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Abstract 
In this short note, we propose a new tool for benchmarking 
computational problems and their solvers. The proposed tool, 
which is a version of the PageRank method, is illustrated using 
an example to demonstrate its viability and suitability for 
applications.  
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1. Introduction

In recent years, intensive studies have been conducted to 
evaluate the effectiveness of various solvers and various 
methods for this purpose have been proposed in the 
literature [1-9]. As noted in [9], most benchmarking tests 
utilize evaluation tables displaying the performance of 
each solver for each problem under a specific evaluation 
metric (e.g., CPU time, number of function evaluations, or 
number of iterations). Different methods (based on suitable 
“statistical” quantities) are used to interpret data from these 
tables, including the mean, median, and quartiles [1, 4, 5], 
ranking [4, 5, 7, 8], cumulative distribution function [9], 
etc. The selection of a benchmarking method currently 
depends on the subjective tastes and individual preferences 
of researchers, who perform evaluations using 
solvers/problems sets and evaluation metrics. The 
advantages and disadvantages of each proposed method 
are often a source of disagreement; however, this only 
stimulates further investigation in the field. 
The method discussed in this paper was proposed to 
introduce a new benchmark that directly accounts for the 
natural relationship between problems and solvers, which 
is determined by their evaluation tables. Namely, this 
paper introduces the benchmarking context concept as a 

triple , , ,S P J  where S   is a set of solvers, P is a 

set of problems, and  :J S P   is an assessment
function (a performance or evaluation metric). This 
concept is quite general and, furthermore, emphasizes that 
problem and solver benchmarking cannot be considered 
separately. Based on the data presented by the 

benchmarking context   , , ,S P J  a special procedure 

was defined allowing solvers and problems to be ranked. It 
should also be noted that the proposed procedure is a 
specific version (most probably the simplest) of the Google 
PageRank method [10]. Various versions of PageRank 
have been successfully applied to numerous fields: 
economics [11], bibliometrics [12], and others [13]. 
Motivated by these applications, this study aimed to 
propose a PageRank procedure as an effective tool for 
benchmarking computational problems and their solvers.  
The remainder of this paper is organized as follows: 
section 2 describes the proposed methodology for 
evaluating and comparing solver qualities and problem 
difficulties; section 3 considers the applications of the 
proposed tool in a selected benchmarking problem; and 
finally, section 4 contains a conclusion.  

2. Method

Consider a set  P  of problems and a set   S of solvers

under the assumption that a function : ,J S P  
henceforth referred to as the assessment function 
(performance metric), is given. Further, assume, for 
definiteness, that the high and low values of  

J correspond to the “worst” and “best” cases, respectively, 

and for convenience interpret  ( , )J s p  as the cost of 

solving the problem  p P  with solver s S  . Note that 

if ( , ) ( , ),J s p J s p    it can be said that   s S solves  

p P  better than solver  s S  solves problem  

p P  (i.e., the problem  p P  was easier for solver 

s S   than the problem  p P  was for solver s S  ). 

For a given , , ,S P J   further assume that the following 

assumptions hold ( ,P Sn n below are given natural 

numbers):. 

(A0)  1, , PP n   and  1, , ;SS n 
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Assumption (A0) establishes that the sets ,P S  are finite. 

Assumption (A1) is not restrictive because the sets ,P S  

are finite. Assumption (A2) can be interpreted as a “no 
triviality” condition of the assessments (such that, as a 
requirement, each solver and each problem should be 
tested with at least one problem and one solver, 
respectively). Obviously, (A2) implies that 

,

( , ) 0.SP
s S p P

I J s p
 

  The triple , , ,P S J 

which satisfied assumptions (A0), (A1), and (A2), is 
henceforth referred to as the benchmarking context.  

For a given benchmarking context , , ,P S J   

numerous new quantities can be defined.  For 

any ,p P s S : 

( ) ( ) / , ( ) ( ) / .P P SP S S SPs I s I p I p I    

Of further note, indicators PI and SI  can be considered as

the characteristics of solver “efficiency” (relative to P ) 

and problem “difficulties” (relative to S ), respectively. 

For example, if ( ) ( )P PI s I s , it can be said that the 

solver s S  is ( P  ) worse than solver s S for a
specified criterion, such as processing time. Conversely, if 

( ) ( )S SI p I p , problem p P  is ( S ) more difficult 

than problem p P  (e.g. because solvers from S require 

more processing time to solve problem p P than 

problem p P ).  

Analogously, the “averaged” indicators P and S  can be

considered as the characteristics of solver “efficiency” 

(relative to P ) and problem “difficulties” (relative to S ), 

respectively. For example, if ( ) ( )S Sp p    problem

p P  is said to be ( S ) more difficult than problem 

p P  (because solvers from S require, on average, 

more processing time to solve problem p P than 

problem p P ).  

It is possible to calculate other quantities that can be used 
for benchmarking with the help of the values defined 

above. For example, it is possible to introduce various 

statistics related to the vectors ( ), ( )P SI I   into 

consideration, such as mean, median, and rank. As was 
noted in the introduction, such “statistical” quantities are 
frequently encountered in benchmarking research. 

Furthermore, indicators ( ), ( )P S    can be viewed as

probability measures on the sets ,P S  respectively, as it is 

evident that: 

0 ( ) 1, ( ) 1;

0 ( ) 1, ( ) 1;

P P
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Obviously, the corresponding cumulative distribution 

functions may also be used for benchmarking purposes. 
Further, note that the assessment function :J S P 
may be composed of other indicators, and can itself form 
new assessment functions. An important example of 
constructing additional assessment functions is: for a given 

, , ,P S J   consider : ,RCAJ S P   to be defined

as

,

( , ) ( , )

( , )
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Here, :RCAJ S P    can be considered a new

assessment function. Note also that ( , ) 1RCAJ s p   

implies the cost share of solving problem p  with solver 

s  (from the total cost of solving problems from P  with 
s ) is less than the total cost share of solving p  using 

solvers from S  in the total cost of solving problems from 

P  with solvers from .S   The inequality ( , ) 1RCAJ s p   

is interpreted as the “revealed comparative advantage 
(RSA)”1 of solver s  in problem p  (in other words, s  is 

said to be the significant solver of .p  For comparison note 

also, see  [11] p. 10571, that “a country can be considered 
to be a significant exporter of product p if its Revealed 
Comparative Advantage (the share of product p in the 

1 Note that the term revealed comparative advantage 
(RSA) was introduced in (Balassa, B., Trade 
Liberalization and Revealed Comparative Advantage. The 
Manchester School of Economic and Social Studies, 3(2), 
1965, pp. 99-123) and is widely used for comparative 

analyses in international trade. This analogy can be 

clarified by assuming that J (s, p) represents product 

export p from country s.
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export basket of product p in world trade) is greater than 
1.” ) and the following quantities are introduced: 
 

1, ( , ) 1
( , )

0, ( , ) 1
RCA

J

RCA

J s p
M s p

J s p


 


, 

( ) ( , ), ( ) ( , ).J J J J
p P s S

u s M s p a p M s p
 

    

The quantity ( )Ju s  (henceforth called the universality of 

solver s S ) represents the number of problems for 

which solver s S  is significant. Analogously, ( )Ja p  

(henceforth called the accessibility of problem p P ) 

represents the number of solvers that are significant to the 

problem .p P  Note now that for the given 

benchmarking context , ,P S J  , the matrixes 

[ ], ( , ) / ( ) ( , ) ,

[ ], ( , ) / ( ) ( , ) ,

P P
P sp sp J J

S S
S ps ps J J

W w w M s p u s s p S P

W w w M s p a s p s P S

    

    

 

can be introduced and it is easy to verify that 

0, 1 1 ; 0, 1 1P P P S S S S PW W W W     

where  

 1 {1, ,1},1 {1, ,1}.

P S

P S
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Now we can assume that the vectors 
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( ) ( )

( ) ( )

P
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p P

S
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p S
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where , 0e d    represent some scaling coefficients, 

estimate the effectiveness of solvers (henceforth called the 

S-score) and difficulties of problems (henceforth called the 

P-score), respectively. We note that these equations reflect 

a simple idea: the effectiveness of solvers is directly 

proportional to the weighted sum of problem difficulties 

and the difficulties of problems is directly proportional to 

the weighted sum of solver effectiveness. Using vector 

notations, we thus have ,e P d Se W d d W e     and 

consequently , ,PS SPW e e W d d    where 

1( ) , , .e d PS P S SP S PW W W W W W       

This means that   is an eigenvalue and ,e d are the 

corresponding eigenvectors. Following [11], we select the 
eigenvectors corresponding to the second largest 
eigenvalue and standardize them using the Z-score. 
The described benchmarking method is quite general and 
can be used to compare solvers and problems in various 
areas. It should also be noted that, as was mentioned in the 
introduction, the proposed method can be considered as 
the simplest version of the Google PageRank method, and, 
of course, many variations thereof are possible. For the 
sake of comparison note that after the seminal publication 
of [11] approximately seven hundred different measures 
for defining and benchmarking economic complexities 
have been proposed [14].  

3. Case Study: Benchmarking of Differential 
Evolution Algorithms 

Recently, researchers [15] have conducted a performance 

analysis of differential evolution (DE) algorithms using a 

well-known set of test functions. In this section, we use 

these results to illustrate the proposed benchmarking 

method.  

3.1 Data 

The previous study [15] considered the nine optimization 
algorithms listed in Annex Table A1 and 25 test functions 
listed in Annex Table A2. The sources cited in these tables 
present detailed information on the selected algorithms and 
test functions. Utilizing these algorithms and test functions, 
the sets of 9 solvers and 50 problems were defined (see 
Annex Tables A3 and A4).  
A description of the assessment function used in [15] 
follows. First, note that the expected running time (ERT), a 
widely used performance metric for optimization 
algorithms [16], is defined as  

   max

1
( ) ( ) , ,succes

total

Nq
ERT mean M N q

q N



    

where   is a reference threshold value, M  is the number 

of function evaluations required to reach an objective 

value better than   (such as successful runs), maxN  is the 

maximum number of function evaluations per optimization 
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run, succesN  is the number of successful runs, totalN  is the 

total number of runs, and q  is the named success rate. 

Note now that in order to compare qualitative 

performances using ERT, it is necessary that all compared 

algorithms meet the success criterion at least a few times. 

Accordingly, the special quantity — the random sampling 

equivalent–expected run time (ERTRSE) — may be 

introduced as a performance metric. To clarify the meaning 

of this quantity, we note that, for example, ERTRSE=300 

“means that the corresponding algorithm requires 300 

function evaluations to obtain a function evaluation better 

than the threshold, (which was defined as the expected best 

objective value for 1000 uniform random samples in the 

problem domain)” (see [15], p.8). Annex Table A5 

presents the ERTRSE values for all problem–solver pairs 

used to define an assessment function : .J S P    

Obviously, assumptions (A0), (A1), and (A2) hold and, 

hence, the benchmarking context , ,P S J  is fully 

determined for the case under consideration.  

3.2. Results 

All necessary calculations were conducted using R 

software within the RStudio framework. Results of the S- 

and P-score calculations for the considered case are 

represented in Tables 1 and 2, respectively. Fig. 1 presents 

scatter plots reflecting the universality vs. S-score and 

accessibility vs. P-score, and shows that these 

dependencies can be considered as monotonically 

increasing. 

Table 1  S-score 
Solver Score Solver Score 

S03 -0,7522 S09 -0,4403 
S05 -0,7330 S08  0,5611 
S04 -0,7010 S02  1,5966 
S06 -0,6340 S01  1,6324 
S07 -0,5297 - - 

 
Table 2 R-score 

Problem Score Problem Score 
P14 -2,0285 P30 0,5271  
P15 -2,0285 P04 0,5271  
P08 -1,5207 P29 0,5345 
P11 -1,5207 P10 0,5953 
P12 -1,5207 P21 0,5953 
P18 -1,5207 P42 0,5953 
P19 -1,5207 P01 0,5953 
P20 -1,5207 P03 0,5953 
P33 -1,5207 P13 0,6018 
P36 -1,5207 P26 0,6018 
P37 -1,5207 P44 0,6018 

P40 -1,5207 P45 0,6018 
P39 -0,8346 P46 0,6018 
P05 -0,5214 P24 0,7599 
P25 -0,5102 P49 0,7599 
P50 -0,5102 P48 0,9322 
P16 -0,1358 P38 0,9601 
P28 0,1555 P06 0,9739 
P02 0,38252 P09 0,9739 
P07 0,40813 P23 0,9738 
P17 0,40813 P31 0,9739 
P22 0,40813 P34 0,9739 
P32 0,40813 P35 0,9739 
P47 0,40813 P41 0,9739 
P27 0,41967 P43 0,9739 

 

 

 
 
 
 
Our calculations show that the solver S01 can be 
considered as the “best” in the framework of the given 
benchmarking context. In addition, the 16 problems with 
negative P-scores (see Table 2) can be considered as the 
most inaccessible (difficult/complex) in the framework of 
the given benchmarking context.   

4. Conclusions 

This short note introduced a new method of benchmarking 

computational problems and their solvers. The proposed 

method is quite general and can be viewed as the simplest 

version of the PageRank method. Of course, other versions 

of the PageRank method can also be used for 

benchmarking purposes. Furthermore, we considered an 

illustrative example to demonstrate the viability and 

suitability of the proposed method for applications.  

Fig.1 Universality vs S-score and Accessibility vs P-score 
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Appendix 

Table A1. Algorithms (source [15]) 

Code Short Description 

DE “Rand/1/bin” Differential Evolution [18] 
DE2 “Best/2/bin” Differential Evolution [19] 
jDE Self-adapting Differential Evolution [20] 
JADE Adaptive Differential Evolution [21] 
SaDE Strategy adaptation Differential Evolution [22] 
Code Composite vector strategy Differential Evolution [23] 
epsDE Ensemble parameters Differential Evolution [24] 
SQG Stochastic Quasi-Gradient search [25] 
SQG-DE Stochastic Quasi-Gradient Differential Evolution [15] 
 
 

Table A2. Test Functions (source [15]) 

Code Short Description (see [17]) 

F01 Shifted Sphere Function 

F02 Shifted Schwefel’s Problem 1.2 

F03 Shifted Rotated High Conditioned Elliptic Function 

F04 Shifted Schwefel’s Problem 1.2 with noise in fitness 
function 

F05 Schwefel’s Problem 2.6 with the global optimum on the 
bounds 

F06 Shifted Rosenbrock’s Function 

F07 Shifted Rotated Griewank’s Function  

F08 Shifted Rotated Ackley’s Function with the global 
optimum on the bounds 

F09 Shifted Rastrigin’s Function 

F10 Shifted Rotated Rastrigin’s Function 

F11 Shifted Rotated Weierstrass Function 

F12 Schwefel’s Problem 2.13 

F13 Expanded Extended Griewank’s plus Rosenbrock’s 
Function 

F14 Shifted Rotated Expanded Scaffer’s F6 

F15 Hybrid Composition Function 

F16 Rotated Hybrid Composition Function  

F17 Rotated Hybrid Composition Function  

F18 Rotated Hybrid Composition Function  

F19 Rotated Hybrid Composition Functions with noise in 
fitness function 

F20 Rotated Hybrid Composition Function  with a narrow 
basin for the global optimum 

F21 Rotated Hybrid Composition Function  
F22 Rotated Hybrid Composition Function  with a high 

condition number matrix 
F23 Non-Continuous Rotated Hybrid Composition Function 
F24 Rotated Hybrid Composition Function  
F25 Rotated Hybrid Composition Function 
 

 
 
 
 

 
 

Table A3. Case Stady: Solvers 
Solver Algorithm Solver Algorithm 

S01 DE S06 Code 
S02 DE2 S07 epsDE 
S03 jDE S08 SQG 
S04 JADE S09 SQG-DE 
S05 SADE - - 

 
Table A3.Case Study: Problems 

P
ro

bl
em

 

Description 

P
ro

bl
em

 

Description 

D
im

en
si

o
n

 

F
u

n
ct

io
n

 

D
im

en
si

o
n

 

F
u

n
ct

io
n

 

P01 30 F01 P26 50 F01 

P02 30 F02 P27 50 F02 

P03 30 F03 P28 50 F03 

P04 30 F04 P29 50 F04 

P05 30 F05 P30 50 F05 

P06 30 F06 P31 50 F06 

P07 30 F07 P32 50 F07 

P08 30 F08 P33 50 F08 

P09 30 F09 P34 50 F09 

P10 30 F10 P35 50 F10 

P11 30 F11 P36 50 F11 

P12 30 F12 P37 50 F12 

P13 30 F13 P38 50 F13 

P14 30 F14 P39 50 F14 

P15 30 F15 P40 50 F15 

P16 30 F16 P41 50 F16 

P17 30 F17 P42 50 F17 

P18 30 F18 P43 50 F18 

P19 30 F19 P44 50 F19 

P20 30 F20 P45 50 F20 

P21 30 F21 P46 50 F21 

P22 30 F22 P47 50 F22 

P23 30 F23 P48 50 F23 

P24 30 F24 P49 50 F24 

P25 30 F25 P50 50 F25 
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Table A5. Case Study: ERTRSE Metric 
 (source [15]) 

 
 
 

 
Table A5. (cont.) 

 
 
 

P
ro

b
le

m
s Solvers 

S01 S02 S03 S04 

P01 11657 24049 491 264 

P02 7401 11567 739 309 

P03 6536 32763 606 356 

P04 6182 13326 570 285 

P05 4342 4766 536 311 

P06 7404 11728 491 234 

P07 256 124 482 310 

P08 2877 3011 1783 2084 

P09 15735 24058 467 269 

P10 11658 24054 474 256 

P11 2414 1555 1967 1502 

P12 1072 934 509 342 

P13 15709 10150 524 224 

P14 7497 19174 2735 1735 

P15 437 373 668 366 

P16 2999 11671 490 335 

P17 6925 11670 514 362 

P18 1017 1036 501 314 

P19 1271 1045 533 317 

P20 1190 1098 491 315 

P21 9466 24251 498 253 

P22 2433 2889 489 281 

P23 13650 24194 474 254 

P24 7785 4449 544 272 

P25 220 115 445 304 

P26 19030 9054 439 205 

P27 9055 8145 572 316 

P28 3819 10317 514 289 

P29 19059 10175 538 341 

P30 9173 19040 568 294 

P31 11557 13327 491 235 

P32 394 187 443 289 

P33 1732 2347 2098 1792 

P34 15719 19060 482 245 

P35 24071 24059 456 235 

P36 2024 2568 2187 1324 

P37 1183 1263 560 340 

P38 7381 9057 514 227 

P39 7476 15824 1792 1310 

P40 341 291 557 354 

P41 7506 11568 495 320 

P42 11585 32369 640 327 

P43 10264 19135 631 319 

P44 24351 7387 511 290 

P45 19307 13407 533 321 

P46 13571 9089 486 243 

P47 3311 5068 564 291 

P48 7468 7544 483 248 

P49 15709 13335 498 231 

P50 304 163 488 315 

P
ro

b
le

m
s Solvers 

S05 S06 S077 S08 S09 

P01 329 904 606 202 168 

P02 379 894 3653 137 318 

P03 519 1148 1045 135 210 

P04 342 662 1712 694 310 

P05 527 871 564 459 160 

P06 315 807 603 124 168 

P07 596 879 169 32365 107 

P08 2673 2720 2082 132 2771 

P09 380 818 726 126 193 

P10 320 850 630 201 172 

P11 1321 1541 1979 368 1949 

P12 416 931 594 128 225 

P13 231 723 898 161 289 

P14 1509 2366 6379 6899 1658 

P15 565 857 458 1016 185 

P16 615 689 616 219 179 

P17 572 845 693 9096 178 

P18 460 741 341 263 143 

P19 551 836 389 259 148 

P20 545 1039 384 284 154 

P21 327 901 597 301 175 

P22 389 730 602 13320 202 

P23 325 802 586 664 181 

P24 376 911 573 10183 187 

P25 554 855 167 5321 109 

P26 254 674 579 192 178 

P27 388 908 2135 127 296 

P28 455 764 566 121 145 

P29 434 920 2931 1332 310 

P30 366 964 1418 451 214 

P31 244 831 609 132 182 

P32 536 884 231 24041 109 

P33 2724 2522 2740 117 1960 

P34 295 845 738 123 194 

P35 306 739 661 169 188 

P36 1814 1825 1675 347 1331 

P37 418 1132 774 119 224 

P38 193 604 1139 145 336 

P39 1198 1296 3482 4706 1808 

P40 556 852 331 205 173 

P41 487 738 593 260 156 

P42 515 794 809 5743 192 

P43 380 1071 892 352 226 

P44 389 866 728 307 210 

P45 372 915 794 380 227 

P46 320 871 605 325 176 

P47 431 755 724 19048 153 

P48 333 880 590 537 170 

P49 245 784 688 8170 201 

P50 552 1038 210 13368 109 
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