
Modeling Variation in SaaS Application

Eshtiag A. Abd Elrhman 1

 Nadir K.Salih

2

 Deanship of Community Service and Continuing Education, Jazan University, Jazan, KSA
1

Electrical and computer engineering department, college of engineering, Khartoum, Sudan
2

Abstract
Multi-tenancy gives SaaS application opportunity

to realize economical goal for user and provider. For all

centralized management there is an important thing to be

handling in SaaS environment is the variation of user and

system requirements. In this paper we used the feature

model in the stage of domain analysis after selected extend

that suitable for tenants, which presents the variability for

dynamic properties exactly in configuring our model by

used algorithm for selecting feature and account

variability and commonality. We explained this features in

variable homecare model and configured three different

scenarios showed the variations in the model. In addition

to this, we were adjusting the tenant costing by balancing

between variability and commonality. We depend on fuzzy

logic to model that relationship. Finally we concluded and

remarked for our future work in multi-tenancy SaaS

application.

Keywords: Multi-tenancy, SaaS, variability model, feature

model.

I. Introduction

To capture and manage commonality and

variability the feature model is used in the stage of domain

analysis in the context of software product line [1] [2].

Feature is the distinguishing characteristic of an item. It

means using feature as the fundamental elements to build a

model, in order to form the variation of feature combination.

It can be seen as a compact representation of all software

products in SPL. Feature models are used for software

development process: Firstly, in specification of the

requirements, they allow the designers to define which

configurations of the software will be supported by the

product line. In this stage they give to the designers a view

on the entire family of systems. Secondly, in composition of

the software they allow the developers to select a particular

configuration of the system and so they provide a view on a

specific application. Feature model [26] was originally

proposed as a Feature Oriented Domain Analysis [28]

method in the software engineering approach. The Context

Variability Model provides an intuitive way to capture the

variability and commonality in the requirements that

originate from different contexts, such as different product

types, geographic regions and customers. With this concept

it is possible to capture several dimensions of variability in

the context space in one model [3]. Variability modeling in

feature models, that demonstrated the importance of binding

time analysis when translating requirements into feature

models [4]. Later, feature models play a central role in the

development of a system family architecture[25], which has

to realize the variation points specified in the feature models

[5][27][29]. In application engineering, feature models can

drive requirements elicitation and analysis. Knowing which

features are available in the software family may help

customers to decide which features their system should

support. Knowing which desired features are provided by

the system family and which have to be custom-developed

helps to better estimate the time and cost needed for

developing the system. Multi-tenancy SaaS applications

depend on tenant that using and working at runtime,

according to this we can take just six techniques [9] [10]

from Software Product Line that can be suitable for SaaS

application:

 Binary Replacement.

 Linker Directives.

 Infrastructure Centered Architecture.

 Run-time Variant Components Specifications.

 Variant Component Implementations.

 Condition on Variable.

Any of above techniques can apply dynamically in runtime

to adaptive SaaS applications.

 The purpose is to countermeasure the complexity of

software systems by making systems self-managing [30] [31]

[32] [33] [34] [35] which can decrease costs and enhance

the organization’s ability to react to change [37]. Self-

managing, it must have an automated method to collect and

monitor the details it needed from the system; analyze those

details to determine if something needs to change; to create

a plan, or sequence of actions, that specifies the necessary

changes; and to perform execution for those actions. When

these functions can be automated, an intelligent control loop

is formed. Broad-ranging autonomic solutions require

designers to account for a range of end-to-end issues

affecting programming models [36].

In a multi-tenancy environment, all clients and

their users consume the service from the same technology

platform, sharing all resources in the technology stack

including the data model, servers, and database layers.

Software applications must be specifically built for multi-

tenancy. Attempting to add multi-tenancy to an existing

application not built for it, is analogous to trying to convert

a single-user desktop application to a multi-user Web

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 22

2018 International Journal of Computer Science Issues

application. The variation of wishes and requirements of

users became very big problem for provider, in order to

solve this problem we apply variable model. Multi-tenancy

architecture depicted in figure 1 it includes four modules:

Authorization module: very important because any tenant

has many users, share of resources and databases. Need

security in all layers users, data, and resources.

Server module:
We can say all managements for services in multi-tenancy

SaaS responsible from this module.

Fig 1 Multi-Tenancy SaaS Architecture

Configuration module:

It shows configuration for multi-tenancy SaaS application

variable in runtime for layout maybe change for user or

different from user to user, any tenant has profile

component configuration, file input and output

configuration, and which is the best workflow configuration.

Database module:

 All database store in one place. This need query system to

make adaptation between tenant and system. In addition

load balance can make tuning for storages.

 Variation of SaaS system can be taking from different

perspectives user level, tenant level variation. For example

the variation in tenant level lead to isolation in:

Functional Data can choose either to share the database

between tenants or have separate database/schema for each

tenant. In general accessibility of data can be tenant level.

Behaviour determined by business logic to defined

functionalities of application. Multi-tenant application is

possibility that certain functionalities can be alter or

customized for every tenant. View presentation tier of

application each tenant would prefer to have their own color

scheme, style, look …etc.

Operational Performance non-functional requirements

provided by customers , multi-tenant application is require

to provide performance isolation for each tenant’s specified

SLA. Availability is governed for customer by SLA. In

multi-tenant application availability requirement, for

application could differ from customer to customer. Security

in multi-tenant scenario however security requirements

could vary between tenants. Multi-tenant application should

provide provision to address these varying customer

expectations.

 Support variability within multi-tenant SaaS

application for controlled what we need to analyze the

degree of variability. Requirement of tenants represent

services. It must take (Mandatory) or it may take

(Optional) .Variability is the differences between functional

and nonfunctional property of tenants. Communality is the

same feature for all tenants. It is Important to show higher

degree of sharing feature by tenants. In this research, we

need to balance between variability and commonality for the

existing tenants.

Contribution

 In this research work, we realized the following

contributions: In problem space, first within a SaaS product

we offered a different variant to all customers’ requirements

(such as, show doctor the variation of patient cases) in the

domain of analysis, Second in design domain, for multi-

tenancy application we applied flexible operations. Third in

solution space and implementation we have transferred the

model to object oriented language for dynamically

configuration application and account variability and

commonality. Fourth we used fuzzy logic to adjust tenant

costing by balancing between variability and commonality.

 The remainder of the paper is organized as follows.

Section 2 views Modeling variation in SaaS application.

Different configuration of case study is presented in Section

3. Implementation model is described in Section 4. Analysis

result of Model system and adjusting tenant cost realized in

section 5. Related work showed in section 6. Section 7 gives

a conclusions and future work.

II. Modeling variation in SaaS application

 We depend on Software Product line to deal with two

domains:- Engineering Domain, Application Engineering

they have three activities as depicted in figure2:

Analysis Stage: Engineering domain used multiple feature

models to represent the functional units, user interaction,

and access of data. Can obtain the approximation for

variability and commonality by multiple compose the owner

feature for any group, Application Engineering, by

consideration of commonality and variability feature. We

can customize configuration tenants in SaaS application.

Design Stage: Engineering domain make architecture for

decision on resolution of quality attributes, to address the

quality and functional requirements’ for all tenant.

Application Engineering, benefit from selection of quality

architecture in engineering domain can select a particular

architecture for any SaaS application.

Implementation Stage: Engineering domain

modularization architecture is to generate all components

according estimation between variability and commonality

….
….

Authorization Module

Configuration Module

Database Module

Layout components

Configuration component

File I/O component

Workflow components

Client1

Client2

Clientn

Load balancer

Server Module

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 23

2018 International Journal of Computer Science Issues

of user requirements. Application Engineering,

automatically the SaaS application will generate from

component, and select perfect component to realized

variation to SaaS application.

Fig2 Three Stages model

 We have taken homecare as example has three cases

for different patients: first some patients have diseases lead

to dangerous case that is called urgent event the homecare

application needs to monitor this case. Second have a kind

of patient have diseases just they stay on bed the homecare

application will show the doctor the state of patients. Third

we want from homecare to monitor any people like diagnose

the blood to show if there problem will occur this case

called on bathroom. This application will communicated

with user by mobile or personal computer through web

services.

Analysis Stage

 Offer a different variant to all customers’

requirements. Homecare system is our context for modeling

variation, have three cases, Urgent_event, On_bed , and

Bath_room, Communication system for all cases. During

Domain Analysis we use the FeaturePlugin to define the

feature model, Mandatory must select, Optional can select,

not select, Alternative just select only one in one

configuration, Or can select one or more. Analysis system

appeared in figure3

Fig3 Analysis homecare system

Design Stage

 In design we have three steps: Step1 Transfer

homecare model from feature model to hyper_graph feature

model version as showed in figure4

 Step2 configure the model nodes and determined

the inputs of cases and user requirements as showed in

appendix.

 Step3 for Modeling SaaS application variation we

need flexible operations for change architecture.

Composition, we identified three important forms of

composition (insert, aggregate, merge).

Fig4 transfer feature model to hyper-graph

 Insert, aims at introducing new features, already

organized in a homecare model, into a specific location of

another existing homecare model see figure5

Fig5 insert operation

 Aggregate, supports cross-tree constraints between

features so that separated homecare models can be inter-

related as depict in figure6

Fig6 Aggregation operation

 Merge, is dedicated to the composition of homecare

models that exhibit similar features looked at figure7

Fig7 Merge operation

 Decomposing in figure8 the solutions to the sub-

problems is then combined to give a solution to the original

problem. Realize flexibility by divided the model into sub

variation models to agree with multi-tenant differences.

InsertInsert

AggregateAggregate

MergeMerge

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 24

2018 International Journal of Computer Science Issues

file:///E:/case_study/reports/report_progress/three_cases.ppt

Fig8 Decomposition operation

III Different configuration

 Our case study include multi-database [42] for e-

health; here just we take homecare as example. During

runtime may require reconfigure resources (devices,

software) to make dynamic adaptation like the doctor can

change care plan at any time this may change devices,

relationship between components. We can say the first

important thing is what the care plan that interaction

between system and patient it similar to workflow, the

second thing what is the availability of resources.

Configuration process can be depending on patient profile

or the Service Level Agreement in clouding environment

[43] when it change dynamically obtain new configuration

for service as depict in figure9 bellow.

 Fig9 Reconfiguration Flow

Configuration of Model system component variation, during

runtime may require reconfigure resources (software,

devices) to make dynamic adaptation are clear in these

scenarios:

Component variation by alternative feature

 From feature model of homecare we have a

number of alternatives feature; this can be helping the

system to use many ways to serve the patient. We can

depend on sensor to select what available in communication

service if it is included in SLA it can be select if not or the

user has change can make reconfiguration to suitable service.

We can see in appendix, communication service by internet

or mobile, some patient have only used mobile or internet or

other have the two options. The system need to make

reconfiguration because quality of service is less than the

best, this lead to change service to another if it is inside the

profile of patient or can add it if the patient make change.

We can see the communication system that have two ways

with personal computer or mobile and they have alternative

feature data can be different format in video, data, and voice.

See the new configuration in listing see appendix. It

Described availability of nonfunctional property for

“communication system”. In homecare model have

alternative feature for type of data transmission, this help

doctor to find patient information in different ways (mean

high availability). Reconfiguration depend on demand for

example doctor want to see the patient and in his profile

didn’t found video feature the system can make reconfigure

and add this feature the result is service qualify increase.

Sometime any alternative fail can change to another. This

scenario describes availability nonfunctional property for

communication system.

Depend on care plan used optional feature, describe

dynamic variability for urgent event that lead to new

configuration at runtime. Like in homecare model we have

optional feature in case of urgent_event, if occur any

problem in smart_shirt can change to smart_watch without

stop system. This scenario used care plan that include the

workflow of service for any patient and resource used in

normal case. Sometimes need to reconfiguration for

architecture to change resource depend on optional feature?

We depict this case in urgent event that appear in appendix

if the patient is used smart shirt to collect information

(blood, breath, beat) that will help system to save the patient.

In care plan we have other optional feature to measure this

information by smart watch, this point need system make

new configuration to change the resource that capture

information automatically instead of smart shirt because it

has not clear measurement. This scenario can describe

dynamic variability for urgent event that lead to new

configuration at runtime for healthcare system appeared in

listing see appendix.

New event for patient

 This scenario can make adaptation service sensitive

to any changes that may be made by the doctor. Like figures

in appendix add new case to the patient of urgent_event, he

has two cases. The configuration support framework

continuously monitors health problems described in the

patient care plan, making the adaptation service sensitive to

any changes that may be made by the doctor. If we take

example say the patient have disease that monitor from one

case we mention in figure 2 like in bed and the profile of

patient and care plan include all resources and

configuration that can be occur. By monitoring from doctor

some time predict some cases may occur for this patient,

new disease or we can take urgent event case this will need

new configuration. The system modifying in care plan by

used new resources that will monitor new case. As we

mention the doctor will receive information from smart shirt

or watch beside from smart bed or smart pillow as. Here in

runtime we have new care plan by adding new configuration

for new resources in this case. The doctor wants to monitor

on bed case and urgent event in the same time only for one

patient. The configuration changed as in listing look at

appendix.

IV Implementation model
 Implementation for model consisted from two

properties: Selected feature that are found as configuration

Management Service Configuration

SLA

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 25

2018 International Journal of Computer Science Issues

for tenant. Dynamically account, approximation for

commonality and variability.

 T = (T1,T2…….Tn)

Valid Configuration G = (VG, EG, r) is a sub-hyper-graph

VG is a subset of nodes of V: VG V

EG is a set of hyperarcs: EG ={eG | e ∈ E t(eG) = t(e)

h(eG) h(e)}

 The root is present: r ∈ VG

Algorithm logic
 Select feature for any tenant according to three cases:

 C1: Select alternative feature mean availability feature

(Qos better).

 C2: Select optional feature mean dynamic variability

(easy to change in runtime).

 C3: New event mean adaptation service to any change

Given a hyper-arc,e, with a multiplicity value, mv =

[min…max], whose tail (feature) is selected, no less than

min and no more than max features of the hyper-arc’s head

(child features) should also be present in the configuration.

When |H(e)| = 1 (children’s cardinality set is one):

- If min = 1 = max, the feature is mandatory, and should

present if the parent, or it is a require constraint and the

child should also be present [1..1].

- If min = 0 max = 1, the feature is optional [0..1]

When |H(e)| > 1 (children’s cardinality set is more than one):

 - if min = 1 = max, it is a XOR alternative feature group,

and only one of the children should be present at most if

the parent is present.

 - if min = 0 max = 1, it is an optional feature group, and

child features can be present or not as long as its parent is

present, or it is a mutex constraint and at most one of the

child features can be present

 - if 1 min max |H(e)|, it is a OR feature group, and

no more than max and no less than min child features can

be present if the parent feature is present

 The figure10 below the input and output of the algorithm.

And depict three levels for SaaS application.

 Fig10 input and output of algorithm

Algorithm of selecting feature, and calculation of variability

and commonality, and configurations of for used, cases

realized in listing1.

Listing1 algorithm of selecting feature

  



 


model

cases

tenant solutions

user requirements

Input
1- Configuration for any cases

2-Configuration for any user

3- Variability for any case

4-Communality for any case

Output
model

cases

tenant solutions

user requirements

Input
1- Configuration for any cases

2-Configuration for any user

3- Variability for any case

4-Communality for any case

Output

Model level

Tenant level

User level

Algorithm Select_ feature

 Inputs

 Node : N – nodes of all model, Relation: R relationship

between nodes, Group : all item belong to any nodes

 C : Cases {c1, c2, c3} :Case1: c1, Case2 :c2, Case3: c3

 T : tenants {T1,T2,T3,T4,T5}:T1 configuration : T1C,T2

configuration : T2C,T3 configuration : T3C, T4 configuration :

T4C, T5 configuration : T5C, User_Requirement : UR

 Outputs

 All configuration for any cases : AC,Suitable configuration

or any user: SCU

 Account of variability for any case: AV, Account of

commonality for any case: AComm

 For each c∈ C

 While H(e) > 1 do

 if min = 1 and max=1 Then only one node will select

in one configuration ---alternative

 if min = 0 and max= 1 Then in configuration can

select or not —optional or mutex constraint

 if 1 min max |H(e)| Then will select all or apart of

nodes ---OR

 end if

 end if

 end if

 While H(e) = 1 do

 if min = 1 and max= 1 then must select in

configuration —mandatory or require constraint

 if min = 0 and max= 1 then may select or not —

optional

 end if

 end if

 configure(c)

 return number of product(k)

 return number of nodes in any case (n)

 AV =

 AComm = number of appear nodes in all product/k

 end while

 end while

end for each

 if H(e) = 0

 invalid configuration

 for each t ∈ T

 select SCU configuration for any user

 end for each

end procedure

12 
n

k

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 26

2018 International Journal of Computer Science Issues

V Analysis of Model System

We Analyzed Model SaaS application variation by defined

Process for the automated analysis of feature models in

figure11

Fig11 process of automated analysis

Variability and commonality for tenants obtained from

number of product: This operation takes as input a feature

model and returns the number of products of a feature

model. This operation reveals information about the

flexibility and complexity of the software product line a big

number of potential products can reveal a more flexible as

well as more complex product line.

Variability =

k: is number of products

n: is number of all features

Variability increase number of tenant and costing

Commonality =

Sharednode: number of appeared nodes in all products.

Commonality mean reduces number of tenants and costing

increase number of product increase number of tenants for

that the variation of tenant level can be realized by

balancing between variability and commonality as we

observed from analysis in three cases of homecare model

see bellow tables and figures for three cases.

Case1

variability 0.00782 0.01956 0.0313

commonality 1 0.3 0.0625

Number of product 4 10 16

Case3

variability 0.001465 0.00242 0.00366

commonality 0.666 0.4 0.266

Number of product 6 10 15

Adjusting tenants

 Balancing between commonality and variability lead

to large income for SaaS provider, good services for users

economically used of resources. From analysis of three

cases of homecare model we observed that relationship

appeared in figure12

Fig12 adjusting of tenant costing

Case2

variability 0.031 0.04761 0.0793

commonality 1.5 0.666 0.4

Number of product 2 3 5

k

sharednode

12 
n

k

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20
commonali

ty

variability

Number of

product

0

0.5

1

1.5

2

0 2 4 6

commonality

variability

Number of

product

0

0.5

1

1.5

2

0 2 4 6

commonality

variability

Number of

product

Commonality

Variability

Commonality

Variability

Commonality

Variability

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 27

2018 International Journal of Computer Science Issues

Adjusting tenants using Fuzzy Expert System

 How to obtain the approximation between

commonality and variability used fuzzy logic for truth

degrees as mathematical model of vagueness phenomenon

while probability is mathematical model of ignorance. To

make fuzzy controller modeling we looked for three steps:

 Fuzzification is proposed observations are uncertainties,

first define the input and output, the product number of

tenants (δ) calculating from variability (V) and commonality

(C). we can set the input as

],[aak 

],[bbk 

Out put set is

],[)(cc

Fuzzification function is

 Raaf
k

],[

R: set of all fuzzy number and fk (x0) is fuzzy chosen by fk

As approximations of measurement k = x0 . fuzzification by

showing the membership function for variability (V) and

commonality (C) with trapezoidal shape in figure13 and

figure14 respectively.

 Fig13 Variability membership function

 Fig14 Commonality membership function

Fuzzy inference

 In our model k, k are in put, δ is output:

 if k = A, k = B THEN δ = C,

A, B, C are fuzzy number to find fuzzy rules we used a set

of input, output data:-

 X{Xd, Yd, Zd | d∈D}.

Zd : output variable of δ

Xd, Yd : input variable k, k

If A(xd), B(yd), C(zd) largest membership grades there the

degree of relevance is:

 i1 [i2,(A(xd), B(yd), C(zd))]

 i1 ,i2 are t-norms

fuzzy rules base consist of n fuzzy inference value:

 Rule1 if (k, k) is A1,B1, THEN δ is C1

 Rule2 if (k, k) is A2,B2, THEN δ is C2

 Rulen if (k, k) is An,Bn, THEN δ is Cn

 The result of The rule in our model in figure15 is:

 If V is high, C is low then costing is high

 If V is mid, C is mid then costing is mid

 If V is low, C is high then costing is low

Fig15 Result of Inference Rule

Defuzzified

 For calculating Defuzzified number we used centroid

method. To convert the out put values inference engine

express as fuzzy set. Defuzzified output variable express by :

)(x
a

 : Membership function, aggregate membership

function to:

1- Xmin minimum costing(δ)

2- Xmid mid costing(δ)

3- Xmax maximum costing(δ)






b

a
a

b

a
a

dxx

xdxx

X

)(

)(





IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 28

2018 International Journal of Computer Science Issues

All the rules have been depicted as 3D graphs called surface

viewer in Figure16:

 Fig16 Surface for Commonality, Variability and Cost

VI. Related work

1. Software Product Line

 C. Cetina et al in [11] they used feature model at

runtime to enable smart home system perform

reconfiguration like query feature model to change in

architecture. Kyo C. Kang et al in [12] they described The

Feature-Oriented Reuse Method concentrates on analyzing

and modeling a product line’s commonalities and

differences in terms of features and uses this analysis to

develop architectures and components. The FORM explores

analysis and design issues from a marketing perspective.

Mohammad and Hassan in [13] they used feature model to

model SOA variability for maximizing reusability, and

allow service providers and consumers to change

independently of each other, since all variability is

performed at the service contract or service interface level

only. Mathieu Acher et al in [14] they made interaction

between specification and Implementation by choice feature

model rules to improved configuration and adaptation

runtime. Liwei Shen et al in [15] they used feature models

to capture runtime variations to implement runtime

reconfigurations and implementation-level code adaptation

adopting dynamic. Hisayuki Horikoshi et al in [16] they

depend on a feature-oriented analysis technique to identify

adaptation points, and calculate the contribution to non-

functional goals of the configuration a component

specification model, which extends an architectural

description language for self-adaptation and reduced

reconfiguration at runtime.

 All authors in this related work used the feature

model as variability model in SPL not like us we used it in

multi-tenancy SaaS.

2. Multi-tenant SaaS

 Ali Ghaddar et al. in [17] they apply variability

concept in application layer by made variability in model to

represent application variation. They used variability in this

system to enhance its availability and adaptation to different

tenants. R. Mietzner et al. [18] they using explicit variability

models to systematically derive customization and

deployment information for individual SaaS tenants. Attract

a significant number of tenants, to be customizable to fulfill

the varying functional and quality requirements of

individual tenants. J. Schroeter et al, in [19] they identify

requirements for such runtime architecture and they

extended existing architecture for dynamically adaptive

applications for the development and operation of multi-

tenant applications. J. Kabbedijk et al, in [20], they design

three architectures design pattern for variability in multi-

tenant environment. K.ozturk et al in [21] they provide a

feature model for SaaS that depicts the design space and

represents the common and variant parts of SaaS

architectures. R.Mietzner et al, in [22] they show how the

service component architecture (SCA) can be extended with

variability descriptors and SaaS multi-tenancy patterns to

package and deploy multi-tenant aware configurable

composite SaaS applications. H. Jung et al in [23] they

proposed process, SaaS services with high quality can be

effectively developed. And highlight the essentiality of

commonality and variability (C&V) modeling to maximize

the reusability. R.Mietzner et al in [24] they describe the

notion of a variability descriptor that defines variability

points for the process layer and related artifacts of process-

based, service-oriented SaaS applications. Here all the

above related works are talking about variability in multi-

tenancy SaaS but didn’t talk about configuration and

calculation of commonality, variability dynamically.

VII. Conclusion and Future Work

 In this work we proposed variability model that

realize the dynamic properties to help provider in multi-

tenancy SaaS application manage variation in user and

system requirements. The feature model help us determined

the alternative and optional variation in our homecare model.

Automatically the changed occur in configuration appear in

XML file because we design this model in eclipse platform.

Dynamically we selected feature and calculation variability

and commonality. In addition we adjusting tenant costing by

balancing between variability and commonality.

 For future work, we intend to extend our model to

support more aspects of SaaS application development.

Specifically, we are planning to extend the model for

metrics management, detailed software configuration

aspects, integrate a model for multi-tenant architecture, and

establish mechanisms to link all these artifacts to source

code.

References
[1] Frank van der Linden, Klaus Schmid and Eelco Rommes, Software

Product Lines in Action, Springer-Verlag Berlin Heideberg, 2007.

[2] M. Acher, P. Collet, R. B. France.Separation of Concerns in Feature
Modeling: Support and Applications. https://nyx.unice.fr/publis/acher-

collet-etal:2012.pdf

[3] H. Hartmann, T. Trew. Using Feature diagrams with Context
Variability to model Multiple Product Lines for Software Supply

Chains.IEEE, 2008.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 29

2018 International Journal of Computer Science Issues

[4] LAU, SEAN Q: Domain Analysis of E Commerce Systems Using

Feature-Based Model Templates. MASc Thesis. University Avenue West,
Waterloo, Ontario, Canada, 2006.

[5] K. Czarnecki, S. Helsen, U.Eisenecker. Staged Configuration Using

Feature Models, pp. 266–283, Springer-Verlag Berlin Heidelberg, 2004.
[6] G. Gallo, G.Longo, S. Nguyen, S. Pallottino, Directed Hyper Graphs

and Applications.

http://www.cis.upenn.edu/~lhuang3/wpe2/papers/gallo92directed.pdf.
[7] P.Yves Schobbens, P. Heymans, J.Christophe Trigaux, Y. Bontemps.

Generic semantics of feature diagrams. Pp:456–479, Elsevier,2007.

[8] Miguel A. Laguna, José M. Marqués. Feature Diagrams: a
Formalization and extensible Meta-model Proposals.

http://giro.infor.uva.es/TR2009-2.pdf.

[9] S. T. Ruehl, U. Andelfinger. Applying Software Product Lines to create
Customizable Software-as-a-Service Applications. ACM, 2011.

[10] M. Svahnberg1, J. van Gurp, Jan Bosch. A taxonomy of variability

realization techniques. Wiley InterScience, 2005.
[11] C. Cetina, P. Giner, J. Fons, V. Pelechano.

 Autonomic Computing Through Reuse OF Variability Models at Runtime:

The Case of Smart Homes. IEEE, 2009.
[12] K. C. Kang, J. Lee, P. Donohoe. Feature Oriented Product Line

Engineering. IEEE, 2002.

[13] M. Abu-Matar. H. Gomaa. Variability Modeling for Service Oriented
Product Line Architectures. International Software Product Line

Conference. IEEE, 2011.

[14] M. Acher, P. Collet, P. Lahire, S. Moisan, J.-Paul Rigault. Modeling
Variability from Requirements to Runtime. International Conference on

Engineering of Complex Computer Systems.IEEE. 2011.
[15] L. Shen, X. Peng, J. Liu , W. Zhao. Towards Feature-oriented

Variability Reconfiguration in Dynamic Software Product Lines.

http://www.se.fudan.edu.cn/paper/ourpapers/204.pdf
[16] H. Horikoshi, H. Nakagawa, Y. Tahara, A. Ohsuga. Dynamic

Reconfiguration in Selfadaptive

SystemsConsidering Nonfunctional Properties. ACM, 2011.
[17] Ali Ghaddar, Dalila Tamzalit, Ali Assaf. Decoupling variability

management in multi-tenant SaaS applications. International Symposium

on Service Oriented System Engineering, IEEE.2011.

[18] Ralph Mietzner, Andreas Metzger, Frank Leymann, Klaus Pohl.

Variability Modeling to Support Customization and Deployment of Multi-

Tenant-Aware Software as a Service Applications. ICSE’09 Workshop,
IEEE, 2009.

[19] Julia Schroeter, Sebastian Cech, Sebastian Gotz, Claas Wilke, Uwe

Abmann. Towards Modeling a Variable Architecture for Multi-Tenant
SaaS-Applications. Sixth International Workshop on Variability Modeling

of Software-Intensive Systems.ACM, 2012.

[20] Jaap Kabbedijk, Slinger Jansen. Variability in Multi-tenant
Environments: Architectural Design Patterns from Industry, Springer, 2011.

[21] K. Ozturk, B. Tekinerdogan, Feature Modeling of Software as a

Service Domain to Support Application Architecture Design. International
Conference on Software Engineering Advances. IARIA, 2011.

[22] Ralph Mietzner, Frank Leymann, Mike P. Papazoglou. Defining

Composite Configurable SaaS Application Packages Using SCA,
Variability Descriptors and Multi-Tenancy Patterns. Third International

Conference on Internet and Web Applications and Services, IEEE, 2008.

[23] Hyun Jung La, Soo Dong Kim. A Systematic Process for Developing
High Quality SaaS Cloud Services. Springer, 2009.

[24] Ralph Mietzner, Frank Leymann. Generation of BPEL Customization

Processes for SaaS Applications from Variability Descriptors, International
Conference on Services Computing.IEEE, 2008.

[25] M. Moon, H. S. Chae, K. Yeom. A Meta-model Approach to

Architecture Variability in a Product Line. pp. 115 – 126,Springer, 2006.
[26] Don Batory. Feature Models, Grammars, and Propositional Formulas.

pp. 7 – 20, Springer-Verlag Berlin Heidelberg, 2005.

[27] M. Asadi, B.Mohabbati, D. Gasevic, E.Bagheri2, M. Hatala.
Developing semantically-enabled Families of MethodorientedArchitectures.

http://ebagheri.athabascau.ca/papers/ijismd.pdf

[28] K. Kang. Feature-oriented domain analysis (FODA) feasibility study.
Technical report, DTIC Document, 1990.

[29] Luca Gherardi, Davide Brugali. An eclipse-based Feature Models

toolchain. http://www.best-
ofrobotics.org/pages/publications/UniBergamo_EclipseIT2011.pdf

[30] P. Horn. Autonomic computing: Ibm’s perspective on the state of

information technology, 2001.

[31] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, R. Buyya. An

autonomic cloud environment for hosting ECG data analysis services.
Elsevier, 2011.

[32] E. Arnautovic, H. Kaindl. Towards Self-Managed Systems aware of

Economic Value. International Conference on Self-Adaptive and Self-
Organizing Systems Workshop, IEEE, 2010.

[33] Alexandra Carpen. Towards a Self-Adaptive Data Management

System for Cloud Environments. International Parallel & Distributed
Processing Symposium, IEEE, 2011.

[34] M.Rahman, R. Ranjan, R. Buyya, B. Benatallah. A taxonomy and

survey on autonomic management of applications in grid computing
environments. John Wiley & Sons, Ltd. 2011.

[35] G. Blair, N. Bencomo, Robert B. France. Models@ Run-Time. IEEE,

2009.
[36] S. Dobson, S. Denazis, A. Fern´andez, D. Gaiti, E. Gelenbe, F.

Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli. A survey of

autonomic communications. ACM Transactions on Autonomous and
Adaptive Systems, 1:223–259, 2006.

[37] IBM. An architectural blueprint for autonomic computing. Technical

report, IBM., 2006.
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf

 [38] D, Valtchev, I. Frankov. Service Gateway Architecture for a Smart

Home. IEEE, 2002.
[39] Gerald Tesauro. Reinforcement Learning in Autonomic Computing a

Manifesto and Case Studies. IEEE Computer Society, 2007.
[40] D. Benavides, S. Segura, P. Trinidad, A. R.Cortes. FAMA: Tooling a

Framework for the Automated Analysis of Feature Models.

[41] R. Gupta, S. K. Malik. SPARQL Semantics and Execution Analysis in
Semantic Web Using Various Tools. IEEE, 2011.

[42] Nadir K Salih, Tianyi Zang, Mingrui Sun.Multi databases in Health

Care Networks. International Journal of Computer Science Issues, vol. 8,

Issue6, No3, 2011, pp 210-214.

[43] Nadir K Salih, Tianyi Zang. Survey and comparison for Open and

closed sources in cloud Computing. International Journal of Computer
Science Issues, vol. 9, Issue 3, No1, 2012, pp 118-123.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292404 30

2018 International Journal of Computer Science Issues

http://www.cis.upenn.edu/~lhuang3/wpe2/papers/gallo92directed.pdf
http://giro.infor.uva.es/TR2009-2.pdf
http://www.se.fudan.edu.cn/paper/ourpapers/204.pdf
http://ebagheri.athabascau.ca/papers/ijismd.pdf
http://www.best-ofrobotics.org/pages/publications/UniBergamo_EclipseIT2011.pdf
http://www.best-ofrobotics.org/pages/publications/UniBergamo_EclipseIT2011.pdf
mailto:MoDELS@RUN.TIME.IEEE
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf
http://arxiv.org/abs/1112.4099
http://arxiv.org/abs/1112.4099

