accommodate the placement.
Therefore, the request, four (4), was placed on PM4 leaving one
(1) as the remaining capacity on it. The next request, two (2),
was checked against the remaining capacities on PM1, PM2,
PM3 and PM4. Only PM1 and PM2 could accommodate the
request but PM1 would have the least remaining capacity after
placement of the request. Therefore, the request, two (2), was
placed on PM1 leaving no remaining capacity on it. The next
request, two (2), was checked against the remaining capacities
on PM1, PM2, PM3 and PM4 and only PM2 could accommodate
the placement. Therefore, the request, two (2), was placed on
PM2 leaving one (1) as the remaining capacity on it. The next
request, one (1), was checked against the remaining capacities
on PM1, PM2, PM3 and PM4. Only PM2 and PM4 could
accommodate the request and would have the least remaining
capacities after placement of the request. Therefore, the
placement was done on PM2, being the PM with smaller
identifier. The last request, one (1), was checked against the

remaining capacities on PM1, PM2, PM3 and PM4 and only PM4
could accommodate the placement. Therefore, the request, one
(1), was placed on PM4 leaving no remaining capacity on it.

Reference [15] has studied round robin algorithm to schedule
and consolidate VMs. They have proposed a new strategy for
VMs placement and migration that is called Dynamic Round-
Robin (DRR). DDR as the extension of the Round-Robin
method tries to reduce the number of active physical machines
using two rules. In the first rule, if the running of a VM on a
server has finished and there are still other VMs on the same
physical machine, this physical machine will not accept new
VMs.
In the second rule, if a physical machine remains in the first rule
for a sufficiently long period of time, instead of waiting for the
VMs to finish, the physical machine will be forced to migrate
the rest of its VMs to other physical machines which in turn
leads to shut down of physical machine after the migration
completion.

Reference [16] proposed Most Full First algorithm. With this
algorithm, PMs are sorted from most full to least full. Once
sorting has been done, the VMs are allocated using First Fit.

Many of these placement/scheduling algorithms, apart from the
Next-Fit and Round Robin algorithms, spend a considerable
amount of time in sorting and searching before allocation of
PMs to VMs is done. Also, the exempted algorithms allocate
more PMs to VMs than other studied algorithms. Hence, this
work intends producing a new heuristic (Neighbour-Fit)
algorithm to strike the balance by allocating minimum number
of PMs to VM requests and using minimum time.

III. METHODOLOGY

The activity diagram of the Virtual Machine allocation model
as shown in Fig. 6 describes the movement of users’ VM
requests from the control node of the Cloud Providers to the
pool of their servers (PMs).

Fig. 6. On-demand VM Allocation Model.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.6875 71

2017 International Journal of Computer Science Issues

Generally, VM requests arrive at the cloud scheduler and
admitted into a queue of requests. The requests are then checked
for placement on the pool of PMs in the datacentre by the
placement algorithm (in this study, the proposed Neighbour-Fit
algorithm) using the information gathered at the monitoring
module. If allocation is successful, the VM dispatcher creates
the VMs on the PMs. If otherwise, the VM request is rejected
and the algorithm proceeds to the next request in the queue.

Neighbour-Fit algorithm is a heuristic algorithm that can be
used to address Bin Packing problems. It was inspired through
the behaviour of the well known Next-Fit algorithms. Unlike
the Next-Fit algorithm which places objects in the current bin if
it fits or open a new (next) bin if otherwise, Neighbour-Fit
algorithm places objects in the previous bin if it fit, and behaves
like Next-Fit algorithm if otherwise. This behaviour is shown
in Fig. 7.

Fig. 7. Behaviour of Neighbour-Fit Algorithm in a Single
Iteration.

Subscript k and s represent the current VM’s request and current
server (PM) respectively. The algorithm tries to allocate PMs-1
to VMk. If the allocation fails, it tries to allocate PMs to VMk. If
the allocation fails, it tries to allocate PMs+1 to VMk. If the
allocation fails, it rejects the request (VMk) and picks another
request by incrementing k by one. Wherever the allocation is
successful, the PM (PMs-1, PMs, or PMs+1) is updated, made the
current server and k is incremented by one. The Neighbour-Fit
algorithm and its sub function (bin filling function) is provided
in Fig. 8 and Fig. 9 respectively.

Assuming S = {4, 8, 5, 1, 7, 6, 1, 4, 2, 2} is a given set of VMs’
CPU requests and CPU of datacentre’s PMs are of size 10,
placing the VMs into the PMs using Neighbour-Fit algorithm is
as shown in Fig. 10.

Fig. 8. Neighbour-Fit Algorithm.

Fig. 9. Sub Function of Neighbour-Fit Algorithm.

Fig. 10. Allocation Scenario According to Neighbour-Fit
Algorithm.

F
et

ch
 r

em
ai

ni
ng

 C
P

U
,R

A
M

 a
nd

D

is
k

ca
pa

ci
ty

 o
f P

M
s-

1

F
et

ch
 r

em
ai

ni
ng

 C
P

U
,R

A
M

 a
nd

D

is
k

ca
pa

ci
ty

 o
f P

M
s

F
et

ch
 r

em
ai

ni
ng

 C
P

U
,R

A
M

 a
nd

D

is
k

ca
pa

ci
ty

 o
f P

M
s+

1

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.6875 72

2017 International Journal of Computer Science Issues

The first item in the request queue (4) is placed in PM1 leaving
six (6) as the remaining capacity of PM1. The second item in
the request queue (8) is higher than the remaining capacity on
PM1 therefore, it is placed in PM2. PM2 became the current
server. When the third item (5) is picked by the algorithm, it
checked PM1 if it can accommodate the request. This item (5)
is placed in PM1 leaving one (1) as the remaining capacity of
PM1. The fourth item (1) is placed on PM1. The fifth item (7) is
placed on PM3 because the remaining capacity on PM1 and PM2
are less than the current request. The sixth item (6) is placed on
PM4 because the remaining capacity on PM3 is less than the
current request. The seventh item (1) is placed on PM3 because
the remaining capacity on PM3 was three (3) leaving two as the
remaining capacity of PM3. PM3 becomes the current server.
When the eight item (4) is picked by the algorithm, it checked
PM2 if it can accommodate the request. The placement failed
and the algorithm checked PM3. The placement also failed but
successful when PM4 was checked. PM4 became the current
server. When the ninth item (2) is picked by the algorithm, it
checked PM3 if it can accommodate the request. The placement
is successful and PM3 became the current server. When the
tenth item (2) is picked by the algorithm, it checked PM2 if it
can accommodate the request. The placement is successful and
PM2 became the current server.

A. Asymptotic Analysis of the Neighbour-Fit Algorithm

Allocation is the mapping of PMs to VMs. It can be represented
as shown in (5).

Allocation = Map(PMs,VMs) (5)

Each PM has three parameters (C, R and D). The C, R, and D
are the capacities (in percentage) of CPU, RAM, and Disk for
each PM. Also, each VM has three parameters (c, r, and d). The
c, r, d are the requirements (in percentage) of CPU, RAM, and
Disk for each VM request. The summation of c must not equal
or greater than the available C. The summation of r must not
equal or greater than the available R. Likewise, the summation
of d must not equal or greater than the available D. In addition
to the previous conditions, the remaining capacities

௦ܥ)
௥௘௠௔௜௡௜௡௚, ܴ௦

௥௘௠௔௜௡௜௡௚, and ܦ௦
௥௘௠௔௜௡௜௡௚) of each PM can not

be negative (that is, less than zero). These conditions are stated
in (6) and (7).

ە
ۖ
۔

ۖ
ۓ

							

∑ ܿ௞ ൏
௄
௞ 	∑ ௦ௌܥ

௦ 	
	

∑ ௞ݎ ൏ 	∑ ܴ௦ௌ
௦

௄
௞

	
∑ ݀௞ ൏ ∑ ௦ௌܦ

௦ 		௄
௞

				

ۙ
ۖ
ۘ

ۖ
ۗ

 (6)

ە
ۖ
۔

ۖ
௦ܥ							ۓ

௥௘௠௔௜௡௜௡௚ 		൒ 0
	

							ܴ௦
௥௘௠௔௜௡௜௡௚ 		൒ 0

	
௦ܦ							

௥௘௠௔௜௡௜௡௚ 		൒ 0ۙ
ۖ
ۘ

ۖ
ۗ

 (7)

Assuming C, R, and D are initially 100 percent empty and are
switched off except the first server (PM) in the array.

In the main Neighbour-Fit algorithm, ck, rk and dk are compared
with the ܥ௦

௥௘௠௔௜௡௜௡௚, ܴ௦
௥௘௠௔௜௡௜௡௚, and ܦ௦

௥௘௠௔௜௡௜௡௚ respectively.
Whenever ܥ௦

௥௘௠௔௜௡௜௡௚, ܴ௦
௥௘௠௔௜௡௜௡௚, and ܦ௦

௥௘௠௔௜௡௜௡௚ are greater
than the ck, rk and dk ; ck, rk and dk values are then passed as
argument into the function fill_bin. Function fill_bin has a loop
that can iterate for the value of the argument (any of ck, rk and
dk). Therefore, the maximum iteration of function fill_bin is the
maximum of the VM requirements (ck, rk and dk) and is
presented in (8).

N = max (c, r, d) (8)

The number of iterations of Neighbour-Fit algorithm depends
on the number of VM requests (K) and the number of PMs (S)
in the datacenter. A loop that can iterate from zero to K-1 was
constructed. Within the loop, statements that check for the
attainments of S were provided. If any of the statements returns
true, the loop will terminate. Therefore, the number of iterations
of Neighbour-Fit is the minimum of K and S. This is presented
in (9).

M = min(K,S) (9)

Combining the two time complexities together, the asymptotic
time complexity of Neighbour-Fit algorithm is in the order of
N*M or Ο(N*M).

IV. RESULT AND DISCUSSION

The allocation algorithms under study were simulated 10 times
with 2500, 5000, and 10000 VM requests respectrively. In a
single run of the simulation, for 2500 VM requests, Fig. 11
shows the number of allocated PMs and Fig. 12 shows the
computational time of each algorithm.

On the average, for 2500 VM requests, the number of allocated
PMs by each algorithm and the computational time of each
algorithm were recorded as shown in Table 1 and Table 2
respectively. Neighbour-Fit, Almost Worst-Fit, Best-Fit and
First-Fit algorithm allocated 111 PMs to the requests. Next-Fit
algorithm allocated 115 PMs and Worst-Fit algorithm allocated
110 PMs to the requests. Neighbour-Fit spent 0.33 second to
allocate PMs to the requests. Almost Worst-Fit and Worst-Fit
spent 3.58 second. Best-Fit and First-Fit spent 3.51 second and
2.38 second respectively. The Next-Fit algorithm spent 0.2
second to allocate PMs to the requests. Apart from the Next-Fit
algorithm which was a little bit faster than the proposed
algorithm (Neighbour-Fit), Neighbour-Fit proved to be
significantly faster than other allocation algorithms.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.6875 73

2017 International Journal of Computer Science Issues

Fig. 11. Number of Allocated Servers for 2500 VM Requests
at Intervals.

Fig. 12. Computation Time for 2500 VM Requests by Each
Algorithm at Intervals.

Table 1. Number of Allocated PMs for 2500 VM Requests.

Table 2. Computational Time and Throughput of Each
Algorithm for Placing 2500 VM Requests.

Throughput according to [17] is the number of VMs that are
successfully allocated per time unit. Therefore, for 2500 VM
requests, the throughput of each allocation algorithm was
calculated using (4) below and the results were also presented
in Table 2.

ݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ 	
ே௨௠௕௘௥	௢௙	௔௟௟௢௖௔௧௘ௗ	௏ெ௦

஼௢௠௣௨௧௔௧௜௢௡௔௟	்௜௠௘
 (4)

Neighbour-Fit had a throughput of 7607 VM/s which is
significantly higher than other allocation algorithms under
study except the Next-Fit. Although the Next-Fit algorithm is
about 20 percent faster than the Neighbour-Fit algorithm,
Neighbour-Fit algorithm utilizes 4 percent less number of
servers than the Next-Fit algorithm. Figure 12 shows the
throughput of each allocation algorithm.

Fig. 13. Throughput of Each Allocation Algorithm.

V. CONCLUSION

In this study, a new VM placement algorithm (Neighbour-Fit)
has been proposed. It is a step towards the implementation of a
full-fledged cloud scheduler. It covers only the initial placement
of VMs on a datacentre’s PMs.

The results of the simulation have shown that the Neighbour-
Fit algorithm is about 90 percent faster than the Almost Worst-
Fit, Best-Fit, First-Fit and Worst-Fit algorithms. Although the
Next-Fit algorithm is about 20 percent faster than the
Neighbour-Fit algorithm, Neighbour-Fit algorithm utilizes 4
percent less number of servers than the Next-Fit algorithm.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.6875 74

2017 International Journal of Computer Science Issues

Therefore, the proposed algorithm is better than the other
under-studied algorithms in terms of computational time and
server utilization which in turn reduces power consumption of
cloud datacentres. In the future, the algorithm could be
implemented in an open-source cloud manager like
Opennebula. Consolidation of PMs in cloud datacentres using
the proposed algorithm will also be carried out.

REFERENCES
[1] D. P. Chandrakant, and J. S. Amip. (2005). ‘Cost model for planning,

development and operation of a data center’. Hewlett-Packard (HP), HP
Laboratories, Palo Alto, CA, USA, Tech. Rep.

[2] L. Luo, W. Wu, D. Di, F. Zhang, Y. Yan, and Y. Mao. (2012). ‘A resource
scheduling algorithm of cloud computing based on energy efficient
optimization methods’. In Green Computing Conference (IGCC), 2012
International (pp. 1-6). IEEE.

[3] X. Fan, W. D. Weber, and L. A. Barroso. (2007). ‘Power provisioning for
a warehouse-sized computer’. In ACM SIGARCH Computer
Architecture News (Vol. 35, No. 2, pp. 13-23). ACM.

[4] S. Karayi. (2009). ‘Server Energy and Efficiency Report’. Technical
report, 1E, 2009.

[5] R. Brown, E. Masanet, B. Nordman, B. Tschudi, A. Shehabi, J. Stanley,
J. Koomey, D. Sartor, and P. Chan. (2008). ‘Report to Congress on Server
and Data Center Energy Efficiency: Public Law 109–431’. Lawrence
Berkeley National Laboratory, Berkeley, CA, USA, 2008. Pp14-15.

[6] G. Cook, and J. V. Horn. (2012). ‘How dirty is your data? A Look at the
Energy Choices That Power Cloud Computing’. Technical report, Green
Peace International, April 20, 2012.

[7] V. S. Rathor, R. K. Pateriya, and R. K. Gupta. (2014). ‘Survey on Load
Balancing through Virtual Machine Scheduling in cloud computing
Environment’. International Journal of Cloud Computing and Services
Science (IJ-CLOSER). 3, 37-43.

[8] C. Ghribi. (2014). ‘Energy efficient resource allocation in cloud
computing environments’. Networking and Internet Architecture [cs.NI].
Institut National des T´el´ecommunications, 2014.

[9] C. Aschberger, and F. Halbrainer. (2013). ‘Energy Efficiency in Cloud
Computing’.<http://www.uni-
salzburg.at/fileadmin/multimedia/SRC/docs/teaching/SS13/SaI/Paper_A
schberger_Halbrainer.pdf> December 29, 2015.

[10] R. K. Gupta, and R. K. Pateriya. (2014). ‘Survey on Virtual Machine
Placement Techniques in Cloud Computing Environment’. International
Journal on Cloud Computing: Services and Architecture (IJCCSA) , 4.

[11] K. Mills, J. Filliben, and C. Dabrowski. (2011). Comparing vm-placement
algorithms for on-demand clouds. In Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on (pp.
91-98). IEEE.

[12] C. F. Kuo, T. H. Yeh, Y. F. Lu, and B. R. Chang. (2015). ‘Efficient
Allocation Algorithm for Virtual Machines in Cloud Computing
Systems’. In Proceedings of the ASE BigData and SocialInformatics
2015 (p. 48). ACM.

[13] N. Bobroff, A. Kochut, and K. Beaty. (2007). ‘Dynamic Placement of
Virtual Machines for Managing SLA Violations,’ in Proc. of the
IFIP/IEEE International Symposium on Integrated Network Management
(IM’07), 2007.

[14] R. Buyya, A. Beloglazov, and J. Abawajy. (2010). ‘Energy-efficient
management of data center resources for cloud computing: a vision,
architectural elements, and open challenges’. arXiv preprint
arXiv:1006.0308.

[15] C. C. Lin, P. Liu, and J. J. Wu. (2011). ‘Energy-efficient virtual machine
provision algorithms for cloud systems’. In Utility and Cloud Computing
(UCC), 2011 Fourth IEEE International Conference on (pp. 81-88).
IEEE.

[16] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar,
L. Uyeda, and U. Wieder. (2011). ‘Validating Heuristics for Virtual
Machines Consolidation. Microsoft Research MSR-TR-2011-9. pp. 1-14.

[17] S. Subramanian, N. G. Krishna, K. M. Kumar, P. Sreesh, and G. R.
Karpagam. (2012). ‘An adaptive algorithm for dynamic priority based
virtual machine scheduling in cloud’. International Journal of Computer
Science Issues(IJCSI), 9(6).

SURURAH Bello obtained B.Sc. Computer
Engineering in 1995, M.Sc. Computer
Science in 2002 and Ph.D Computer Science
in 2011 from the Department of Computer
Science and Engineering, Obafemi
Awolowo University, Ile-Ife, Nigeria. She is
currently a Senior Lecturer in the same
department. Her research interests include

Distributed Computing, Artificial Intelligence and Social
Computing.

GAZALI Abdulwakil. Adekunle. was
born in Lagos State, Nigeria, in 1981. He
received the B.Sc. in Computer
Engineering and M.Sc Computer Science
from Obafemi Awolowo University, Ile-
Ife, Osun State, Nigeria in 2012 and 2016
respectively.

Prof. ADEROUNMU Ganiyu Adesola is
a Professor of Computer Science and
Engineering in Obafemi Awolowo
University, Ile-Ife. He is the current
Director, Information Technology and
Communications Unit, Obafemi Awolwo
University, Ile-Ife, Nigeria. Professor
Aderounmu received his B.Sc. Degree in

Computer Engineering and M.Sc. Degree in Computer Science
from Obafemi Awolowo University, Ile-Ife in 1991 and 1997
respectively. He is the current President, Nigeria Computer
Society. Professor Aderounmu is a visiting research fellow,
University of Zululand, Republic of South Africa.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 5, September 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201705.6875 75

2017 International Journal of Computer Science Issues

