
Dictionary Based Compression using Bit Wise
Technique for Cloud Migration

Shivam Saini1, Shivani Pathak2, Dr. Sandeep Sharma3

1 Department of Computer Engineering and Technology, Guru
Nanak Dev University, Amritsar-143005, India

2 Department of Computer Engineering and Technology, Guru
Nanak Dev University, Amritsar-143005, India

3 Department of Computer Engineering and Technology, Guru
Nanak Dev University, Amritsar-143005, India

Abstract
In era of cloud computing, data migration is an
important issue to minimize cost and time incurred to
transmit the data across the network. Data
compression is a technique that helps to significantly
reduce the transmission time and thus reducing cost.
In this paper, a new dictionary-based compression
algorithm using bit wise technique has been
introduced. The algorithm constitutes two
dictionaries, primary dictionary (Static) and
secondary dictionary (Dynamic). The data to be
transmitted is first divided into chunks of fixed
size(16K) and then transmitted after compression
along with secondary dictionary. The proposed
algorithm will conduce to reduce the number of data
packets that needs to be transmitted with better
bandwidth utilization thereby augmenting the
transmission rate of data.
Keywords: Cloud computing, Virtual machine
migration, Compression, Decompression.

1. Introduction

Cloud computing has become a significant
technology trend in various IT infrastructure. It can
be defined as a new style of computing in which
dynamically scalable and often virtualized resources
are provided as a service over the Internet. Cloud
computing delivers infrastructure, platform, and
software that are made available as subscription-
based services in a pay-as-you-go model to
consumers. These services are referred to as
Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS) in
industries [1]. Advantages of the cloud computing

technology include cost savings, high availability,
and easy scalability. Cloud computing typically uses
a network of data centers that are geographically
dispersed. The distance between clients and
applications is impacted by geographical distance. In
Cloud, a service provider is responsible for managing
the cloud resources as a manager. To run the
applications, it will allocate resource by virtual
machine (VM) to each user and cloud computing is
one of the illustrious technology because of its
virtualization facet [2]. Virtualization is used in
system management to deal with load balancing,
efficient resource utilization etc. Live virtual machine
(VM) migration transfers ongoing process from
overloaded virtual machine to another virtual
machine [3]. It has become an extremely powerful
tool for system management in a variety of key
scenarios, such as VM load balancing, fault
tolerance, power management and other applications.
The performance of live VM migration is affected by
various factors. The network transmission rate
together with the configuration of migration
algorithm is one of the cardinal factor that affects it
[4]. In general approach, physical memory image is
pushed across network to the new destination while
the source VM continues running. Pages dirtied
during the migration must be iteratively resent to
ensure memory consistency. By iterative it means
that pre-copying occurs in several rounds and the
data to be transmitted during a round are the dirty
pages generated in the previous round. But the data to
be migrated is too large and consumes a lot of time

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292416 36

2018 International Journal of Computer Science Issues

and storage and thus increasing the number of
iterations and cost for data migration. To overcome
these limitations, data compression technique can be
implemented. Data Compression is a process by
which the file size is reduced by re- encoding the file
data to use fewer bits of storage than the original file
[5]. The original file can then be recreated from the
compressed representation using a reverse process
called decompression. A simple characterization of
data compression is that it involves transforming a
string of characters in some representation (such as
ASCII) into a new string (of bits, for example) which
contains the same information but whose length is as
small as possible. The same program is used to
decompress(decrypt) the data so that it can be read as
the original data. There are two mainly two types of
Data Compression Lossy Compression and Lossless
Compression [6]. A lossy data compression method
in which the data may be lost and retrieved data after
decompression may not be exactly same as the
original data whereas a Lossless data compression is
a technique that allows the exact original data to be
reconstructed from the compressed data as no data is
lost. Since we are only dealing with the text in this
paper, we are considering the lossless compression.
The main motive of this paper is to reduce the
storage, time and cost that.is incurred during the live
virtual machine migration through data compression.

2. Earlier work

Virtualization technology allows multiple operating
systems to run concurrently on the same physical
machine. Over times various new methods and
technologies have been introduced. A number of live
migration techniques that transfers the whole system
at run time state, including CPU state, local disk
storage and memory data of the virtual machine has
been introduced. C. Xianqin, et al. presented a
technique to improve the performance of live
migration [7]. In this an optimized iterative pre-copy
algorithm is used which reduce the dirty rate of VM.
E. Zaw et al. proposed Network aware VM Migration
strategy [8]. In this, migration of VM is purely base
on network traffic and network latency and various
strategies are used for migration. H. Jin et al.
presented an approach, VM placement and migration
for data intensive application, which helps to
minimize data transfer time [9]. The approach places
the VMs on target physical machines by considering
the network conditions between the physical
machines and the data storage. From time to time to

improve the performance of virtual machine
migration a number of methodologies have been
introduced. Huffman coding works on the entropy of
the words. In Huffman coding [10] the most
frequently occurring symbols are given the shortest
code words. These codes are created by storing the
symbols of the alphabet in a binary tree data structure
according to their entropy i.e. their probability of
occurrence. A 0 is appended while traversing the tree
to the right child, and a 1 while traversing the tree to
the left child. Therefore, symbols which occur
frequently are provided the shortest codes. A variety
of data compression algorithms has been designed
over years. Run Length Encoding (RLE) Algorithm,
Huffman Encoding Algorithm, Adaptive Huffman
Encoding Algorithm, Shannon Fano Algorithm
Arithmetic Encoding Algorithm and Lempel Zev
Welch (LZW) Algorithm has served as fundamental
techniques for compression and decompression. In
[11] a new dictionary and memory-based text
compression technique is presented. The original
words in a text file are transformed into codewords
using a dictionary of frequently used words in
English language.

3. Proposed dictionary-based compression using
bit wise technique

The proposed algorithm deals with data
compression by mainly focusing on the most
frequently used words in English language. It is a
dictionary based [12] algorithm in which two
dictionaries are used. The basic idea is to take the
advantage of commonly occurring words by using a
dictionary [13]. The repeating occurrences in the
dataset are replaced by a code. The data to be
transmitted is first divided into blocks of fixed size of
16K as S0, S1, S2,…,Sn. Each block is compressed
and immediately transferred as CS0, CS1, CS2, …,
CSn. At the encoding of each block, a new secondary
dictionary (dynamic) [14] is created by replacing the
previous one, whereas primary remains static. This
secondary dictionary is always transmitted along with
the compressed data block over the network each
time a new a block is compressed. At the other end,
the decoder uses primary dictionary already
available, and the secondary dictionary that is
received over the network along with the compressed
data block for decoding. In this paper, we have also
focused on the spaces present in the text for better
compression results. In any text file, there are about
20% spaces. The algorithm has been designed in such
a way that some spaces between words can be
removed without any difficulty to retrieve the
original words of the target text file
3.1 Primary dictionary

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292416 37

2018 International Journal of Computer Science Issues

The Primary dictionary is a static dictionary that
comprises 64 most frequently used words in English
having length 2 and 3. It is built up before
compression occurs, and it does not change while the
data is being compressed. Each word in the
dictionary is assigned an 8-bit code which is fixed
and whose first two bits are always 10 i.e. (10XX
XXXX) where each X can take a value of 0 or 1.

WORD CODE
 is
 the
 The
 of
 in
 it
 to
 as
 on
 at
 are
 and
 for
 but
 all
 its
 can
 if
 so
 or
 do
 an
 no
 be
 we
 he
 by
 me
 my
 up
 go
 us
 am
 not
 you
 any
 had
 her
 was
 one
 our
 out

1000 0000
1000 0001
1000 0010
1000 0011
1000 0100
1000 0101
1000 0110
1000 0111
1000 1000
1000 1001
1000 1010
1000 1011
1000 1100
1000 1101
1000 1110
1000 1111
1001 0000
1001 0001
1001 0010
1001 0011
1001 0100
1001 0101
1001 0110
1001 0111
1001 1000
1001 1001
1001 1010
1001 1011
1001 1100
1001 1101
1001 1110
1001 1111
1010 0000
1010 0001
1010 0010
1010 0011
1010 0100
1010 0101
1010 0110
1010 0111
1010 1000
1010 1001

 day
 get
 has
 him
 his
 how
 man
 new
 now
 old
 see
 two
 way
 boy
 did
 let
 put
 say
 she
 too
 use
 who

1010 1010
1010 1011
1010 1100
1010 1101
1010 1110
1010 1111
1011 0000
1011 0001
1011 0010
1011 0011
1011 0100
1011 0101
1011 0110
1011 0111
1011 1000
1011 1001
1011 1010
1011 1011
1011 1100
1011 1101
1011 1110
1011 1111

Fig. 1 Primary dictionary

3.2 Secondary dictionary

Besides primary dictionary, secondary dictionary is
not fixed [14]. The dictionary can constitute utmost
64 words. Initially, the dictionary is empty. It will
add the 2 and 3 length words that are present in the
block which were not found in the primary
dictionary. Besides this, the dictionary will also add 4
and 5 length words until it is vacant. As in the
primary dictionary, each word in this dictionary is
also assigned an 8-bit code and whose first two bits
are always 11 i.e. (11XX XXXX) where each X can
take a value of 0 or 1. Every time when a new word
is encountered satisfying the conditions, it is added
just after the last entry in the dictionary. Starting code
for first string in secondary dictionary will be fixed.
The next codes can be obtained by doing increment
of one step. Whenever the block is encoded, a new
secondary is maintained for that block.

EXAMPLE

The following text has been encoded using Primary
and Secondary Dictionary

Dolphins are regarded as the friendliest creatures in
the sea and stories of them helping drowning sailors
have been common since Roman times. The more we

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292416 38

2018 International Journal of Computer Science Issues

learn about dolphins when they are ill, care in the
community, as we do.

WORD CODE
sea
them
have
been
since
Roman
more
learn
about
when
they
ill,
care
do.

1100 0000
1100 0001
1100 0010
1100 0011
1100 0100
1100 0101
1100 0110
1100 0111
1100 1000
1100 1001
1100 1010
1100 1011
1100 1100
1100 1101

Fig. 2 Secondary dictionary

3.3 ENCODING

0100 0100 0110 1111 0110 1100 0111 0000 0110
1000 0110 1001 0110 1110 0111 0011 0010 0000
1000 1010 0111 0010 0110 0101 0110 0111 0110
0001 0111 0010 0111 0010 0110 0101 0110 0111
0110 0001 0111 0010 0110 0100 0110 0101 0110
0100 0010 0000 1000 0111 1000 0001 0110 0110
0111 0010 0110 1001 0110 0101 0110 1110 0110
0100 0110 1100 0110 1001 0110 0101 0111 0010
0111 0100 0010 0000 0111 0011 0111 0010 0110
0101 0110 0001 0111 0100 0111 0101 0111 0010
0110 0101 0111 0011 0010 0000 1000 0100 1000
0001 1100 0000 1000 1011 0111 0011 0111 0100
0110 1111 0111 0010 0110 1001 0110 0101 0111
0011 0010 0000 1000 0011 1100 0001 0110 1000
0110 0101 0110 1100 0111 0000 0110 1001 0110
1110 0110 0111 0010 0000 0110 0100 0111 0010
0110 1111 0111 0111 0110 1110 0110 1001 0110
1110 0110 0111 0010 0000 0111 0011 0110 0001
0110 1001 0110 1100 0110 1111 0111 0010 0111
0011 0010 0000 1100 0010 1100 0011 0110 0011
0110 1101 0110 1101 0110 1111 0110 1110 0010
0000 1100 0100 1100 0101 0111 0100 0110 1001
0110 1101 0110 0101 0111 0011 0010 1110 0010
0000 1000 0010 1100 0110 1001 1000 1100 0111
1100 1000 0110 0100 0110 1111 0110 1100 0111
0000 0110 1000 0110 1001 0110 1110 0111 0011
0010 0000 1100 1001 1100 1010 1000 1010 1100
1011 1100 1100 1000 0100 1000 0001 0110 0011
0110 1111 0110 1101 0110 1101 0111 0101 0110
1110 0110 1001 0111 0100 0111 1001 0010 1110

4. Compression algorithm

The data set is divided into blocks each of length 16K
as S0, S1, S2…, Sn. The algorithm starts by initializing
secondary dictionary as empty. The algorithm reads
the input file word by word and stores it in a variable
‘word’ until the EOF (End of File) is reached. This
input file is tokenized at spaces. Cfile is the file that
will be obtained after compression and is initially
empty. This algorithm first checks the length of the
word and stores it in a variable ‘length’. If the length
is 2 or 3, it checks the word’s availability in Primary
Dictionary. If the word is present, then the
corresponding code is written in the Cfile. If not
found, the search is done in secondary dictionary. If it
is found there, then the corresponding code is written
in the Cfile and the next word is read. Else the
algorithm checks for the vacancy in secondary
dictionary. If vacant, then word is added to the
dictionary and a code is assigned to the word by
incrementing the previous code by 1 and is also
written in the Cfile. If no space is available, then
ASCII value for each character in the word is written
in the Cfile. A space is also added after the word. If
the word length is 4 or 5 then the same procedure is
applied to check the availability of word in secondary
dictionary as described above. In case of any other
length, the ASCII value for each character in the
word is written in the Cfile. A space is also added
after the word.

This algorithm is applied to each block of
data set and compressed into CS0, CS1, CS2,…, CSn.

S0 CS0

 S1 CS1

 Sn CSn

After compression, each block is sent in iterations as
(CS0+SD0), (CS1+SD1), (CS2+SD2), …,(CSn+ SDn),
where SDi represents the secondary dictionary formed
for ith block (i=0,1,2, …,n)

Total Size of uncompressed data = ∑ 𝑆௜
௡
௜ୀ଴

(1)

Total Size of compressed data = ∑ (𝐶𝑆௜ + 𝑆𝐷௜)
௡
௜ୀ଴

(2)

…
 …

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292416 39

2018 International Journal of Computer Science Issues

Fig.3 Compression algorithm

Percentage Compression =

൤
൛൫∑ ௌ೔

೙
೔సబ ൯ି൫∑ (஼ௌ೔ାௌ஽೔)

೙
೔సబ ൯ൟ

൫∑ ௌ೔
೙
೔సబ ൯

൨*100 (3)

5. Decompression algorithm

Once the data has been transmitted along with
secondary dictionary over the network, it will be
received by the recipient where primary dictionary is
already available. Using these two dictionaries, the
encoded data can be recovered easily without any
loss. Dfile is the string file where original data will be
retrieved from compressed file after decompression.
The Decompression Algorithm starts by reading first
8 bits from received data and checks the first two
bits. If the bits are 00 or 01, then the ASCII character
corresponding to those 8 bits is written without
checking any of the dictionaries. If the bits are 10,
those 8 bits are looked up in the Primary Dictionary
and the corresponding word is written and a space is
automatically inserted. Else if the bits are 11, those 8
bits are looked up in the Secondary Dictionary and
the corresponding word is written and a space is
automatically inserted. After the decoding of 8 bits,
next 8 bits are fetched and same process is repeated
until EOF. This is how the algorithm works
efficiently without any loss of data.

Fig.4 Decompression algorithm

int length=0;
String Cfile="";
 String word="";
 int secondary_counter=0;
 while (! EOF)
 {
 word= read_word (inputfile);
 length=word.length;
 if (length = = 2 || length = = 3)
 {
 boolean findP = check_Primary_Dictionary (word);
 if (findP = = true)
 {
 Append the corresponding code for that word in
the Cfile;
 }
 else if (findP = = false)
 {
 check_Secondary(word);
 }
 }
 else if (length = = 4||length = = 5)
 {
 check_Secondary (word);
 }
 else
 {
 Append the ASCII value for each character of word in
the Cfile
 }
 }
 // Function checking for word in Secondary Dictionary
 check_Secondary (String word)
 {
 boolean findS=check_Secondary_dictionary (word);
 if (findS = = true)
 {
 Append the corresponding code for that word in
Cfile;
 }
 else
 {
 If (secondary_counter<64)
 {
 Add the word to Secondary Dictionary and assign
 the code by incrementing previous code by 1.

 Append the assigned code for that word in Cfile;
 }
 else
 {
 Append the ASCII value for each character of word
in
 the Cfile;
 Append the ASCII value for space in the Cfile;
 }
 }
 }

String Dfile;
 While (! EOF)
 {
 Read next 8 bits;
 If (first two bits==00||first two bits==01)
 {
 Append the character in Dfile corresponding
to 8 bits from ASCII table;
 }
 else if (first two bits==10)
 {
 Search in Primary Dictionary and append the
corresponding word in Dfile;
 Append a space in the Dfile.
 }
 else if (first two bits==11)
 {
 Search in Secondary Dictionary and append
the corresponding word in Dfile;
 Append a space in the Dfile.
 }
 }

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292416 40

2018 International Journal of Computer Science Issues

Check
Length

Word

Check
Length

Check the word in
Primary Dictionary

Check the word in
Secondary Dictionary

If present

Check overflow of
Secondary Dictionary

Write corresponding
code for that word in

ASCII stream

Write ASCII value
character by character

in ASCII stream

If present

If vacant

Insert the ASCII
value of space in

ASCII stream

Write ASCII value
character by character

in ASCII stream

Add word to Secondary
Dictionary

Write corresponding
code for that word in

ASCII stream

Check the word in
Secondary Dictionary

Write corresponding
code of that word in

ASCII stream

If present

Write corresponding
code of that word in

ASCII stream

Insert the ASCII
value of space in

ASCII stream

End

Start

2 or 3 not 2 or 3

no word

4 or 5 not 4 or 5

yes no

no yes

yes no

yes no

Fig. 5 Flowchart of Compression algorithm

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292416 41

2018 International Journal of Computer Science Issues

6. Implementations and results

The proposed algorithm when implemented on
different yields good results. The algorithm works on
different file sizes irrespective of the content of the
file and yields the almost same results. Since the
decompressed files are rebuild using the dictionary so
there is no loss of information and hence the
algorithm proves itself to be lossless. Although the
algorithm takes up some time for compression, but
the total time taken for compression along with data
transmission is less as compared to the time taken for
transmission of uncompressed data. The table below
shows the comparison between the uncompressed
data and the data after compression and shows the
percentage compression achieved.

Table 1. Results

Uncompressed
Data Size (bits)

Compressed
Data Size
(bits)

%age

Compression

Data Set 1

10976

8592

21.72

Data Set 2

104944

81168

22.66

Data Set 3

230664

191840

17

Fig. 6 Comparison of original and compressed data

7. Conclusions

In contrast to the existing algorithms that solely focus
on either data compression or on data migration, this
algorithm considers both the aspects and produce
efficient results. The results show that by
implementing the algorithm, a significant amount of
time and cost for data transmission can be minimized
during virtual machine migration which plays a
pivotal role in cloud computing to ensure the Quality
of Service. The mechanism that the algorithm follows
is quite simple and can be easily implemented
without much complexities. Also, the creation of a
dynamic dictionary which is accessible while
decompressing, is another conspicuous feature which
in turns makes the algorithm a lossless one. The
space complexity may be reduced by selection of
proper data structure.

References

[1] John W. Rittinghouse and James F. Ransome
CRC Press, Taylor & Francis Group, Boca Raton,
FL, 2010, “CLOUD COMPUTING: Implementation,
Management, and Security”

[2] Rong Yu, Jiefei Ding, Sabita Maharjan, Stein
Gjessing, Yan Zhang, Danny H.K. Tsang,
“Decentralized and Optimal Resource Cooperation in
Geo-Distributed Mobile Cloud Computing”, IEEE
Transactions on Emerging Topics in Computing, DOI
10.1109/TETC.2015.2479093

[3] Hai Jin, Li Deng, Song Wu, Xuanhua Shi,
Xiaodong Pan,” “Live Virtual Machine Migration
with Adaptive Memory Compression”, Huazhong
Universityof Science and Technology, Wuhan,
430074, China

[4] Analysis and Survey of Issues in Live Virtual
Machine Migration Interferences, Ms. Tarannum
Bloch, Dr. R Sridaran, Dr. Prashanth CSR,
International Journal of Advanced Networking
Applications (IJANA), ISSN No.: 0975-0290

[5] Mark Nelson and Jean-Loup Gaily, “The Data
Compression Book”, Second Edition, M&T Books.

[6] Bhupinderjit kaur, “International Journal of
Emerging Technology and Advanced Engineering”,

1.33

12.81

28.14

1.04

9.91

23.41

0

5

10

15

20

25

30

Data Set 1 Data Set 2 Data Set 3

Original Data(Mb) Compressed Data(Mb)

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292416 42

2018 International Journal of Computer Science Issues

ISSN 2250-2459, ISO 9001:2008 Certified Journal,
Volume 3, Issue 7, July 2013)

 [7] C. Xianqin and G. Xiaopeng, “Application-
Transparent Live Migration for Virtual Machine on
Network Security Enhanced Hypervisor”, China
communications, (2012).

[8] E. Zaw and N, Thein, “Improved Live VM
Migration using LRU”, International Journal of
Computer Science and Telecommunications, (2011).
March

[9] H. Jin and L. Deng and S. Wu, “Live Virtual
Machine Migration with Adaptive Memory
Compression”, (2010).

[10] D. A. Huffman, “A method for the construction
of minimum redundancy codes,” In Proc. IRE 40,
volume 10, pages 1098–1101, September 1952.

[11] Md. Ziaul Karim Zia1, Dewan Md. Fayzur
Rahman2, and Chowdhury Mofizur Rahman3, Two-
Level Dictionary-Based Text Compression Scheme,
11th International Conference on Computer and
Information Technology (ICCIT 2008)

[12] Debashis Chakraborty, Debajyoti Ghosh, Piyali
Ganguly, “A Dictionary based Efficient Text
Compression Technique using Replacement
Strategy”, International Journal of Computer
Applications (0975 – 8887) Volume 116 – No. 16,
April 2015

[13] Mani Arora, Derick Engles and Sandeep
Sharma, “MDS Algorithm for Encryption”, Journal
of Computer Science Volume 11, Issue 3

[14] Debashis Chakraborty, Sandipan Bera, Anil
Kumar Gupta and Soujit Mondal, “Efficient Data
Compression using Character Replacement through
Generated Code”, IEEE NCETACS 2011, Shillong,
India, March 4-5,2011, pp 334.

Shivam Saini Currently pursuing Bachelor of
Technology in Computer Science and Engineering
from Guru Nanak Dev University, Amritsar, India.
His research interests include cloud computing and
data analytics.

Shivani Pathak Currently pursuing Bachelor of
Technology in Computer Science and Engineering
from Guru Nanak Dev University, Amritsar, India.
Her research interests include cloud computing and
IOT.

Dr. Sandeep Sharma Received Ph. D. in Parallel
Processing in 2010 from Guru Nanak Dev
University, Amritsar, India. He is a professor and
Head of the Department of Department of Computer
Engineering and Technology at Guru Nanak Dev
University. His research interests include Parallel and
Cloud Computing, Big Data and Data Sciences. He is
a member of Expert Committee to evaluate ongoing
Major Research Projects for Sciences, Engineering &
Technology by UGC (2017).

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 3, May 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1292416 43

2018 International Journal of Computer Science Issues

