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Abstract 

A global and centralized classification of web pages 

requires a fairly high computation cost and therefore does 

not favor a regular updating of the index database. To 

overcome this problem, we propose in this article an 

asynchronous parallel algorithm, called SpeedSiteRank, 

capable of calculating the PageRank vector by site. The 

results of tests carried out on a cluster made up of 10 bi-

opteron nodes demonstrated the efficiency of our 

algorithm. 
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1. Introduction

Exploiting the structure of the hypertext links 

between the different web pages has made it possible 

to considerably improve the performance of modern 

search engines. Designed in 1998 by Larry Page and 

Sergey Brin, the famous Google search engine 

classifies web pages using a combination of multiple 

factors, the most famous of which is called 

PageRank. The latter uses the number of links 

pointing to a web page to assign it a popularity index. 

PageRank is also one of the measures used to allow 

crawlers to crawl web content [1]. 

Systematic exploration of the web has become a 

delicate task subject to strong constraints. Indeed, the 

technical aspects of the web such as network traffic 

and bandwidth are the factors penalizing in the 

repatriation of web pages. In addition, the current size 

of the web, estimated at several billion pages, greatly 

impedes the progression of crawlers by significantly 

extending the time necessary for the completion of an 

exploration cycle [6]. This involves considerable time 

for updating the index as well as calculating the 

popularity index for each web page [13]. 

It has become difficult to implement crawlings 

intended to visit all of the web pages. Faced with 

these constraints, we saw in [7] that classical 

parallelization, based on index centralization, has 

shown its limits. Hence the need to focus on 

distributed and collaborative systems in terms of 

crawling, indexing and information retrieval [2, 4]. 

In this article, we take advantage of the natural 

decomposition of the web into blocks (servers, 

domains, directories, etc.) to approximate the 

PageRank vector, so that the update of the index base 

of a site is done without demand to crawl the entire 

web. 

In this contribution, we propose an approach based 

on the Vantilborgh aggregation / disaggregation 

method [5], which allows to calculate the PageRank 

vector by site. It differs from previous work, [3, 10, 

12, 14], in which the estimation of the PageRank 

vector is done first by site and then refined by taking 

into account information outside the site. In our 

approach, the calculation of the PageRank vector 

integrates all information outside the site beforehand. 

This is to avoid calculating the PageRank vector 

twice per site. 

This article is organized as follows: Section 2 

presents a number of definitions and notations. In 

section 3, we give the wording of SpeedSiteRank, 

indicating how the load balancing is done as well as 

the communications between processors. Section 4 is 

devoted to the presentation of experimental results 

and performance analysis. Finally we conclude and 

present perspectives for future work. 
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2. Notations and definitions 

 

In this section, we group together a number of 

definitions and notations that will be used throughout 

this article. 

 

Definition 1 [9]: A website is a set of interrelated 

web pages identified by a common name (domain, 

server, directory, etc.). 

 

Let 𝛿 = (S1, ..., Sk) be a set of k sites, with k>1. The 

size of each site Si  is equal to ni  and ∑ 𝑛𝑖 = 𝑛𝑖=1,...,𝑘 . 

 

Definition 2: The extended site graph Si is defined by 

the couple Gi = (Vi, Ei), where Vi is a set of ni web 

pages of Si and Ei the set of pairs of web pages whose 

first component (element of Vi) has a hypertext link 

to the second component (element of Vi or not). The 

transition matrix associated with the graph Gi is a 

matrix 𝐴𝑖∗ ∈ 𝑀𝑛𝑖,𝑛(ℜ) defined by equation (1) below. 

𝐴𝑖∗ = (𝑎𝑢,𝑣),  𝑤𝑖𝑡ℎ  𝑎𝑢,𝑣 {

1

𝑑𝑢

 𝑖𝑓 𝑢 → 𝑣

0  𝑒𝑙𝑠𝑒     (1)

 

where du is the number of outgoing links on the page 

iVu . 

Definition 3: Let Aii be the intra-site matrix Si and 

)( ijAij   the inter-site matrix Si to Sj. The 

matrix 
iA  can still be written as: 

)2(],...,,...,[ 1 ikiiii AAAA =

 

By aggregating site graphs, we get the web graph     

G = (V, E), where all of the web pages are 

i

k

i VV 1==  and the hyperlinks is 

i

k

i EE 1==  . The transition matrix associated 

with the graph G is therefore 
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Let x be a vector of size n. Taking into account the 

sizes of the different sites, the vector x can be written 

as follows: 

)4(),...,( 1

T

kxxx =  

where each xi is a vector of size ni, i = 1, ..., k. 

Let be a vector 
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T
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x =  a line vector of size ni. 

Let )(,  knML  and )(,  knMS  be two matrices 

associated with the operators of communications 

between the sites, defined respectively as follows: 
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Let B(x*) be the inter-site transition matrix: for two 

given sites i and j, we want Bi,j(x*) to measure the 

probability that, starting from site i according to the 

distribution 

ix , we reach j by randomly following 

an edge of Gi. Using relations (6) and (7), we obtain 

the expression of the matrix )(,  kkMB  using the 

matrices )(,  nnMA , )(,  knML and )(,  knMS . 

 )8()()( ASxLxB T =  

Since A is both stochastic and irreducible, we deduce 

that the matrix B is stochastic and irreducible [11]. 

 

3. SpeedSiteRank algorithm 

In general, the matrix A defined by the relation (3) is 

not irreducible. To force irreducibility, we consider 

the normalization of A by taking the weighted 

average by of A and by (1 − ) of ezT. 
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)9()1( TezAA  −+=

where z is a uniform zap distribution and  the zap 

factor. The distribution in sites of the matrix 
A  is 

written as indicated in (10).  
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where ei and zi are vectors of size ni. The (
A )

ii
,       

i = 1, · · ·, k, are the block matrices of the main 

diagonal of the matrix 
A .  

Proposition 1  

Let z be a distribution of zap of size n, e* a unit 

vector of size k (number of sites) and 
T

kzzb ],...,[
111= . Let V = e*bT be a 

square matrix of order k.  

1. The expression of the inter-site matrix is given 

by:  

)11()1(* VBB  −+=

 

2. The relative importance of sites is a solution 

vector of equation (12).  

(12) )b)- (1 , B,SpeedRank( = w 

 

where  )b)- (1 , B,SpeedRank( = w   comes 

from bw )1(B = w T  −+ .  

Proposition 2  

An approximation of the PageRank vector, xi, relating 

to the web pages of the site Si is given by:  

(13)
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is a line vector of size ni.  

We have now all the ingredients to describe our new 

algorithm, which we propose to name SpeedSiteRank. 

The parallelism required by SpeedSiteRank is better 

exploited if the number of sites (k) is equal to the 

number of processors (p). In practice, the number of 

processors is often less than the number of sites. 

Hence the need to group the calculation of 

PageRanks of sites on a processor.  

 

Let F(i)1, 2, … p be the frequency of the ith processor 

and Nnz(j) 1, 2, … k the number of non-zero elements in 

the matrix of the jth site. Based on the principle of 

dynamic programming, algorithm 1 makes it possible 

to determine the optimal static distribution of the 

computational load of PageRanks on p processors. 

The greedy algorithm 1 makes it possible to 

determine the optimal static distribution of the load of 

computation of PageRanks on p heterogeneous 

processors. The case where the processors are 

homogeneous is a special case. 

Algorithm 1: function DC = loadDistribution (Nnz, 

F, k, p) 

Start 

   Sort Nnz in descending order 

   tempsEx (i) = 0, for i = 1, ..., p 

   For i = 1 to k do 

          )
)(

)(
)((min argj 1

tF

iNnz
jtempsExpt += 

 

           DC (i) = j 

          
)(

)(
)(tempsEx(j)

jF

iNnz
jtempsEx +=  

    End 

End 

 

Step 7 of algorithm 2 shows how communication is 

done between the sites. The site Si, for example, 

sends to all the other sites a vector Ki,*. The latter 

contains all the information concerning the hypertext 

links between the Si site and all the other sites. The 

exploitation of the master-slave paradigm, for 

example, requires the redistribution of vectors w and f 

(steps 9 and 10) on the slave processors. 
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Algorithm 2: Parallel approximation of 

SpeedSiteRank 

Data 

      * A set of sites = (S1, ..., Sk) and ni = |Si|; 

      * Transition matrix A associated with  ; 

       * Matrix S indicating the pages belonging to the 

sites; 

       * A distribution of zap z; 

       * A coefficient of zap  ]0,1[; 

       * DC load distribution 

Result 

        * An estimation of the PageRank vector by sites 

Start 

 1. T

k

k

z

z

z

z
x ),...,(

111

1)0( =
 

 2. ),...,(
111 kzzb =  

 3. 
kxkOB =  

 4. For each site Si of   according to DC do 

 5.            
*

)0(

,* i

T

ii AxK =  

 6. End 

 7. K = GlobalCollection (Ki,*) 

 8. B = KS 

 9. )b)- (1 , B,SpeedRank( = w   

 10. f = wK 

 11. For each site Si of  according to DC do 

 12. 



+−+−=
ij

ji

T

jjii Axwzw *

i )2()1(r   

 13. yi = SpeedRank(Aii,  , ri) 

 14. xi = wiyi 

 15. End 

End 

 

4. Digital experiences 

4.1. Test matrices 

To test our algorithms, we considered matrices from 

the Web-Graph project (http://law.dsi.unimi.it/). The 

partitioning into sites of these matrices was made on 

the basis of a lexicographic sorting on the urls. We 

have partitioned into servers or domains. Table 1 

shows the main characteristics of 2 of these matrices. 

Written in C and MPI, our code has been tested on a 

Linux cluster with 10 bi-opteron 244 nodes clocked 

at 1.8 GHz interconnected in Gigabit Ethernet. Each 

node has 2 GB of RAM and 76 GB of HDD in 

10,000 RPM SCSI. Only 8 nodes were used to do the 

tests. 

 

Table 1: Characteristics of the matrices 

 #Pages # Links Lvl. #Sit

es 

 

cnr-

2000 

325557 3216152 server 143 

in-

2004 

1382908 16538959 doma

in 

13 

 

4.2. Performance analysis  

Given the asynchronous nature of SpeedSiteRank and 

the fact that the site graphs do not have the same 

number of hypertext links, the execution times per 

node are in an interval [timemin, timemax]. To allow 

us to appreciate the scalability of our results, we offer 

a presentation where only the average time ((max 

time - min time) / 2) is indicated (see Table 2). 

 

Table 2: Average SpeedSiteRank execution time compared to the 

number of nodes ( 85.0= ) 

#Links 1 2 3 4 5 6 7 8 

cnr-2000 

(in sec) 

53 30 22 19 17 14 13 12 

in-2004 

(in sec) 

25

6 

131 88 67 56 48 43 38 

 

Figure 1 shows the variation of the execution time as 

a function of the number of nodes used. It is noted 

that the scalability obtained is a function of the size 

and the nature of the matrix used. The in-2004 matrix 

has the best scalability compared to cnr-2000.  

4.3. Correlation between PageRank and 

SpeedSiteRank 

 

In this article, we have used the normalized Kendall 

distance to compare the rankings obtained using the 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3987137 16

2020 International Journal of Computer Science Issues



reference PageRank and our new SpeedSiteRank 

algorithm, respectively. 

 

Definition 4: The normalized Kendall distance 

between two lists X and Y of size n is given by the 

relation (14). 

 
)14(

2/)1(

),(
Y)KDist(X,

,

−
=
 

nn

YXK
Pji ij  

where 

• P is the set of disordered pairs of distinct 

elements in X and Y 

• Kij = 0 if i and j are in the same order in X 

and Y 

•  Kij = 1 if i and j are in opposite order in X 

and Y. 

    

Starting from definition 4, we found 0.0189 and 

0.0306 respectively as mean normalized Kendall 

distances for the matrices cnr-2000 and in-2004. 

Thus, the rankings obtained using PageRank and 

SpeedSiteRank are correlated to more than 98% for 

cnr-2000 and 97% for in-2004. 

 

 

Figure 1: speed-up of SpeedSiteRank for the cnr-2000 and in-2004 

matrices 

5. Conclusion 

 

The objective of this article was to find a non-

centralized way to calculate the PageRank vector. 

The SpeedSiteRank algorithm is not only a response 

to the initial concern, but is a powerful way to allow 

the webmaster to update his index base without trying 

to heckle the whole web. 

 

Our future work will consist in seeking to validate 

our algorithm on very large web matrices obtained on 

the basis of a decentralized crawling in sites (servers, 

domains, tld, etc.). We can also take advantage of the 

results obtained in [7, 8] to use EramRank or 

GmersRank as input parameters for SpeedSiteRank 

instead of SpeedRank. 
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