
SpeedSiteRank: PageRank algorithm distributed in websites

Saint-Jean A. O. Djungu1 and Pierre Manneback2

1 Mathematics and Informatics Department, Faculty of Sciences, University of Kinshasa

Kinshasa, R.D. Congo

2 Computer and Management Engineering Department, Faculty of Engineering, University of Mons

Mons, Belgium

Abstract

A global and centralized classification of web pages

requires a fairly high computation cost and therefore does

not favor a regular updating of the index database. To

overcome this problem, we propose in this article an

asynchronous parallel algorithm, called SpeedSiteRank,

capable of calculating the PageRank vector by site. The

results of tests carried out on a cluster made up of 10 bi-

opteron nodes demonstrated the efficiency of our

algorithm.

Keywords: PageRank, SpeedSiteRank, website

1. Introduction

Exploiting the structure of the hypertext links

between the different web pages has made it possible

to considerably improve the performance of modern

search engines. Designed in 1998 by Larry Page and

Sergey Brin, the famous Google search engine

classifies web pages using a combination of multiple

factors, the most famous of which is called

PageRank. The latter uses the number of links

pointing to a web page to assign it a popularity index.

PageRank is also one of the measures used to allow

crawlers to crawl web content [1].

Systematic exploration of the web has become a

delicate task subject to strong constraints. Indeed, the

technical aspects of the web such as network traffic

and bandwidth are the factors penalizing in the

repatriation of web pages. In addition, the current size

of the web, estimated at several billion pages, greatly

impedes the progression of crawlers by significantly

extending the time necessary for the completion of an

exploration cycle [6]. This involves considerable time

for updating the index as well as calculating the

popularity index for each web page [13].

It has become difficult to implement crawlings

intended to visit all of the web pages. Faced with

these constraints, we saw in [7] that classical

parallelization, based on index centralization, has

shown its limits. Hence the need to focus on

distributed and collaborative systems in terms of

crawling, indexing and information retrieval [2, 4].

In this article, we take advantage of the natural

decomposition of the web into blocks (servers,

domains, directories, etc.) to approximate the

PageRank vector, so that the update of the index base

of a site is done without demand to crawl the entire

web.

In this contribution, we propose an approach based

on the Vantilborgh aggregation / disaggregation

method [5], which allows to calculate the PageRank

vector by site. It differs from previous work, [3, 10,

12, 14], in which the estimation of the PageRank

vector is done first by site and then refined by taking

into account information outside the site. In our

approach, the calculation of the PageRank vector

integrates all information outside the site beforehand.

This is to avoid calculating the PageRank vector

twice per site.

This article is organized as follows: Section 2

presents a number of definitions and notations. In

section 3, we give the wording of SpeedSiteRank,

indicating how the load balancing is done as well as

the communications between processors. Section 4 is

devoted to the presentation of experimental results

and performance analysis. Finally we conclude and

present perspectives for future work.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987137 13

2020 International Journal of Computer Science Issues

2. Notations and definitions

In this section, we group together a number of

definitions and notations that will be used throughout

this article.

Definition 1 [9]: A website is a set of interrelated

web pages identified by a common name (domain,

server, directory, etc.).

Let 𝛿 = (S1, ..., Sk) be a set of k sites, with k>1. The

size of each site Si is equal to ni and ∑ 𝑛𝑖 = 𝑛𝑖=1,...,𝑘 .

Definition 2: The extended site graph Si is defined by

the couple Gi = (Vi, Ei), where Vi is a set of ni web

pages of Si and Ei the set of pairs of web pages whose

first component (element of Vi) has a hypertext link

to the second component (element of Vi or not). The

transition matrix associated with the graph Gi is a

matrix 𝐴𝑖∗ ∈ 𝑀𝑛𝑖,𝑛(ℜ) defined by equation (1) below.

𝐴𝑖∗ = (𝑎𝑢,𝑣),  𝑤𝑖𝑡ℎ  𝑎𝑢,𝑣 {

1

𝑑𝑢

 𝑖𝑓 𝑢 → 𝑣

0 𝑒𝑙𝑠𝑒 (1)

where du is the number of outgoing links on the page

iVu .

Definition 3: Let Aii be the intra-site matrix Si and

)(ijAij  the inter-site matrix Si to Sj. The

matrix
iA can still be written as:

)2(],...,,...,[1 ikiiii AAAA =

By aggregating site graphs, we get the web graph

G = (V, E), where all of the web pages are

i

k

i VV 1== and the hyperlinks is

i

k

i EE 1==  . The transition matrix associated

with the graph G is therefore

)3(

...

..

...

...

...

...

21

22221

11211



























=

kkkk

k

k

AAA

AAA

AAA

A

Let x be a vector of size n. Taking into account the

sizes of the different sites, the vector x can be written

as follows:

)4(),...,(1

T

kxxx =

where each xi is a vector of size ni, i = 1, ..., k.

Let be a vector

)5(),...,(1

T

kxxx  =

with

1i

i
i x

x
x = a line vector of size ni.

Let)(,  knML and)(,  knMS be two matrices

associated with the operators of communications

between the sites, defined respectively as follows:

)6(

...00

..

...

...

0...0

0...0

)(

2

1



























=









kx

x

x

xL

and

)7(

...00

..

...

...

0...0

0...0

2

1



























=

ke

e

e

S

Let B(x*) be the inter-site transition matrix: for two

given sites i and j, we want Bi,j(x*) to measure the

probability that, starting from site i according to the

distribution 

ix , we reach j by randomly following

an edge of Gi. Using relations (6) and (7), we obtain

the expression of the matrix)(,  kkMB using the

matrices)(,  nnMA ,)(,  knML and)(,  knMS .

)8()()(ASxLxB T =

Since A is both stochastic and irreducible, we deduce

that the matrix B is stochastic and irreducible [11].

3. SpeedSiteRank algorithm

In general, the matrix A defined by the relation (3) is

not irreducible. To force irreducibility, we consider

the normalization of A by taking the weighted

average by of A and by (1 −) of ezT.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987137 14

2020 International Journal of Computer Science Issues

)9()1(TezAA  −+=

where z is a uniform zap distribution and  the zap

factor. The distribution in sites of the matrix
A is

written as indicated in (10).

)10()1()(

)1()(

T

jiijij

T

iiiiii

zeAA

zeAA









−+=

−+=

where ei and zi are vectors of size ni. The (
A)

ii
,

i = 1, · · ·, k, are the block matrices of the main

diagonal of the matrix
A .

Proposition 1

Let z be a distribution of zap of size n, e* a unit

vector of size k (number of sites) and
T

kzzb],...,[
111= . Let V = e*bT be a

square matrix of order k.

1. The expression of the inter-site matrix is given

by:

)11()1(* VBB  −+=

2. The relative importance of sites is a solution

vector of equation (12).

(12))b)- (1 , B,SpeedRank(= w 

where)b)- (1 , B,SpeedRank(= w  comes

from bw)1(B = w T  −+ .

Proposition 2

An approximation of the PageRank vector, xi, relating

to the web pages of the site Si is given by:

(13)
x

),,ASpeedRank(y

i

iii





=

=

ii

i

yw

r

where




+−+−=
ij

ji

T

jjii Axwzw *

i)2()1(r 

is a line vector of size ni.

We have now all the ingredients to describe our new

algorithm, which we propose to name SpeedSiteRank.

The parallelism required by SpeedSiteRank is better

exploited if the number of sites (k) is equal to the

number of processors (p). In practice, the number of

processors is often less than the number of sites.

Hence the need to group the calculation of

PageRanks of sites on a processor.

Let F(i)1, 2, … p be the frequency of the ith processor

and Nnz(j) 1, 2, … k the number of non-zero elements in

the matrix of the jth site. Based on the principle of

dynamic programming, algorithm 1 makes it possible

to determine the optimal static distribution of the

computational load of PageRanks on p processors.

The greedy algorithm 1 makes it possible to

determine the optimal static distribution of the load of

computation of PageRanks on p heterogeneous

processors. The case where the processors are

homogeneous is a special case.

Algorithm 1: function DC = loadDistribution (Nnz,

F, k, p)

Start

 Sort Nnz in descending order

 tempsEx (i) = 0, for i = 1, ..., p

 For i = 1 to k do

)
)(

)(
)((min argj 1

tF

iNnz
jtempsExpt += 

 DC (i) = j

)(

)(
)(tempsEx(j)

jF

iNnz
jtempsEx +=

 End

End

Step 7 of algorithm 2 shows how communication is

done between the sites. The site Si, for example,

sends to all the other sites a vector Ki,*. The latter

contains all the information concerning the hypertext

links between the Si site and all the other sites. The

exploitation of the master-slave paradigm, for

example, requires the redistribution of vectors w and f

(steps 9 and 10) on the slave processors.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987137 15

2020 International Journal of Computer Science Issues

Algorithm 2: Parallel approximation of

SpeedSiteRank

Data

 * A set of sites = (S1, ..., Sk) and ni = |Si|;

 * Transition matrix A associated with  ;

 * Matrix S indicating the pages belonging to the

sites;

 * A distribution of zap z;

 * A coefficient of zap ]0,1[;

 * DC load distribution

Result

 * An estimation of the PageRank vector by sites

Start

 1. T

k

k

z

z

z

z
x),...,(

111

1)0(=

 2.),...,(
111 kzzb =

 3.
kxkOB =

 4. For each site Si of  according to DC do

 5.
*

)0(

,* i

T

ii AxK =

 6. End

 7. K = GlobalCollection (Ki,*)

 8. B = KS

 9.)b)- (1 , B,SpeedRank(= w 

 10. f = wK

 11. For each site Si of  according to DC do

 12.



+−+−=
ij

ji

T

jjii Axwzw *

i)2()1(r 

 13. yi = SpeedRank(Aii,  , ri)

 14. xi = wiyi

 15. End

End

4. Digital experiences

4.1. Test matrices

To test our algorithms, we considered matrices from

the Web-Graph project (http://law.dsi.unimi.it/). The

partitioning into sites of these matrices was made on

the basis of a lexicographic sorting on the urls. We

have partitioned into servers or domains. Table 1

shows the main characteristics of 2 of these matrices.

Written in C and MPI, our code has been tested on a

Linux cluster with 10 bi-opteron 244 nodes clocked

at 1.8 GHz interconnected in Gigabit Ethernet. Each

node has 2 GB of RAM and 76 GB of HDD in

10,000 RPM SCSI. Only 8 nodes were used to do the

tests.

Table 1: Characteristics of the matrices

 #Pages # Links Lvl. #Sit

es

cnr-

2000

325557 3216152 server 143

in-

2004

1382908 16538959 doma

in

13

4.2. Performance analysis

Given the asynchronous nature of SpeedSiteRank and

the fact that the site graphs do not have the same

number of hypertext links, the execution times per

node are in an interval [timemin, timemax]. To allow

us to appreciate the scalability of our results, we offer

a presentation where only the average time ((max

time - min time) / 2) is indicated (see Table 2).

Table 2: Average SpeedSiteRank execution time compared to the

number of nodes (85.0=)

#Links 1 2 3 4 5 6 7 8

cnr-2000

(in sec)

53 30 22 19 17 14 13 12

in-2004

(in sec)

25

6

131 88 67 56 48 43 38

Figure 1 shows the variation of the execution time as

a function of the number of nodes used. It is noted

that the scalability obtained is a function of the size

and the nature of the matrix used. The in-2004 matrix

has the best scalability compared to cnr-2000.

4.3. Correlation between PageRank and

SpeedSiteRank

In this article, we have used the normalized Kendall

distance to compare the rankings obtained using the

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987137 16

2020 International Journal of Computer Science Issues

reference PageRank and our new SpeedSiteRank

algorithm, respectively.

Definition 4: The normalized Kendall distance

between two lists X and Y of size n is given by the

relation (14).

 
)14(

2/)1(

),(
Y)KDist(X,

,

−
=
 

nn

YXK
Pji ij

where

• P is the set of disordered pairs of distinct

elements in X and Y

• Kij = 0 if i and j are in the same order in X

and Y

• Kij = 1 if i and j are in opposite order in X

and Y.

Starting from definition 4, we found 0.0189 and

0.0306 respectively as mean normalized Kendall

distances for the matrices cnr-2000 and in-2004.

Thus, the rankings obtained using PageRank and

SpeedSiteRank are correlated to more than 98% for

cnr-2000 and 97% for in-2004.

Figure 1: speed-up of SpeedSiteRank for the cnr-2000 and in-2004

matrices

5. Conclusion

The objective of this article was to find a non-

centralized way to calculate the PageRank vector.

The SpeedSiteRank algorithm is not only a response

to the initial concern, but is a powerful way to allow

the webmaster to update his index base without trying

to heckle the whole web.

Our future work will consist in seeking to validate

our algorithm on very large web matrices obtained on

the basis of a decentralized crawling in sites (servers,

domains, tld, etc.). We can also take advantage of the

results obtained in [7, 8] to use EramRank or

GmersRank as input parameters for SpeedSiteRank

instead of SpeedRank.

References

[1] S. Abiteboul, M. Preda and G. Cobena. Adaptive

on-line page importance computation. In Proceedings

of the twelfth international conference on World

Wide Web, ACM Press, 2003, pp. 280-290.

[2] K. Aberer and J. Wu. A framework for

decenralized ranking in web information retrieval. In

Web Technologies and Appliations : Proceedinfs of

th Asia-Pacific Web Conference, APWeb 2003

volume LNCS 2642, Xi’an, China, September 2003.

Springer-Verlag. September 27-29, 2003, pp. 213-

226.

[3] A. Broder, R. Lempel, F. Maghoul, and J.

Pedersen. Efficient pagerank approximation via graph

aggregation. In Proc. of the WWW’04 Conf., 2004,

pp. 484 - 485.

[4] J. Cho and H. Garcia-Molina. Parallel crawlers. In

Proceedings of the eleventh international conference

on World Wide Web, Honolulu, Hawaii, USA, ACM

Press. May 2002, pp. 124-135.

[5] W. Cao and W. J. Stewart. Iterative

aggregation/disaggregation techniques for nearly

uncoupled markov chains, ACM Press. 1985, pp. 702

- 719.

[6] J. Cho and S. Roy. Impact of Web search engines

on page popularity. In Proceedings of the Thirteenth

International WWW Confernce, 2004.

[7] S.-J. Djungu et P. Manneback. Mise en œuvre

parallèle sur cluster d’algorithmes itératifs de

PageRank. Dans les Actes de 17ème Rencontres

francophones du Parallélisme. Perpignan/France, du

3 au 6 octobre 2006.

[8] S.-J Djungu. Conception et mise en œuvre

parallèle d’algorithmes de PageRanking. Editions

Universitaires Européennes, Allemagne, 2014.

[9] C. Kohlschutter, P. Chirita, and W. Nejdl.

Efficient Parallel Computation of PageRank, 2006.

[10] S. Kamvar, T. Haveliwala, C. Manning and G.

Golub. Exploiting the Block Structure of the Web for

Computing PageRank, Technical Report, Stanford

University, 2003.

[11] I. Marek and P. Mayer. Convergence analysis of

an aggregation / disaggregation iterative method for

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987137 17

2020 International Journal of Computer Science Issues

computation stationary probability vectors of

stochastic matrices, Numer. Linear Algebra Appl. 5,

1998, pp. 253-274.

[12] F. Mathieu and L. Viennot. Aspects of the

Global Ranking of Web Pages. In Proceedings of

I2CS 2006, 2006.

[13] L. Page and S. Brin. The anatomy of a large-

scale hypertextualWeb search engine. Computer

Networks and ISDN Systems, 1998, 33(3) : pp. 107-

117.

[14] Y. Wang and D. J. DeWitt. Computing

PageRank in a distributed internet search system. In

Proceedings of the 30th VLDB Conference, 2004.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987137 18

2020 International Journal of Computer Science Issues

