
Sulaiman Alhaidari1, Ali Alharbi2 and Mohamed Zohdy 3

 1 School of Engineering and Computer Science, Oakland
University, Rochester, MI 48309, U.S.A

2 School of Engineering and Computer Science, Oakland University,
Rochester, MI 48309, U.S.A

3 School of Engineering and Computer Science, Oakland University,
Rochester, MI 48309, U.S.A

 Abstract
Distributed Denial of Service (DDoS) attacks considered the most
critical attack for cyber security and serious security threat to
Internet services in recent years. These attacks have evolved to
be increasingly sophisticated, complex, and difficult to mitigate
and detect. In this paper, we propose a new approach using HMM
to detect DDoS attacks. The performance of the proposed
approach is generally better and achieve higher detection rate and
lower false positive rate comparing with two other machine-
learning algorithms Naive Bayes and Neural Network. Training
and testing applied on a DDoS data set with reduced feature.
Using the reduced feature set after applying the Feature Pruning
algorithm that we implemented obtains a significant improvement
in detection performance and reduction model training and testing
time.

Keywords: - Hidden Markov models (HMM), distributed
denial of service (DDoS).

1. Introduction

Computer networks are vital to the smooth operation of the
global society and economy. The three parallel control
objectives of confidentiality (or secrecy), integrity (or
correctness), and availability must be assured to the
maximum extent possible. Otherwise, our entire electronic
infrastructure—travel, power, logistics, even defense—can
almost literally disintegrate. Malware that takes advantage
of distributed denial of service techniques is capable of
compromising these three control objectives. It is therefore
important to understand the various DDoS attacks that can
be perpetrated against computer systems and networks. In
this paper, we investigate the DDoS attacks and then
examine the applicability of two competing analytical
methods—the hidden Markov model (HMM) and machine

learning (ML)—in protecting systems and networks
against them.

DDoS attacks are intended to make it impossible for
authorized users of computer systems to access the
resources of those systems. In general, DoS attacks and
their distributed analogues operate by flooding target hosts
and networks with traffic that is orchestrated to waste
resources on the target hosts, thereby inducing them either
to crash or to enter an unresponsive state [1]. The two most
critically important DDoS attacks are the Smurf attack and
the SYN flood attack. In the Smurf attack, the attacker
synthesizes phony traffic that consists of ICMP broadcast
packets. The source IP address recorded in these packets
is spoofed so that they appear to originate from a host
located within the trusted intranet under attack. By actually
responding to the packets, the target host becomes
successively more burdened with fabricating more and
more responses until it is altogether unable to muster the
resources to process any more network traffic. The Smurf
attack can be readily defended against, albeit, by
implementing a firewall that is able to recognize malicious
inbound packets as Martians, that is, packets that arrive at
the wrong place, seemingly as the result of a routing error
[3]. Assuming that the firewall is built atop a dual-homed
host with two network interfaces, it is straightforward to
recognize and discard arriving packets that claim to be
from hosts within the network but are being received at the
interface physically connected to the outbound side [15].
The SYN flood attack is conceptually similar. In this class
of attack, requests to establish brand-new TCP connections
arrive at a rapid rate. These requests take the form of
initiations of the so-called three-way handshake. By
starting such handshakes but never completing them—

Detecting Distributed Denial of Service Attacks
Using Hidden Markov Models

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 9

2018 International Journal of Computer Science Issues

merely sending more and more handshake initiations—the
attacker succeeds in exhausting the pool of system
resources available to the server for receiving and
processing further inbound connections. Therefore, all
network processing grinds to a halt (“Understanding
Denial of Service Attacks”).

The reminder of the paper is organized as follows: Section
2 reviews the related works. Section 3 presents the
background of HMM and its problems. Section 4 discusses
our methodology and approach. Section 5 discusses
evaluation metrics and our results. Finally, Section 6
concludes our paper.

2. Related Works

Research efforts to date that target the detection of and
defense against DDoS attacks have taken advantage of both
the hidden Markov model (HMM). Four studies that have
applied the hidden Markov model to DDoS attacks are
those by Jain & Abouzakhar; Bhole & Patil; Devarakonda
et al.; and Khosronejad et al.

Jain & Abouzakhar analyzed the performance of the HMM
in intrusion detection systems (IDS), including the
perpetration of DDoS attacks, through the design of what
they termed a Support Vector Machine (SVM). The
machine was capable of distinguishing and classifying
TCP services that include both “normal” and “abnormal”
packets, including the improperly formed packets that
participate in the Smurf attack. They used the KDD CUP
1999 dataset to underlie their research and serve as the
training set for the SVM. The authors demonstrated that
the hidden Markov model was able properly to classify
network traffic with accuracy ranging from 76 to 99
percent, depending upon the precise circumstances [8].

Bhole & Patil used HMM to construct an intrusion
detection engine that combined the detection of anomalies
with the more traditional approach of signature detection.
The HMM enabled them to construct an engine that was
particularly effective in the recognition of novel, that is,
previously unseen attacks. Although they found that
signature-based detection was more efficient and timely for
known attacks, HMM enabled new classes of attacks to be
learned [2].

Devarakonda et al. decided to augment a traditional
intrusion detection system by using a combination of a
Bayesian network and a hidden Markov model. The IDS
framework was designed to incorporate various levels of
processing, including learning from the training data by
subjecting it to the HMM and allied Bayesian classifier.
The work was completed using the KDD CUP dataset and
demonstrated “performance of high order” [4].

Finally, Khosronejad et al. compared two standard
approaches to IDS, the well-known C5.0 model and the
HMM, also combining the two into what they termed “a
hierarchical hybrid intelligent system model.” Empirical
results established that the hybrid system delivered
considerable accuracy when applied to the KDD CUP 99
dataset [10].

3. Hidden Markov Model

HMMs have been extensively utilized in many applications
such as speech recognition, finance, computer vision and
bioinformatics. HMM is composed of hidden states, and
observable emissions. States are the desirable events in a
system, which are not visible to the observer, while
emissions are the observable symbols emitted from the
states. Using a sequence of emissions, an HMM can predict
whether a system is in each state at a certain time. Fig.1
shows the first-order HMM, where the observations are
shaded in gray.

There are three fundamental sub-problems to HMM. The
first is the evaluation problem. This addresses calculating
the probability that the model can generate the indicated
output sequence. The second is the decoding problem.
This strives to derive the model history—that is, sequence
of states—that was most likely responsible for the
generation of a specified output sequence. The third is the
so-called learning problem. This problem endeavors to
deduce model parameters from a set of output sequences in
a manner that offers the greatest fidelity, that is, likelihood
of correct sequence generation.

3.1. The evaluation problem
The evaluation problem is the first of these to be analyzed.
Both a forward algorithm and a backward algorithm are
integral to this problem. The forward algorithm determines
the various conditional probabilities, or alphas, by forward
reasoning. The procedure is subdivided into three phases
known as initialization, induction, and termination. The
algorithm operates so that it requires only TN2 operations
to evaluate all of the conditional probabilities engendered.

Fig. 1 First-order HMM, where the observations are
shaded in gray

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 10

2018 International Journal of Computer Science Issues

By way of contrast, the backward algorithm derives a set
of backward variables, or betas. These values reflect the
probabilities of observation of a set of subsets of partial
state sequences, or histories. The algorithm requires the
completion of two steps, initialization and induction, and—
like the forward algorithm—is able to deliver its results in
only TN2 operations [6].
In stricter mathematical detail, the objective of both the
forward and backward algorithms is to calculate the
probability of an observation history, 𝑂 =
{𝑂$, 𝑂&, … , 𝑂(}																																																											(1)				
for a given model 𝜆 = (𝐴, 𝐵, 𝜋)																											(2)				
The algorithms carefully examine all possible sequences of
states so as to determine the attendant probabilities.
 According to the forward procedure, the probabilities of
occurrence of the partial histories are represented by the
set, αt(i) where,
 𝑎4(5) = 𝑃(𝑂$, 𝑂&,. . , 𝑂(, 𝑆9 = 𝑆5|ʎ)																									(3)

 Computing this set requires the completion of an
initialization and induction phase, in which,

𝛼>(𝑡) = @

𝜋>𝑏>B($), 𝑡 = 1

CD𝛼>(𝑡 − 1)𝑎5>
9

5F$

G𝑏>H(4), 𝑡 = 2,… , 𝑇
	(4)

 and a termination phase, in which,

𝑃(𝑂|ʎ) =D𝛼((𝑖)
9

5F$

																																																										(5)

 The backward procedure instead derives the set { βt(i) },
defined as

𝑎4(5) = 𝑃(𝑂4M$, 𝑂4M&,. . , 𝑂(, 𝑆9 = 𝑆5|ʎ)														(6)

 By way of contrast, the backward algorithm requires only
the initialization and induction phase phase, in which

𝛽>(𝑡) = @

1, 𝑡 = 𝑇

D𝛽5(𝑡 + 1)𝑎>5
9

5F$

𝑏5H(4M$), 𝑡 = 𝑇 − 1,… , 1							(7)			

Forward Formula

𝑃(𝑂(|	𝜆) = 	∑ 𝛼>(𝑇)9
>F$ 																																																						(8)

Backward Formula

𝑃(𝑂(|	𝜆) = 	∑ 𝛽>(1)𝜋>𝑏>H($)																																									(9)9
>F$

3.2. The decoding problem
The decoding problem is a sub-problem that considers
series of observations and tries to determine an optimal
path through the hidden state sequence. A dynamic
programming technique known as the Viterbi algorithm is
typically relied upon in order to calculate the critical path.
This algorithm requires O(NQ2) time completely to
establish the path through the network that maximizes the
conjoint probability of transit [5].

P(𝑆5|OW, 𝜆) = 	

XY(4)ZY(4)
∑ X[(4)Z[(4)\
[]^

																																											(10)

3.3. The learning problem
The third problem is the learning problem: given a
sequence of emissions, how can an HMM be trained which
best matches the sequence. This problem is all about
maximizing the parameters of the HMM – A, B, and π, –
to get the most descriptive model for the system. The
algorithm of choice for solving this problem is the Baum-
welch algorithm.

This algorithm can be broken into two steps: estimation
and update.

Estimation The estimation step of the algorithm first
calculates the forward probabilities, then the backward
probabilities to find the likelyhood of the observed
sequence being produced from the estimated HMM
(because of this step, this algorithm is sometimes referred
to as the forward-backward algorithm).

Update During this step, the algorithm uses Bayes’
theorem to create temporary varables and update the
parameters:

𝛾5(𝑡) = 𝑃(𝑆5|	𝑂(, 𝜆) = 	
a(bY,Hc|d)
a(Hc|d)

= 	 XY(4)ZY(4)
∑ X[(4)Z[(4)\
[]^

 (11)

𝜀5>(𝑡) = 𝑃f𝑆4 = 𝑠5,	𝑆4M$ = 	𝑆>h	𝑆(, 𝜆) 																															

= 	
𝑃f𝑠5, 𝑠>, 𝑂(h	𝜆)
𝑃(𝑂(|𝜆) 																																																													(12)

𝜀5>(𝑡) = 	
𝛼5(𝑡)𝑎5>𝛽5(𝑡 + 1)𝑏>(𝑜4M$)

∑ ∑ 𝛼5(𝑡)𝑎5>𝛽>(𝑡 + 1)𝑏>(𝑜4M$)9
>F$

9
5F$

					(13)

As one may notice, 𝛾5(𝑡) is actually the Viterbi algorithm
used to get the estimated state sequence. On the other hand,
𝜀5>(𝑡) is the probability the model is in states i and j at times
t and t+1 given the observed sequence 𝑉(. With these, the
parameters of the HMM can now be updated:

𝜋k = 	𝛾5(1)																																																																(14)

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 11

2018 International Journal of Computer Science Issues

𝑎k5> = 	
∑ 𝜀5>(𝑡)		(l$
4F$

∑ 𝛾5(𝑡)(
4F$

																																																	(15)

𝑏m5(𝑜n) = 	
∑ $op]oqrY(4)
c
p]^

∑ rY(4)c
p]^

,

 where 1HpFHq = s1,			𝑖𝑓	𝑜4 = 	𝑜n0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (16)

These updated parameters are then fed back into the
estimation step and the process repeats iteratively until a
desired level of convergence is achieved. Note: It is
possible for the algorithm to converge prematurely due to
a local maximum, in this overfitting will occur. To counter
this, one can adjust the tolerance and train using different
initial parameters.

4. Research Methodology
4.1. Dataset

One of the difficulties and Challenges associated with
using machine learning is finding a large realistic training
dataset. In this study, DDoS dataset is used for the
evaluation [19]. It contains 27 features, which are
labeled as either normal or an attack as it shown in Table
1. The DDoS dataset include four types of the DDoS attack,
which are Smurf, UDP-Flood, HTTP-Flood and SIDDOS.
From this data set, a small portion of training and testing
data is selected for the experimentation of the model.

4.2. Feature Pruning
Feature Pruning is a method of eliminating features from
the original dataset to obtain a subset of features that has
higher accuracy on low-cardinality sets. It plays a key role
in building detection models. However, The DDoS dataset
has 27 Features, from which reducing features from the full
data set will reduce both the data and the computational
complexity and improve both the efficiency and the
accuracy of the model. On the other hand, using all 27
features without applying Feature Pruning might increase
the overhead of the model, which leads to increases the
time to build the model. In order to perform feature
pruning, we first need to standardize the data and then
combine the standardized data to one sequence of
observation, which then could be used afterward with
Viterbi algorithm to compute the most likely state sequence
and then be compared to the actual sequence of states to
determine accuracy of the feature. The feature-pruning
algorithm that we implemented automates this process and
eliminates each feature from the full set of the features, and
then checks the accuracy of the subset of features. More
features that are least significant are eliminated if the
obtained accuracy is within a certain tolerance of the
accuracy, equal, or higher than the previous accuracy of
every feature combined. This process continues until no
improvement of the accuracy is observed on elimination of
features. The pseudo-code is presented in Algorithm 1 that
shows outlines the steps of method. The features in bold in
Table 1 are the significant features that obtained by the
Feature Pruning algorithm that used in our detection
approach.

Table-1 List of features of DDOS dataset.

Feature

Description Feature

Description

1 SRC ADD 15 PKT IN

2 DES ADD 16 PKTOUT

3 PKT ID 17 PKTR
4 FROM NODE 18 PKT DELAY

NODE

5 TO NODE 19 PKTRATE

6 PKT TYPE 20 BYTE RATE

7 PKT SIZE 21 PKT AVG SIZE

8 FLAGS 22 UTILIZATION

9 FID 23 PKT DELAY

10 SEQ
NUMBER

24 PKT SEND
TIME

11 NUMBER OF
PKT

25 PKT RESEVED
TIME

12 NUMBER OF
BYTE

26 FIRST PKT
SENT

13 NODE NAME
FROM

27 LAST PKT
RESEVED

14 NODE NAME
TO

28 ATTACK
/NORMAL

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 12

2018 International Journal of Computer Science Issues

4.3. Initializing HMM Parameters
The next step after obtaining the significant features set and
before training an HMM is to initialize the parameters.
Technically, the HMM parameters could be
initialized random and then determined or estimated over
several training iterations by using the Baum-Welch
training algorithm (also known as Forward-Backward
algorithm). It is necessary to start with a rough guess to
determine the parameters of HMM (the transition
probability matrix and emission probability matrix). Once
they are determined, they can be re-estimated by applying
the Baum-Welch algorithm and find the more accurate
parameters and obtain the HMM best describes the
observed sequence. Then, this trained HMM can be used to
the testing set to ensure it is able to detect the proper states.
Fig. 2 shown the flow chart of the proposed approach.

5. Performance analysis and evaluation

5.1. Method of performance testing
To evaluate the performance of our proposed model
and how accurate the model classifying and
predicting the class label of attack and normal, we
need to know the following four terms: True Positive
(TP): The number of attacks instances classified as
attacks. True Negative (TN): The number of non-
attacks instances classified as non-attacks . False
Negative (FN): The number of attacks instances
classified as non-attacks. False Positive (FP): The
number of non-attacks instances classified as attacks

Confusion matrix for a two class case (Attack and
non-attacks) shown in Table 2

For this study, we used the following performance
measures to test the performance of the proposed model:

Accuracy: the ratio of the total number of
correctly predicted instances to total number of all
instances. In our study, accuracy measures by using the
Viterbi algorithm to generate a likely state sequence and
compare it to the known state sequence to get TP, FP, FN,
and TN. The accuracy can be calculated by using the
following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																					(17)

The error rate (misclassification rate)/ False
Negative Rate (FNR): the ratio of the total number of
misclassifications to total number of all predictions. The
error rate can be calculated by using the following
equation:

𝐸𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒 = 	
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁																				(18)

Fall-out/ False Positive Rate (FPR): the ratio of the
number of detected false positives to total number of
predictions. The Fall-out can be calculated by using the
following equation:

𝐸𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒 = 	
𝐹𝑃

𝐹𝑃 + 𝑇𝑁																																					(19)

The sensitivity/ True Positive Rate (TPR): the ratio of
the total number of detected true positive that are correctly
identified as attack to total number of positive instances.
The Sensitivity can be calculated by using the following
equation:

sensitivity = 	
𝑇𝑃
𝑃 																																										(20)

Where,
P is the number of positive instances, P=TP+FP.

Table-2 Confusion matrix for a two-class case (Attack and
non-attacks)

 Predicted Class
Attack Non-attacks

Actual
Class

Attack TP FN
Non-attacks FP TN

Fig. 2 Flow chart of training algorithm for HMM

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 13

2018 International Journal of Computer Science Issues

The specificity/ True Negative Rate (TNR): the ratio of
the total number of detected true negative that are correctly
identified as non-attacks to all the negative instances. The
Specificity can be calculated by using the following
equation:

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁
𝑁 																																										(21)

Where,
N is the number of negative instances, N=TN+FN.

The precision /Positive Predictive Value (PPV) and
recall: The precision and recall measures are widely
used for performance evaluation of machine-learning

classification methods. Precision is the ratio of the total
number of positive instances that are correctly identified as
attack to the total number of attacks. Whereas recall is the
ratio of the total number of instances that are correctly
identified as attack to the total number of all the instances
that correctly identified as attack and misidentified attacks
(it is the same as sensitivity). The precision and recall can
be calculated by using the following equations

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																																		(22)

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																								(23)

F measure: F measure is a testing score that testing the
accuracy of the model and it considers both the precision
and recall. F measure can be calculated by using the
following equation

𝐹	𝑚𝑒𝑎𝑢𝑟𝑒 = 	2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑎𝑐𝑎𝑙𝑙 													(24)

Roc curve: One of the prime benefits of using an ROC
curve is to get the ability to notice the tradeoff between the
true positive rate (sensitivity) and false positive rate (1-
specificity) for all possible cut off points (thresholds) rather
than just one cut off point. The area under the ROC curve
(AUC) measures the ability of the model correctly
distinguish between classes (Attack or Non-attack). Fig 3
shown the ROC Curves for the performance of algorithms
HMM, Naive Bayes and Neural Network.

5.2. Result Evaluation
The result shows our proposed approach can obtain better
results in terms of attack detection rate. Moreover, the
result shows improved performance with a reduced feature
set after applying the Feature Pruning algorithm and
selected the most important features. By training an HMM
and testing it on the DDoS set, attacks were detected with
greater than 97 percent accuracy in most trial runs. Table
4 summarizes the results of an experiment. The
performance of the HMM algorithm compares against two
classification algorithms, Neural Network and Naive
Bayes algorithm. Both were taken from the WEKA. Fig. 4
shows in a graphical way a comparison between the three
classification algorithms.

 Table-4 the summarily of the experiment results

Performance
Measures

/Classification
Algorithm

Training/Testing (70/30 %)
HMM Naive

Bayes
NN

Accuracy 0.9741 0.9348 0.9356
Error rate 0.0259 0.0652 0.0644
Fall-out 0.0104 0.1888 0.1623
Sensitivity/ recall 0.8413 0.9431 0.9418
specificity 0.9896 0.8112 0.8377
precision 0.9038 0.9867 0.9893
F measure 0.8714 0.9644 0.9649
Area Under ROC
(AUC)

0.9334 0.9177 0.8624

 Fig 3 ROC curves for the performance of classification algorithms
HMM, Naive Bayes and Neural Network.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 14

2018 International Journal of Computer Science Issues

6. Conclusion
In recent years, machine-learning methods are gaining the
most attention in prediction due to its ability to learn,
evolve, improve and adapt. Thus, in this paper, we
presented our detection approach using Hidden Markov
Models (HMM) that applied and tested on the DDoS
dataset to detect the DDoS attack. The result shows that
we able to produce a great performance with maximum
accuracy, minimum error rate and False Positive Rate. The
detection result demonstrated that HMM gives a more
accurate result than would have been obtained by Neural
Network and Naive Bayes algorithms while detecting the
attacks. It achieved 97.41 % accuracy.

References
[1] Millan, M., DeJonge, A., Alharbi, A., Alshammari, A.,

Alhaidari, S., Alshammari, A., Zohdy, M. (2018).
Application of Extended Hidden Markov Models to detect
threats in IoT. International Journal of Computer and
Information Technology, 7(5), 2279 – 0764.

[2] Bhole, Ashish T., & Patil, Archana I. “Intrusion Detection
with Hidden Markov Model and WEKA Tool.”
International Journal of Computer Applications 85.13
(January 2014). Retrieved from
https://pdfs.semanticscholar.org/2bc9/3fed20ffff4ad6da55e
0345a66b986d5de9e.pdf.

[3] Comer, Douglas E. Internetworking with TCP/IP:
Principles, Protocols, and Architecture. Prentice Hall,
2000.Conrad, Eric, et al. CISSP Study Guide. Elsevier,
2012.

[4] Devarakonda, Nagaraju, et al. “Intrusion Detection System
Using Bayesian Network and Hidden Markov Model.”
Procedia Technology 4 (2012). Retrieved from
https://www.sciencedirect.com/science/article/pii/S221201
731200360X.

[5] Freitas, Ana Teresa. “Hidden Markov Models.” University
of Lisbon, 2011. Retrieved from
https://fenix.tecnico.ulisboa.pt/downloadFile/37795773269
32/Modelos_prob_12.pdf.

[6] Gutierrez-Osuna, Ricardo. “L23: Hidden Markov Models.”
Texas A&M University. Retrieved from
http://research.cs.tamu.edu/prism/lectures/pr/pr_l23.pdf.

[7] Haq, Nutan Farah, et al. “Application of Machine Learning
Approaches in Intrusion Detection System: A Survey.”

International Journal of Advanced Research in Artificial
Intelligence 4.3 (2015). Retrieved from
https://thesai.org/Downloads/IJARAI/Volume4No3/Paper_
2-
Application_of_Machine_Learning_Approaches_in_Intrusi
on_Detection_System.pdf.

[8] Jain, Rachi, & Abouzakhar, Nasser S. “A Comparative
Study of Hidden Markov Model and Support Vector
Machine in Anomaly Intrusion Detection.” Journal of
Internet Technology and Secured Transactions 2.3
(September 2013). Retrieved from
https://pdfs.semanticscholar.org/6aef/e685dc5cd82af9e083
c68b76e346042946b8.pdf.

[9] Jurafski, Daniel, & Martin, James H. Speech and Language
Processing. Prentice Hall, 2016. Retrieved from
https://web.stanford.edu/~jurafsky/slp3/9.pdf.

[10] Khosronejad, Mahsa, et al. “Developing a Hybrid Method
of Hidden Markov Models and C5.0 as an Intrusion
Detection System.” International Journal of Database
Theory and Application 6.5 (2013). Retrieved from
http://www.sersc.org/journals/IJDTA/vol6_no5/15.pdf.

[11] Paliwal, Swati, & Gupta, Ravindra. “Denial-of-Service,
Probing & Remote-to-User Attack Detection Using Genetic
Algorithm.” International Journal of Computer Applications
60.19 (December 2012). Retrieved from
https://pdfs.semanticscholar.org/060d/0c18c3f490720b62e4
0e7003aa7f75d50941.pdf.

[12] Revathi, S., & Malathi, A. “Detecting User-to-Root (U2R)
Attacks Based on Various Machine Learning Techniques.”
International Journal of Advanced Research in Computer
and Communication Engineering 3.4 (April 2014).
Retrieved from https://ijarcce.com/wp-
content/uploads/2012/03/IJARCCE4J-a-revathi-EPCglobal-
Gen-2-RFID.pdf.

[13] Shmatikov, Vitaly, & Wang, Ming-Hsiu. “Security Against
Probe-Response Attacks in Collaborative Intrusion
Detection.” Cornell University. Retrieved from
https://www.cs.cornell.edu/~shmat/shmat_lsad07.pdf.

[14] Tsai, Chih-Fong, et al. “Intrusion Detection by Machine
Learning: A Review.” Expert Systems with Applications
36.10 (December 2009). Retrieved from
https://www.sciencedirect.com/science/article/pii/S095741
7409004801.“Understanding Denial of Service Attacks.”
United States Computer Emergency Readiness Team, 28
June 2018. Retrieved from https://www.us-
cert.gov/ncas/tips/ST04-015.

[15] Wing. “7 Different Types of Firewalls.” Security Wing, 12
September 2012. Retrieved from
https://securitywing.com/types-of-firewall/.

[16] Wood, Patrick H., & Kochan, Stephen G. UNIX System
Security. Hayden Book Company, 1985.

[17] Yemini, Yechiam. “Chapter 4: Hidden Markov Models.”
Columbia University. Retrieved from
http://www.cs.columbia.edu/4761/notes07/chapter4.3-
HMM.pdf

[18] Duda, R., Hart, P., & Stork, D. Pattern Classification. 2nd
ed., John Wiley and Sons Inc., 2001.

[19] Alkasassbeh, Mouhammd, et al. "Detecting distributed
denial of service attacks using data mining
techniques." International Journal of Advanced Computer
Science and Applications 7.1 (2016).

Fig. 4 Comparison chart of the performance of algorithms HMM, Naive Bayes
and Neural Network.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 5, September 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1467646 15

2018 International Journal of Computer Science Issues

