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Abstract 
Image forgery detection approaches are varied and serve same 

objectives. However, the difference in image properties causes 

some limitations of most of these approaches. Integrate multiple 

forensic approaches to increase the efficiency of detecting and 

localize the forgery was proposed based on the same image input 

source. In this paper, we propose a new detector algorithm based on 

different image source format. We propose approach to detect a 

copy-move forgery based on PatchMatch enhanced by the dense 

field technique. The F-measure score used same evaluation function 

to make the system more robust. The output result shows high 

efficiency of detecting and localizing the forgery in different image 

formats, for passive forgery detection.     

Keywords: Copy-move detect; forgery localization; image 

forgery; score evaluation 

1. Introduction

One way to divide the professionals from the amateurs

in any given field is to take a look at the equipment they use 

to accomplish their tasks. Advanced technology is currently 

the go-to equipment used by forgers via computer graphics 

and digital image processing. In fact, the use of digital 

imagery to create forgeries is one of the biggest problems 

emerging from the technology. However, experts working 

together with law enforcement are devising systems that 

employ advanced algorithms in order to ferret out the 

forgeries [1, 2]. What may be surprising to those not working 

in the field is that very few digital documents today 

(especially those produced from medical, legal and 

government sources) are entirely free of some aspect of 

forgery. Detecting forgery algorithms is possible but depends 

almost entirely on the image source. Digital photographs and 

documents are easily changed to suit the purposes of the 

user, with copy-move being the most popular approach to 

forgeries [3]. It is considered a type of passive forgery [4, 5] 

and is very widespread. Figure 1 below shows some different 

kinds of common forgeries [6].  

     One classic approach to digital image forgery is 

enhancing. This is the easiest approach and also is 

considered the least violating (that is, has the lowest 

repercussion if the forger is caught). To counteract these 

forgeries, active and passive detection mechanisms have 

been developed. In the active approach, digital watermarking 

or signatures are employed to make documentation more 

concise and genuine [6, 4]. 

Fig. 1. Different types of forgeries. 

     The work is organized as follows. Following the 

introduction, we will provide an overview and revision of the 

algorithms used here. In the subsequent sections, we will 

delve deeper into the topics mentioned in the overview and 

also perform some tests to validate the methods.    

2. Background

The history of forgery is as old as mankind. Throughout

the centuries, it has primarily been used as a means to 

acquire access to power or money illegally [7]. Although this 

motivation persists, many cases of forgery today are focused 

instead on gaining access to systems for a variety of 

purposes. So, for instance, people engage in forgeries across 

fields as diverse as healthcare, surveillance, insurance, and 

even the media. To counteract forging activities, researchers 

are exploring algorithms as a means to detect image forgery. 

In the majority of the algorithms used thus far, lighting is 

analyzed to see whether or not copy-move forgery is present. 

During the forgery process, the image becomes “messy”, and 

it is this “mess” that forgery detectors look for through the 

application of algorithms, as explained in [8]. The 

researchers in [8] also demonstrate how shadows can 

generate similar lighting artifacts within an image.  

As touched on earlier, there are several different 

algorithm-based approaches for forgery detection, but the 

most popular techniques are block-based and feature-based. 

For block-based approaches, the detector needs access to the 

original image, whereas for feature-based strategies, the 

detector removes features by means of overlapping blocks 
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that are typically used in the block-based approach. Several 

different kinds of characteristics can be input to the 

overlapping blocks (this will be explained in greater detail 

later in this work), and the matching among the boxes is 

performed on the basis of the feature-extraction strategy.  

A. Type of Features

The present work involves three kinds of feature

extraction, as follows: Fourier Mellin Transform (FMT), 

Zernike Moments (ZM), and Polar Cosine Transform (PCT). 

The latter two approaches are further subcategorized into 

“cartesian” and “polar” as in figure 2, respectively, and all 

three strategies are explained in detail below. 

Fig. 2. Feature-extraction categories. 

A.1 Fourier-Mellin Transform-based feature

extraction.
Most of the currently employed copy-move forgery 

detection approaches that use a block-matching-based 

detection strategy utilize Fourier-Mellin Transform (FMT), 

as introduced in [9]. The FMT carries out radial projection 

for log-polar Fourier transformation in image blocks, as 

stated below: 

a- Find the block’s translation invariant 𝑖(𝑥, 𝑦). This

can be done by using Fourier transformation

representation.

|𝐼′(𝑓𝑥, 𝑓𝑦)|

= |𝜎|−2|𝐼′(𝜎−1((𝑓𝑥 cos 𝛼, 𝑓𝑦 sin 𝛼), (−𝑓𝑥 sin 𝛼, 𝑓𝑦 cos 𝛼))|     (1)

b- Input, via the resampling method, all results of

magnitude values in log-polar coordinates.

|𝐼′(𝜌, 𝜃)| = |𝜎|−2|𝐼(𝜌 − log 𝜎), 𝜃 − 𝛼|  (2) 

c- Use the log-polar values in 1-D to get 𝜃 = 45
features via quantization the values (added together)

in other forms of 𝜃.

𝑔(𝜃) = ∑ log (|𝐼(𝜌𝑗, 𝜃|)𝑖  (3) 

This approach performs best when detecting forgeries in flat 

regions.   

A.2  Zernike Moment Transformation.

The Zernike moments method is generally applied in

image recognition (i.e., to obtain image orientation, size, 

etc.). Therefore, as shown in [10], this approach is essentially 

an extinction of geometric moments as well as a description 

of their connection. The Zernike approach is written thus: 

𝑉𝑛𝑚(𝜌, 𝜃) = 𝑅𝑛𝑚(𝜌)𝑒𝑗𝑚𝜃    𝑓𝑜𝑟 𝜌 ≤ 1  (4) 

Where 𝑛, 𝑚 are the order and the rotation respectively. 

𝑅𝑛𝑚(𝜌) is the radial polynomial, and it can be given as:

𝑅𝑛𝑚(𝜌)

= ∑ (−1)𝑥
(𝑛 − 𝑥)!

𝑥! (
𝑛 + |𝑚|

2
− 𝑥) ! (

𝑛 − |𝑚|
2

) !
 𝜌𝑛−2𝑥

(𝑛−|𝑚|)/2

𝑥=0

  (5) 

The two-dimensional ZM for continuous image function 

𝑓(𝜌, 𝜃) can be described as: 

𝑍𝑛𝑚 =
𝑛 + 1

𝜋
∫ ∫ 𝑓(𝜌, 𝜃)𝑉𝑛𝑚

∗ (𝜌, 𝜃)𝜌𝑑𝜌𝑑𝜃

1

0

 (6)

2𝜋

0

 

=  
𝑛 + 1

𝜋
∫ 𝑒−𝑗𝑚𝜃 ∫ 𝑓(𝜌, 𝜃)𝑅𝑛𝑚(𝜌)𝜌𝑑𝜌𝑑𝜃

1

0

 (7)

2𝜋

0

 

In the digital image form in 2-D the ZM will be as: 

𝑍𝑛𝑚 =  
𝑛 + 1

2
∑ ∑ 𝑓(𝜌, 𝜃)𝑉𝑛𝑚

∗ (𝜌, 𝜃)  (8)

(𝜌,𝜃)∈𝑢𝑛𝑖𝑡 𝑑𝑖𝑠𝑘

 

An important feature of the Zernike moment is that 

it is rotation invariant. This characteristic is used to find out 

whether or not the forgery has been rotated. There are many 

studies that use the Zernike moment for forgery detection 

[11, 12, 13].    

A.3  Polar Cosine Transform
The Polar cosine transform (PCT) is a fast algorithm that

is well-known for its speed, which makes it a good candidate 

for dealing with larger images as well as real-time 

application. PCT can simulate 2-D image patterns from a 2-

D image 𝑓(𝑥, 𝑦) via changing it (transformation) to polar 

form from cartesian 𝑓(𝑟, 𝜃), where 𝑟 indicates reduction and 

𝜃 signifies the azimuth.  

𝑟 =  √𝑥2 + 𝑦2  (9) 

𝜃 = arctan
𝑦

𝑥
 (10) 

The polar form can be written as: 

𝑓(𝑟, 𝜃) = ∑ ∑ 𝑀𝑛𝑙
𝑐 𝐻𝑛𝑙

𝑐 (𝑟, 𝜃)

∞

𝑙=1

∞

𝑛=1

 (11) 

Where 𝑟 ≤ 1. 

𝑀𝑛𝑙
𝑐 = Ω𝑛 ∫ ∫ 𝑓(𝑟, 𝜃)𝐻𝑛𝑙

𝑐∗(𝑟, 𝜃)
1

0

2𝜋

0

 (12) 

Features 
clasification

PCT
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PCT-polar

ZM
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𝐻𝑛𝑙
𝑐 (𝑟, 𝜃) = 𝑅𝑛

𝑐 (𝑟)𝑒𝑖𝑙𝑛  (13) 

𝑅𝑛
𝑐 (𝑟) = cos(𝜋𝑛𝑟2)  (14) 

Ω𝑛 = {

1

𝜋
 𝑖𝑓 𝑛 = 0

2

𝜋
 𝑖𝑓 𝑛 ≠ 0

 (15) 

As PCT occurs at the unit circle, a total of three 

trigonometric functions are used to create a Kernel 

coefficient [14].   

B. Feature extraction

As mentioned previously, there are several kinds of

features available in published work and online. They all 

suggest the efficacy of one or more approaches for the 

detection of copy-move forgery, but this present work only 

looks into 3 main classifications of features, namely: the 

Fourier-Mellin transform (FMT), the Zernike moments 

(ZM), and the polar cosine transforms (PCT). The features in 

all 3 of these approaches share highly similar circular 

harmonic transform expansions (CHT) [15]. Therefore, we 

can measure the CHT coefficient through image projection 

𝐼(𝜌, 𝜃) using the basis function of 𝐾𝑛,𝑚(𝜌, 𝜃) to effect the

transformation:  

𝐹𝐼(𝑛, 𝑚) = ∫ 𝜌𝑅𝑛,𝑚
∗ (𝜌) × [

1

√2𝜋
∫ 𝐼(𝜌, 𝜃)𝑒−𝑗𝑚𝜃𝑑𝜃]𝑑𝜌     (16)

2𝜋

0

∞

0

As can be seen, image 𝐼(𝜌, 𝜃) appears in the polar 

scheme, with 𝜌 ∈ [0, ∞], 𝜃 ∈ [0, 2𝜋]. This particular 

approach entails combining aspects of 2 formulations: 1. 

integrating the Zernike radial, function and the 𝜌 value 

integration; and, in brackets, indicating the Fourier series 

function for image 𝐼(𝜌, 𝜃) together with phase term 𝑒−𝑗𝑚𝜃

with rotation of 𝜃 radians. Thus, to obtain rotation 

invariance, we simply use coefficient magnitude, such that 

FMT’s coefficient absolute value will then give scale 

invariance, as any alterations in image scale adds to the 

phase term [16]. Hence, radial function is then variant-based 

according to feature designation. Therefore, we can assert 

that PCT radial function acts as a cosine function arguing 𝜌2

while normalizing coefficients 𝐶𝑛.

𝑅𝑛(𝜌) = 𝐶𝑛 cos(𝑛𝜋𝜌2)  (17) 

In this case, the Zernike radial function demonstrates the 

identical radial function of PCT, but includes coefficient 

values that are more apt and uses the formulation 𝜌 ∈ [0, 1] 
in both functions. This is formulated as follows:  

𝑅𝑛,𝑚(𝜌) = ∑ 𝐶𝑛,𝑚,ℎ𝜌2−2ℎ  (18)

(𝑛−|𝑚|)/2

ℎ=0

 

At the same time, we can show the FMT radial function 

as non-zero in 𝜌 ≥ 0, using a continuous value 𝑟 above the 

argument value of 𝜌2:

𝑅𝑟(𝜌) =
1

𝜌2
𝑒𝑗𝑟 ln (𝜌)  (19) 

  It is worth noting that the models mentioned above 

can be used in a patch size with good resolution. So, in order 

to obtain achieve good matching with features from both 

patches, the extension on the feature length must remain lax 

(that is, in only a loosely extended state). Furthermore, we 

will apply sampling from cartesian and polar for ZM and 

PCT, respectively, whereas FMT will employ log-polar 

sampling. In this work, however, we will use polar sampling 

only to compute scaling and rotation in order to obtain the 

optimized invariance angle as well as scalar values [17].     

C. Evaluating Performance

We will estimate both the accuracy and time

requirements of the detection / localization forgery 

performance by finding the F-measure. In order to designate 

F-measure, we first must find which is true positive (TP),

false positive (FP), false negative (FN) and true negative

(TN). The IEEE F-measure can be written thus:

𝐹 =  
2|𝑇𝑃|

2|𝑇𝑃| + |𝐹𝑃| + |𝐹𝑁|
 (20) 

Therefore, if the ground truth and detection map occur 

simultaneously or act the same way, then both FN and FP are 

zero and the F-measure is normalized, such that 𝐹 = 1. Here, 

we can find the F-measure for two levels (i.e., pixel and 

image levels). The pixel level is suitable for localization 

forgery for identical images  [17].  

D. F-measure Procedure

The F-measure standing (i.e., score) within the IEEE

designation is determined by a procedure which determines 

the true condition for negative and positive conditions. This 

must have in it both pixel- and image-level images, as we 

mentioned earlier. Table 1 below categorizes all conditions 

according to the scoring outcome, while the figure 3, 

illustrate the PDF curve of the predictive condition.  

Table 1. Shows the predictive conditions 

Predictive Conditions 

Predictive Positive Predictive Negative 

𝑇𝑃 𝑇𝑃𝑅

=
𝑇𝑃

∑ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑁 𝐹𝑁𝑅

=
𝐹𝑁

∑ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝐹𝑃 𝐹𝑃𝑅

=
𝐹𝑃

∑ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑁 𝑇𝑁𝑅

=
𝑇𝑁

∑ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

The accuracy of any approach depends on the all area 

under the PDF curve. Based on that, we can write the 

equation as following: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (21) 
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In brief, true positive shows the highest-output standings 

regarding accuracy in detecting forged images, and true 

negative shows zero-output tallies featuring zero scores. This 

indicates that the approach has in fact detected zero evidence 

of forgery. Conversely, false negative and false positive 

indicate, respectively, a non-detected forged image and an 

image which was assumed false, but the assumption was 

inaccurate. For CMFD, the output can indicate a pure image 

mask or a forgery. Conversely, the ground root mask 

presents as a binary mask (0, 1) which can be created by 

hand to signify the region copies as well as removing the 

high-value image elsewhere within the same shot 

(groundroot==max). In this instance, the remaining mask is 

considered low value (groundroot==0). Once the condition 

values are obtained, we can verify the process, assuming that 

the CMFD output / ground root constitute genuine inputs. In 

the initial test, we can make both inputs the same in order to 

obtain a valid F-measure score. Next, we can apply various 

inputs to achieve a range of F-measures depending on the 

predicted condition values. Figures 3 and 4 indicate F-

measure results from the inputs. In this work, the “ideal” 

value for F-measure will be the outcome of an ideal 

matching of the ground root mask (GT) and the output mask 

of forgery detection function. In so doing, outliers of CMFD 

will likely lead to low F-measure and thus limit the validity 

of the system.    

Fig. 3. If the CMFD mask and the GT mask are the same, the F-measure is 

considered ideal. 

Fig. 4. If the CMFD and GT masks turn variant, the F-measure is 

invalidated. 

3. USING THE Patch-Matching Approach ON

Copy-move Forgery Detection

A PatchMatching algorithm is faster than most other

algorithms and uses a matching approach that applies dense 

approximation field matching. The primary reason for 

choosing this approach over others is its fast propagation in 

offset fields. Iterations are performed by performing a 

randomized search or by doing full-image scanning 

(propagation). Generally, in a scan, we can first choose a 

specific vector 𝑓(𝑠), that utilizes an 𝑠 pixel for its patch 

center. Because the features essentially characterize the 

patch, the distance between and among the features need to 

be carefully and accurately measured. Figure 5 shows the 

main blocks of the algorithm in the processing sequence.   

Fig. 5. PatchMatching-based copy-move forgery detection algorithm.  

4. Post-Processing using Denes Liner Fitting

Comparison of images, along with matching and

stitching, is more or less based on feature matching. To 

create an offset field, the PatchMatch algorithm employs 

matching and a feature search using offset points and 

generates the offset field. In this system, a linear offset will 

formulate an accurate offset field on top of the copy-move 

region. Referred to as “propagation”, this step might require 

several iterations. Dense-field matching strategies enhance 

the efficacy of the strategy and thus have already been the 

choice of many scholars, as shown in [18, 19, 20, 17]. Yet, 

despite the method’s popularity, this type of image can suffer 

from geometric deformation, compression, the noise effect, 

and illumination fluctuations, compression, and geometric 

deformation. When this occurs, the offset field is 

significantly less successful at feature-matching. 

In the post-processing stage, the objective is to remove or 

at least mitigate all negative impacts on the image. To 

achieve this aim, it is important to regularize offset fields and 

thereby heighten the opportunity to enhance the detection of 

copy-move and decrease false alarms. To be viable, offset 

fields must be able to fit all neighborhood pixels of 𝑠 through 

a liner model, after which a transformation sets parameters to 

obtain the sum of square error (SSE).  

𝛿 `(𝑠𝑖) = 𝐴𝑠𝑖  (22) 

𝜖2(𝑠) = ∑‖𝛿(𝑠𝑖) − 𝛿 `(𝑠𝑖)‖
2

𝑁

𝑖=1

 (23) 

      In the post-processing strategy, a number of steps need 

to be adhered to for the tests to be valid: 1) filtering median 

material using a circular window with a radius of 𝜌𝑀; 2)

computing fitting errors, 𝜖2(𝑠), w.r.t. using a least-squares

linear model over a circular neighborhood of radius 𝜌𝑁; 3)

bringing  𝜖2(𝑠) to level 𝑇𝜖
2 ; 4) deleting regional couples that

are actually closer positioned than 𝑇𝐷2 pixels; 5) deleting of

all regions not larger than 𝑇𝑆 pixels; 6) mirroring the regions;
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and 7) morphological dilation of the elements using a 

circular structuring element featuring a radius of 𝜌𝐷 = 𝜌𝑀 +
𝜌𝑁. If we choose to use these clearly defined stages, our first

step is to get rid of all outliers from the image using a 

median filter. In fact, not until all of the outliers have been 

deleted or demoted will the minimum mean square fitting be 

used. Pictures and other images that exhibit repeating 

patterns, including monochrome, can be extremely 

problematic because their identical or near-identical details 

can lead to mismatching entire areas. To overcome this 

problem, we use the thresholds 𝑇𝜖
2 , 𝑇𝐷2, and 𝑇𝑆, whose

usage is indicated in steps 3, 4, 5. So, if a copy-move pixel is 

suspected, 𝑠, for a particular area, the mirrored pixel “twin” 

in 𝑠 + 𝛿(𝑠) is designated as a copy-move pixel. The final 

stage will view morphological effects as an outcome of 

immediately preceding steps.     

5. Experiment Result

The proposed algorithm was able to resolve all the issues

presented above and successfully apply the most apt forgery 

detection method for detecting copy-move and localizing it. 

Figure 6 provides a summation of the details.  

Fig. 6. Copy-move that can be detected. 

As shown, there are situations when the process will be less 

efficient, especially if the image contains too many vivid 

colors, no colors, or is in black and white. Overall, the 

detector process requires the use of a variety of images and 

datasets, including the Loughborough University dataset1 

and the GRIP database2.   

PCT-C 

ZM-P 

 a  b  c 
Fig. 7. Searching for forged images in the GRIP dataset: (a) forged image, 

(b) offset points, (c) localization copy-move forgery mask. 

1 http://www.grip.unina.it 
2 http://homepages.lboro.ac.uk/ cogs/datasets/ucid/ucid.html 

PCT-C 

PCT-C 

   a  b  c 
Fig. 8. Searching for forgery in a gray image: (a) forged image, (b) offset 

points, (c) localization copy-move forgery mask. 

PCT-C 

PCT-C 

  a  b  c 
Fig. 9. Searching for forgery in black and white image: (a) forged image, (b) 

offset points, (c) localization copy-move forgery mask. 

In searching the three instances given in Figures. 7 to 9, we 

see several different offset points and also notice the 

reduction in efficiency when there are fewer colors. 

Moreover, when presented from exceedingly “flat” 

viewpoints, changing image formatting to BW from RGB 

could lead to even further reductions in features, which 

means that the forgery, if present, might not be viewable 

with the tools provided. 

Table 2. FM Parameters of Image as Given by the Proposed Method vs. 

Some Literature  

PRNU PatchMatch 

TP 67619 79201 

TN 700375 635571 

FP 2775 67579 

FN 15663 4081 

Acc 0.977 0.9088 

FM 0.88 0.6885 

In order objectively evaluate the usefulness and applicability 

of the methods, we decided to apply the identical function as 

outlined by researchers in [21, 17]. In examining Table 1, 

however, it becomes clear that the conditions are different. 

However, at the end they gave very close FM value. The 

algorithm was examined on many different images. The 

difference of the FM in these experiments is negligible. 

Tables 3 and 4 show some results of these experiments. In 

fact, table 2 shows inclusive comparison of the algorithm 

with literature, and in this table, it shows clearly that the FM 

of the proposed algorithm is 0.2 higher than photo response 

non-uniformity PRNU.   
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6. Conclusion and Future Work

To conclude, copy-move forgery detection (CMFD) had 

been widely adopted for use by people of all skill levels, due 

mainly to its user-friendly and ease-of-use approach. 

However, despite the relative simplicity of the strategy, 

there are still some challenges that go along with it that 

make the outcome sometimes invalid or at least 

questionable.  On the whole, there is a main issue affecting 

most CMFD algorithms. If a copy-move is performed by 

applying something in the image background to obscure 

evidence of forgery, but this can be overcome by employing 

PatchMatching on the forged images’ offset points. In this 

situation, the authentic image is needed to proceed with 

forgery detection, so different method should be adopted. 

Our experiments indicate the presence of variance within 

the evaluations, which occurs also in identical images where 

there are alterations to the resolution or color, giving 

unequal F-scores. Despite these slight problems, the F-score 

generally exhibits optimal efficiency in the enhanced 

approach. In future studies, we would use the identical idea 

to test for forgeries in videos and include studies from the 

literature to evaluate F-score results. 
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Table 3. The evaluation values for detecting CMFD in two different RGB images shown in Fig. 7 

Image FM TPR TNR FNR FPR PPV NPV TFE TPM TPP 

1. 0.999 0.9958 0.9995 0.0042 0.0005 0.9862 0.999 1.292 12.235 1.465 

2. 0.9992 0.9987 1.0000 0.0013 0.00001 0.9997 1.0000 1.945 10.179 1.687 

3. 0.9727 0.9972 0.9977 0.0028 0.0023 0.9493 0.999 1.912 10.871 1.703 

4. 0.5633 0.7210 0.9683 0.2790 0.0317 0.4622 0.9892 1.892 11.131 1.753 

Table 4. The evaluation values for detecting CMFD to same image in assorted color format. 

FM TPR TNR FNR FPR PPV NPV TFE TPM TPP 

PCT-BW 0.9896 0.9905 0.9996 0.0095 0.0004 0.9888 0.9997 1.230 8.765 1.579 

PCT-

RGB 
0.999 0.9958 0.9995 0.0042 0.0005 0.9862 0.999 1.292 12.235 1.465 

ZM-Gray 0.9802 0.9733 0.9996 0.0267 0.00049 0.9873 0.9990 2.060 11.657 1.790 
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