
A Model-Driven Architecture Approach for Developing

Healthcare ERP: Case study in Morocco

Fatima Zahra Yamani1, Mohamed El Merouani2

1 Department of Science and Technology, Center of Doctoral Studies, Abdelmalek Essaadi University

Tetouan, 93000, Morocco

2 Department of Science and Technology, Center of Doctoral Studies, Abdelmalek Essaadi

University

Tetouan, 93000, Morocco

Abstract

Nowadays, there are many problems in the Enterprise Resource

Planning (ERP) implemented in the majority of hospitals in

Morocco such as the difficulty of adaptation by the different

users, the lack of several functionalities, errors that block the

daily work, etc. All these problems require frequent

modifications in the code, which implies a high effort to develop

healthcare ERP as one of complex systems. In this paper, we are

going to present a model-driven approach for developing

healthcare ERP based on class diagram. First, we constitute the

independent model using UML, define the transformation rules

then apply them on our source model class to generate at the end

an XML file that will be necessary for the ERP code. Our

approach will not only resolve the above problems, but also

improve the efficiency of software development through the

automatically generated code.

Keywords: Healthcare ERP, UML, Model Driven Architecture

(MDA), transformation by modeling, PIM, MOF 2.0 QVT.

1. Introduction

For many years, the healthcare sector was little concerned

by Information Technology (IT), while in the industry; IT

was a major challenge for the development and durability

of companies.

Currently, no hospital can continue using old practices and

technologies. It is imperative that hospitals adopt the latest

trends in technology and insight to retain their users, for

this, there is strong pressure to develop ERP (Enterprise

Resource Planning) in hospitals in order to make them

more efficient and able to meet the expectations of patients

and the need of users.

Despite all attempts to develop healthcare ERP in

Morocco, there are still many problems during

development. In fact, user requirements are always

changing, which implies frequent modifications on models,

it is necessary to modify separately and manually the

analysis model, design model and the code. All of these

tasks result in increased maintenance and time costs as

well as inconsistency between requirements definition,

analysis, design and implementation.

In this context, the Object Management Group (OMG)

proposed Model Driven Architecture (MDA) in 2001 as an

approach to design, implement and develop complex

applications with a great initial effort to specify the

features.

The principle key of MDA is to rely on the Unified

Modeling Language (UML) standard to describe models

separately at different phases of the application

development cycle. MDA aims to highlight the intrinsic

qualities of models, such as durability, productivity and

taking into account the execution platforms.

Due to the lack of research in this sector in Morocco,

further studies should discuss and investigate the

development of ERP in Moroccan healthcare

organizations. Our goal will be then identifying the

improvement perspectives of healthcare ERP in order to

have an easy-to-use one, covering all areas of health

activity, having modules adapted to all types of hospital

organizations in Morocco, as well as proposing a MDA

approach for ERP healthcare development. This approach

includes UML modeling and its transformation to generate

a source code.

After this introduction, this document is divided as

follows. Section 2 presents the most relevant related

works. Section 3 defines the MDA approach while the

section 4 describes the transformations between models.

The MDA approach for Healthcare ERP is the main topic

of section 5. In section 6, we present the result of code

generation process. Finally, section 7 sums up the main

conclusion.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 11

2020 International Journal of Computer Science Issues

mailto:fatimazahra.yamani1@gmail.com
mailto:M_merouani@yahoo.fr

2. Related Works

In the last few years, different studies in several disciplines

have been interested in the MDA approach; it has become

the subject of great interest for many research teams (E-

learning [1, 3], Mobile Application [2], Web-Marketing

[4], etc.)

The author in [1] relied on the MDA approach to have a

multi-target learning management system generator. He

intended to simplify the design and the development of e-

learning platforms, while the approach presented in [2] is

used to model and generate mobile applications. The

approach includes UML modeling and automatic code

generation using Acceleo. They could, in the end, develop

all the necessary meta-classes to generate a mobile

application then use Acceleo as a transformation language.

Xiao Cong and the other authors in [3] have proposed a

model-driven development approach for E-Learning

platforms, after a business logic analysis, they establish a

CIM model, stratified on the PIM under the J2EE

framework and proposed the method of transformation

from PIM to PSM.

In [4] authors have applied the MDA approach to generate

the N-tiers web application based on UML class diagram,

creating a skeleton of a social network. As a

transformation language, they used the MOF 2.0 QVT

(Meta-Object Facility 2.0 Query-View Transformation)

standard to define the meta-model for the development of

model transformation.

The authors of the work [5] propose an approach for

transforming a CIM into a PIM using the core modeling

concepts of the UML. They have described some

important cases of transformation from CIM to PIM and

propose a new approach by modeling to realize the

transformation.

This paper aims to benefit from the experience of other

authors in their application of MDA and apply it in the

sector that is relevant to the healthcare sector. Actually, it

is the only known work aimed at reaching this goal in

Morocco.

3. Model Driven Architecture (MDA)

The Model driven architecture (MDA) is an approach

proposed in late 2000 by the OMG, a consortium of over 1

000 companies. It is an approach to software design,

development and implementation [6].

The MDA approach advocates the massive use of models

at the different phases of application development to

generate automatically a code source and offers first

responses to how, when, what and why to model. It aims to

highlight the intrinsic qualities of models, such as

durability, productivity and taking into account the

execution platforms.

Among the main terms defined by the OMG, we have:

model, meta-model and meta-metamodel, defined as

follows:

 Model: is an abstraction, a simplification of a system

that helps to understand the modeled system and to

answer the questions asked about it [3]. The model

layer is comprised of the meta-model that describes

data in the information layer.

 Meta-model: is a model of a model, is a model that

defines the concepts and rules of a modeling language.

It defines the object types that can be used to represent

a model, relations between object types, attributes of

the object types and rules to combine object types and

relations.

 Meta-metamodel: model defines the language in which

a meta-model can be expressed.

MDA relies also on the UML standard as a principle key to

describe separately models at different phases of an

application's development cycle, it defines three levels of

models advocated for the construction of software:

Computation Independent Model (CIM), Platform

Independent Model (PIM), Platform Specific Model

(PSM) and code, presented in Figure 1 and defined just

after.

Fig. 1 Model Driven Architecture levels

 CIM: The objective is to create a requirements model

for the future application. Such a template should

represent the application in its environment to define

what services are offered by the application. It is

important to note that requirements model does not

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 12

2020 International Journal of Computer Science Issues

contain information about the implementation of the

application or the treatments. With UML, requirements

model can be presented as a use case diagram.

 PIM: Once the requirements model is completed, the

analysis and design work can begin. In the MDA

approach, this phase also uses models. The role of

analysis and design models is to be sustainable and to

make the link between the requirements model and the

application code [7]. These models must also be

productive since they form the basis of the entire code

generation process defined by MDA.

 PSM: Is the model that comes closest to the final code

of the application [7]. A PSM is a code model that

describes the implementation of an application on a

particular platform, so it is linked to an execution

platform.

Other than the UML standard, MDA includes the

definition of other standards as MOF and XMI.

4. Model To Model Transformation (M2M)

The MDA provides a process of converting a model into

another model of the same system, those model

transformations are an essential part of model-driven

engineering approach to software development. The main

transformations recommended by MDA are: CIM

transformation to PIM and PIM transformation to PSM. In

our paper, we are interested in the second transformation

PIM to PSM; this will be applied on our healthcare ERP

model.

Among the fundamental approaches of model

transformations, there is: approach by Modeling, approach

by Template and approach by Programming, in the present

work we chose approach by Modeling. This approach

resides of applying concepts from model engineering to

model transformations. The objective is modeling a

transformation, to reach perennial and productive

transformation models and to express their independence

towards the platforms of execution [4].

Figure 2 presents the approach by modeling. According to

MOF 2.0 QVT, a standard transformation language

elaborated by the OMG, the transformation of model is

defined as a structured model. In the transformation, the

MOF 2.0 QVT defines the rules between the source and

target meta-model. This model needs to be transformed to

execute the transformation on an execution platform.

Fig. 2 Approach by modeling

4.1. MOF 2.0 QVT

Using the modeling approach is designed to have a

productive models’ transformation, independently of any

execution platform. For this reason, the OMG issued on

April 2002 a request for proposals for a standard to this

transformation language, which is the MOF (Meta-Object

Facility) 2.0 QVT (Query, Views, and Transformations),

terms are defined as follows:

 Query: is an expression that is evaluated over a model.

The result of a query is one or more instances of types

defined in the source model, or defined by the query

language [8].

 View: A view is a model that is completely derived

from another model, it represents the user interface.

 Transformation: A transformation generates a target

model from a source model.

This standard defines the meta-model for the development

of transformation model. The standard QVT is built in a

modular way and it combines several paradigms. Through

hybrid architecture, it offers the combined benefits of

declarative approaches and imperative approaches.

Basically, the imperative approach is better adapted for

complex transformations including a significant algorithm

component while the declarative approach; it has the

advantage of optional case management in a

transformation.

In this paper, we are going to use the imperative approach.

The imperative QVT component is supported by

Operational Mappings language (OML), one of the three

languages included by the MOF QVT specification.

Currently, Operational Mappings is the best supported

variant in terms of tools. SmartQVT is the first open

source implementation of the QVT Operational Mapping

language. This tool is developed by France Telecom. It is

an Eclipse plugin under EPL license running on top of

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 13

2020 International Journal of Computer Science Issues

EMF framework. It is composed of three components,

which are:

 The code editor: this component helps the user to write

QVT code by highlighting keywords.

 The parser: this component converts QVT code files

into model representations of the QVT programs.

 The compiler: this component converts model

representations of the QVT program into executable

Java programs.

4.2. PIM to PSM transformation

4.2.1. PIM source meta-model

Following the definition presented in section 3, the PIM is

also known as the analysis and design model, is an abstract

model independent from any running platform. It ignores

operating system, programming languages, hardware and

networking. It is designed to describe the know-how or

business knowledge of an organization.

As it is illustrated in Figure 3, the source meta-model form

a simplified UML model (class diagram) based on

packages containing data types and classes. The classes are

composed of structural features represented by attributes

and behavioral characteristics represented by

operations.

Fig. 3 Simplified UML Metamodel

 Package: A technique that allows implementing

partitioning models while preserving the consistency of

the whole. A package is a collection of modeling

elements: classes, associations, objects, components,

packages and models.

 Classifier: is an abstract meta-class classification

concept that serves as a mechanism to show interfaces,

classes, datatypes and components. It describes a set of

instances that have common behavioral and structural

features.

 DataType: Data types are model elements that define

data values.

 Class: A class is the formal description of a set of

objects with semantics and common characteristics.

 Parameter: expresses the concept of parameters of an

operation. It explains the link between Parameter meta-

class and Classifier meta-class.

 Operation: Functionality ensured by a class. The

description of an operation can specify the input and

the output parameters and the elementary actions to be

performed.

 Attribute: is type of basic information that is part of the

structure of a class (especially an entity).

4.2.2. PSM target meta-model

In this section we present the various meta-classes forming

the meta-model target, it is manly composed of three

essential parts. The first part of the target meta-model

(illustrated in Figure 4) presents the different meta-classes

to express the concept of DAO contained in the

DaoPackage. The meta-model is composed of:

 Interface;

 Table;

 DaoPackage that represents the package containing the

meta-classes to express the concept of DAO;

 The HibernateDaoSupport presenting the concept of

generic class for DAOs;

 IDao, which expresses the concept of Dao interface

that contain the definition of methods to create,

remove, update, and display;

 Pojo expresses the objects that will communicate with

the tables of relational database;

 DaoImpl presents the concept of Dao implementation,

it contains methods to create, remove, update, and

display data in the database; and finally,

 The CrudProjectPackage that is connected to the

meta-class DaoPackage.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 14

2020 International Journal of Computer Science Issues

Fig. 4 Simplified DaoPackage meta-model

The business model is the second part of the target meta-

model, in figure 5, we present the different meta-classes

expressing the concept of DI contained in the Business

Package. The components shown in the figure are:

BusinessPackage defining the package and containing the

different meta-classes to show the concept of the business

logic of target application; IService expressing the concept

of service interface that contains the definition of methods;

the methods representing in IDao meta-class and declared

in IService meta-class are defined in ServiceImpl; and

finally, Dto represents the concept of business object,

without forgetting the IDao and Pojo that are already

defined in the DaoPackage meta-model.

Fig. 5 Simplified BusinessPackage meta-model

The third part of the target meta-model is presented in

figure 6 as UIPackage, it represents a concept of MVC2

implementation in the user interface. The component of

this meta-model is a UIPackage connected to the meta-

class ViewPackage and ControllePackage representing

View and Controller package, DelagatingActionProxy

that defines the concept of Proxy for a Spring-managed

Struts Action that is presented in WebApplicationContext.

The proxy is defined in the Struts config file, specifying

this class as action class. It will delegate to a Struts Action

bean in the ContextLoaderPlugIn context [9],

ActionMapping that represents the concept of

ActionMapping classes, Action representing the class

containing its own processing of the application [10],

ActionForm represents a form that contain the parameters

of the request from the view, JspPage represents a Jsp

page, through a hyperlink in a Jsp, an action class may be

called, HttpRequest is the concept of HttpServletRequest

classes, HttpResponse expresses the concept of

HttpServletResponse classes, ApplicationContext defines

the concept of Central interface to afford configuration for

an application and finally ServiceLocator that represents

the concept of Service lookup and creation involves

complex interfaces and network operations.

Fig. 6 Simplified UIPackage meta-model

4.2.3. Transformation rules

Main algorithm:
input umlModel:UmlPackage
output crudModel:CrudProjectPackage
begin
create CrudProjectPackage crud
create DaoPackage daoPackage
for each e ∈ source model

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 15

2020 International Journal of Computer Science Issues

x = transformationRuleOnePojo(e)
link x to dp
x = transformationRuleOneIDao(e)
link x to dp
x = transformationRuleOneDaoImpl(e)
link x dp
end for
create BusinessPackage bp;
for each pojo ∈ target model
x = transformationRuleTwoDto(pojo)
link x to bp
end for
for each e ∈ source model
x = transformationRuleTwoIService(e)
link x to bp
x = transformationRuleTwoSrviceImpl(e)
link x to bp
end for
create UIPackage uip;
create ViewPackage vp
vp = transformationRuleThreeView(e)
create ControllerPackage cp
cp = transformationRuleThreeController(e)
link vp to uip
link cp to uip
link dp to crud
link bp to crud
link uip to crud
return crud
end
function
transformationRuleOnePojo(e:Class):Pojo
begin
create Pojo pj
pj.name = e.name
pj.attributes = e.properties
return pj
end
function
transformationRuleOneIDao(e:Class):IDao
begin
create IDao idao
idao.name = 'I'+e.name+ 'Dao'
idao.methods = declaration of e.methods
return idao
end
function
transformationRuleOneDaoImpl(e:Class):DaoImpl
begin
create DaoImpl daoImpl
daoImpl.name = e.name+ 'DaoImpl'
for each e1 ∈ DaoPackage
if e1.name = 'I'+e.name+ 'Dao'
put e1 in interfaces
end if
end for
link interfaces to daoImpl
return daoImpl
end
function

transformationRuleTwoDto(p:pojo):Dto
begin
create Dto dto
dto.name = p.name
dto.attributes = p.attributes
return dto
end
function
transformationRuleTwoIService(e:Class):IService
begin
create IService iservice
iservice.name = 'I'+e.name+ 'Service'
iservice.methods = declaration of e.methods
return iservice
end
function
transformationRuleTwoServiceImpl(e:Class):Service Impl
begin
create ServiceImpl serviceImpl
serviceImpl.name = e.name+ 'ServiceImpl'
for each e1 ∈ BusinessPackage
if e1.name = 'I'+e.name+ 'Service'
put e1 in interfaces
end if
end for
link interfaces to ServiceImpl
return ServiceImpl
end
function
transformationRuleThreeView(e:Class):ViewPackage
begin
create ViewPackage vp
for each e ∈ source model
if e.methods.name ≠ 'remove'
create JspPage page
link page to vp
end if
end for
return vp
end
function
transformationRuleThreeController(e:Class):Contro
llerPackage

begin
create ControllerPackage cp
create ActionMapping am
for each page viewPackage
link page to actionForward
create actionForm
create Action action
create ActionForward actionForward
actionForm.input=page
actionForm.attribute=action
link page to actionForward
link actionForward to action
put action in am
end for
link am to cp
return cp
end

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 16

2020 International Journal of Computer Science Issues

The algorithm used for the transformation of UML model

source to N-tiers target model is written with QVT

language. As we can observe, the method of the entry

makes the correspondence between the elements of the

UMLPackage type of the input model and the element of

the CrudProjectPackage type of the output model. With the

creation of the elements of type package ‘Dao’, ‘Business’

and ‘Presentation, the transformation of the UML package

into N-tiers package will be done. Each class of package

UML will be transformed to Jsp page and Action in the

View package, to DTO, IService and ServiceImpl in the

Business package, and to Pojo, IDao and DaoImpl in the

Dao package.

5. Healthcare ERP: Case study

The healthcare organizations need to have automated

information systems, such as ERP in order to meet the

quality requirements of health services. It helps to

streamline the processes of the healthcare organization, to

manage and control various departments. The healthcare

ERP provides complete solutions to different segments of

the health industry and solves all the problems of doctors,

nurses, pharmacists, etc.

The main features we want to model in healthcare ERP are

N-Tier Architecture and streamlines healthcare processes.

5.1. Building PIM of ERP Healthcare

The software is divided into different modules, each one

dedicated to a specific activity of the hospital. In this

paper, we present only a part of “laboratory module”, that

is considered one of the important modules in any hospital.

Figure 7 illustrates an instance of UML Model. The PIM

constructed respect the elements on the above UML meta-

model.

Our case study adopts the CRUD operations (Create,

Remove, Update, and Display) that are often implemented

in all systems.

Fig. 7 Instance of UML Model.

5.2. Generating the PSM

Fig. 8 Generated PSM Laboratory Model

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 17

2020 International Journal of Computer Science Issues

As it is shown in figure 8, the UIPackage is at the head of

the elements of the generated PSM model, it contains

viewPackage contaning the JSPs, that is

DisplayPatientPage.jsp, DisplayRequestPage.jsp,

DisplayResultPage.jsp, DisplaySamplePage.jsp,

CreatePatientPage.jsp, CreateRequestPage.jsp,

CreateResultPage.jsp, CreateSamplePage.jsp,

UpdatePatientPage.jsp, UpdateRequestPage.jsp.

UpdateResultPage.jsp, UpdateSamplePage.jsp. We can

note in the figure that the Remove operation does not exist

with other CRUD operations, this is because it requires any

form. Just after, we go to the controllerPackage element

that contains ActionMapping, this ActionMapping contains

twenty four delegating action proxy whose names are

respectively DisplayXAction, CreateXAction,

UpdateXAction, RemoveXAction, CreateXEndAction,

UpdateXEndAction, where X should be replaced by

Patient, Request, Result and Sample. The next element in

the generated PSM model is businessPackage, it contains

four services interfaces, four services implementations and

four Dtos for each of the objects “Patient”, “Request”,

“Result” and “Simple”. All of the Pojos object, the four

Daos’ interfaces that contains methods and Daos

implementations are part of the last element in the

generated PSM model.

6. Results of code generation process

We present in this section the result of code generation

process. In fact, we modeled and generated the code of the

whole module, but we display only the part that includes

classes shown above. It introduces in Figure 9 DataTypes,

classes, operations and properties.

Fig. 9 XML file generated

7. Conclusion

In this paper, we proposed a model driven approach to

develop a Healthcare ERP. Unlike the traditional software

development process, model transformation in our

approach ensures consistency by defining model

transformation rules and resolves problems of difficulty in

ensuring consistency in requirements definition, analysis

and design. For this, we had a comprehensive analysis of

the problems in the development of healthcare ERP and we

focused on the generation phase based on MDA approach.

The goal of our approach is to develop all meta-classes

needed to generate N-tiers application, we applied the

approach by modeling and we used the UML class diagram

as a model of PIM, and then used the MOF 2.0 QVT

standard as a transformation language.

Through the transformation rules defined, an XML file has

been generated, based on the source model instance class

diagram presented, that file can be used to produce the

necessary code of the target application.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 18

2020 International Journal of Computer Science Issues

References

[1] R. Dehbi, IACSIT Member, M. Talea, and A. Tragha, "A

Model Driven Methodology Approach for e-Learning",

International Journal of Information and Education

Technology, Vol. 3, No. 1, 2013.

[2] H. Benouda, M. Azizi, R. Esbai, M. Moussaoui, "Code

Generation Approach for Mobile Application Using

Acceleo", International Review on Computers and Software

(I.RE.CO.S.), Vol. 11, No. 2, 2016.

[3] Cong, Xiao, "A Model-Driven Architecture Approach for

Developing for Developing Elearning", in International

Conference on Technologies for E-Learning and Digital

Entertainment, pp. 111-122, 2010.

[4] Y. Lamlili, M. Erramdani, I. Arrassen, R. Esbai, M.

Moussaoui, "Web-Marketing 3.0 In Social Network using

MDA Approach and Pulse detector", Vol. 10, No. 1, 2013

[5] O. Betari, S. Filali, A. Azzaoui, M.A. Boubnad, "Applying a

Model Driven Architecture Approach: Transforming CIM to

PIM Using UM", iJOE, Vol. 14, No. 9, 2018.

[6] OMG. "Object Management Group. MDA GuideV2.0."

Object Management Group. 2019,http://www.omg.org/mda/

(Access on February 2019).

[7] Blanc, Xavier, MDA en action : Ingénierie logicielle guidée

par les modèles, 2005.

[8] T. Gardner, C. Griffin, J. Koehler, and Rainer Hauser, "A

review of OMG MOF 2.0 Query/Views /Transformations

Submissions and Recommendations towards the final

Standard", 2003.

[9] https://docs.spring.io/spring/docs/1.0.2/javadoc-

api/org/springframework/web/struts/DelegatingActionProxy

.html. (Access on January 2019).

[10] R. Esbai, M. Erramdani, S. Mbarki, I. Arrassen, A. Meziane,

M. Moussaoui. "Model-Driven transformation with

approach by modeling: From UML to N-tiers Web Model"

IJCSI International Journal of Computer Science Issues, Vol.

8, No. 2, 2011.

[11] http://ecariou.perso.univ-pau.fr/cours/mde/cours-transfo.pdf

(Access on January 2019).

[12] http://theo.cs.ovgu.de/lehre/lehre16s/modelling/slides19.pdf

(Access on January 2019).

[13] B. Mora, F. García, F. Ruiz, M. Piattini, A. Boronat, A.

Gómez, José Á. Carsí, I. Ramos, "Software Measurement by

Using QVT Transformations in an MDA Context", 2008.

[14] Chantal Morley, Jean Hugues, Bernard Leblanc, UML2

Pour l'analyse d'un système d'information. 2006.

[15] J. Bézivin, F. Futtner, M. Gogolla, F. Jouault, I. Kurtev, A.

Lindow, "Model Transformations? Transformation

Models!", International Conference on Model Driven

Engineering Languages and Systems, pp 440-453, 2006.

[16] L. El Mazoui, M. Erramdani, I. Arrassen, R. Esbai, M.

Moussaoui, "Web-Marketing in Social Networks Using

MDA Approach", IJCSI International Journal of Computer

Science Issues, Vol. 10, No. 1, 2013.

[17] M. Ali, L. Miller, "ERP system implementation in large

enterprises – a systematic literature review", Journal of

Enterprise Information Management, Vol. 30, No. 4, 2016.

[18] M. Mucheleka, R. Halonen. "ERP in Healthcare." 17th

International Conference on Enterprise Information Systems,

2015.

[19] S. Aghazadeh, A. Aliyev, M. Ebrahimnezhad. "Review the

Role of Hospital Information Systems in Medical Services

Development", International Journal of Computer Theory

and Engineering, Vol. 4, No. 6, 2012.

[20] Vojtisek, Didier, "QVT : un standard de transformation pour

l'Ingénierie Dirigèe par les Modèles", 2010.

Fatima Zahra Yamani got her Master Degree in IT management
from Abdelmalek Essaadi University of Tetouan, Morocco in 2016.
She is currently Ph.D student in Science and Technology with the
research team of Modeling and Computer Theory at the center of
doctoral studies in Tetouan, Morocco. Her research activities have
focused on healthcare ERPs in Morocco using Model Driven
Architecture approach.

Mohamed El Merouani obtained his Ph.D in Mathematics from
University of Granada, Faculty of Sciences. He was a responsible
of Department of Statistics and IT at the polydisciplinary faculty of
Tetouan during many years. He is a professor and responsible of
"Modeling and Computer Theory" research team. Currently, he is
professor at the University Abdelmalek Essaadi of Tetouan
(Morocco). He teaches several courses in the domain of
mathematics and statistics.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 1, January 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987098 19

2020 International Journal of Computer Science Issues

