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Abstract 

RSA is the most popular public key cryptography 

algorithm. Therefore, one of the major weaknesses 

of RSA is that it requires a lot of computing time 

compared to secret hey cryptography algorithms. For 

example in hardware, some authors claim that RSA 

is around 1000 times slower than DES (Data 

Encryption Standard).  

In addition, current consumer architectures embed 

several computing units, distributed on processors 

and possibly on graphics cards. These resources are 

now easily exploitable thanks to parallel 

programming interfaces like OpenMP or CUDA. 

This article proposes parallel versions of RSA 

allowing to take advantage of the whole of the 

computing resources, in particular on multi-core 

architectures with shared memory. 

Keywords: Cryptography, encryption, RSA, parallel 

algorithm 

1. Introduction

An encryption algorithm transforms a message, 

called plain text, into an encrypted text that will only 

be readable by its legitimate recipient [5, 11]. As 

indicated in Fig. 1, this transformation is carried out 

by an encryption function parameterized by an 

encryption key. A privileged interlocutor can then 

decrypt the message using the decryption function if 

he knows the corresponding decryption key. 

Fig. 1 : Communication principle 

Described in 1978 by R.L. Rivest, A. Shamir and 

L.M. Adleman [10], RSA is the most widely used

public key system. It is not strictly speaking a

standard but its use is described and recommended

in a large number of official standards, in particular 

for banking applications. 

RSA is an asymmetric cryptography algorithm, 

widely used in electronic commerce, and more 

generally for exchanging confidential data on the 

Internet. 

With RSA, each user has a couple of keys, a public 

key (or encryption), which he generally makes 

available to everyone in a directory, for example, and 

a secret key (or decryption), known to him alone. So, 

to send a confidential message to Grael, Anael 

encrypts the clear message using Grael's public key. 

Only the latter, using the corresponding secret key, 

can decrypt the received message. 

In many communications, data confidentiality 

matters little but it is necessary to ascertain their 

origin and their integrity, that is to say to verify that 

they have not been modified during transmission. 

The RSA algorithm can be used to provide: 

• confidentiality: only the owner of the

private key can read the message encrypted

with the corresponding public key.

• non-alteration and non-repudiation: only

the owner of the private key can sign a

message (with the private key). A signature

decrypted with the public key will therefore

prove the authenticity of the message.

This article is organized as follows: section 2 

presents the various basic operations related to 

modular arithmetic. In section 3, the procedure for 

generating the RSA parameters is shown. The 

mechanisms for stuffing and decomposing messages 

into blocks are given in section 4. The parallel 

version of modular exponentiation is the subject of 

section 5. Next, in section 6, the declination of 

parallel versions of encryption and RSA decryption. 

The signing of messages with RSA constitutes the 

essential of section 7. Finally we conclude and 
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present perspectives for the implementation of our 

parallel RSA algorithms. 

 

2. Modular arithmetic 
 

Let be a positive integer n. The operations of 

modular arithmetic are defined in the ring of integers 

ℤ/nℤ between elements of this ring. When n is prime, 

ℤ/nℤ is a finite field which we will denote by ℤn. In 

the following, we represent the elements of ℤ/nℤ by 

integers in [0, n -1]. 

 

By definition, a modular operation consists in 

calculating the remainder of the Euclidean division 

of the whole result of the operation by n to guarantee 

that the final result belongs to the interval [0, n - 1], 

that is to say : ∀⊗ ∈ {+, -, ×, /} [7]: 

⊗: [0, n -1] × [0, n -1] → [0, n -1] 

              a,b → a ⊗ b − qn  avec q = ⌊
a ⊗ b

n
⌋ 

       

where ⌊… ⌋ is the bottom integer. In the case of an 

addition, the division is useless because if a, b <n 

then a + b <2n. The reduction is thus achieved by a 

single subtraction. 

 

2.1. Addition and subtraction  
 

Addition and subtraction are the two simplest 

modular operations. Let a < n and b < n, then:  

a + b mod n = {
𝑎 + 𝑏     𝑖𝑓  𝑎 + 𝑏 < 𝑛
𝑎 + 𝑏 − 𝑛     otherwise

  

and  

a - b mod n = {
𝑎 − 𝑏     𝑠𝑖  𝑎 − 𝑏 < 𝑛
𝑎 − 𝑏 + 𝑛   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

2.2. Inversion 
 

The modular inverse of a relative integer a for 

multiplication modulo n is an integer u satisfying the 

equation:                            

                                         𝑎𝑢 ≡ 1 𝑚𝑜𝑑 𝑛  

 

In other words, it is the reverse in the ring of integers 

modulo n. Once thus defined, u can be noted a-1, it 

being implicitly understood that the inversion is 

modular and is done modulo n. The definition is 

therefore equivalent to:                  

   u ≡ a-1 mod n 

 

The inverse of a modulo n exists if and only if a and 

n are prime to each other, (i.e. if pgcd(a, n) = 1). If 

this inverse exists, the operation of division by a 

modulo n is equivalent to multiplication by its 

inverse. The algorithm 1 allows to calculate the 

inverse of a [11]: 

 

Algorithm 1: Inverse (a, n: integers) 

(𝑎0, 𝑏0, 𝑢0, u) ← (n, a, 0, 1) 

q  ←  ⌊
𝑎0

𝑏0
⌋ 

r ← 𝑎0 − 𝑞𝑏0 

as long as (r> 0) do { 

 temp ← (𝑢0 − 𝑞𝑢) 𝑚𝑜𝑑 𝑛 

 𝑢0 ← 𝑢 

 u ← temp 

 𝑎0 ←  𝑏0 

 𝑏0 ← 𝑟 

 q  ←  ⌊
𝑎0

𝑏0
⌋ 

 r ← 𝑎0 − 𝑞𝑏0 

} 

if  𝑏0 ≠ 1 then 

 a has not inverse modulo n 

else 

               return u 

 

2.3. Multiplication of Montgomery 
 

In 1985, Montgomery introduced a very efficient 

method to perform modular multiplication by 

defining a new system for representing integers. 

 

Let n be the modulo involved in the operation. We 

will now assume that n is an odd number. The 

number of bits of n is the integer k such that: 

                                              2𝑘−1 ≤ 𝑛 < 2𝑘 

 

Denote r = 2k. Since n is odd, then r is prime with n 

and therefore invertible modulo n. We will denote r1 

the inverse of r modulo n. 

 

Let θ (Montgomery transformation) be the 

application of 𝐼𝑛 = {0, 1, … , 𝑛 − 1}in itself defined 

by: 

                                     𝜃(𝑎) = 𝑎. 𝑟 𝑚𝑜𝑑 𝑛. 
 

This application θ (multiplication by r modulo n) is 

a bijection of 𝐼𝑛  in itself since r is invertible modulo 

n and we can write: 

        

                    𝑎 = 𝜃(𝑎). 𝑟−1 𝑚𝑜𝑑 𝑛. 
 

Let c=a.b mod n. Then 𝜃(𝑐) =
 𝜃(𝑎). 𝜃(𝑏). 𝑟−1  𝑚𝑜𝑑 𝑛. This leads us to calculate c 

= a.b mod n to calculate θ(a) and θ(b), to deduce θ(c) 

by the previous formula and finally to find c by the 

inverse Montgomery transformation. 

 

Let us note by ⊗ the operation on {0, 1, …, n-1} 

defined by:  

                    a ⊗ b = a.b. 𝑟−1 𝑚𝑜𝑑 𝑛.   

 

The calculation a ⊗ b, Montgomery multiplication 

of a and b, can be performed as follows [3, 8, 9]:  

 

Algorithm 2: MultiMontgomery (a, b, n: integers) 

Find an integer k such that 2𝑘−1 ≤ 𝑛 < 2𝑘 

r ← 2𝑘 

𝑟−1 ← Inverse(r, n) 

𝑠 ← - 𝑟−1 𝑚𝑜𝑑 𝑟 
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t ← ab 

q ← 𝑠. 𝑡 𝑚𝑜𝑑 𝑟 

t ← (t + q.n)/ 𝑟 

if t ≥ n then  t ← t − n 

return t 

 

    

a 

⊗ 

b 

= 

a

.

b

.

 𝑟−1 𝑚𝑜𝑑 𝑛
. 

In algorithm 2, we can take k= ⌈𝑙𝑜𝑔2 𝑛⌉, where ⌈… ⌉ 
denotes the function "upper integer which rounds a 

number up" [1]. 

 

Note that in the description of algorithm 2, we do not 

divide by n, but by r, which changes everything since 

r is a power of 2. Of course, for a single operation, 

this is not interesting since there are several 

preparatory calculations to do. But if you chain a 

large number of operations then it becomes a winner. 

 

2.4. Exponentiation 
 

Exponentiation is a crucial operation in the RSA 

algorithm. To do this, the fast exponentiation 

algorithm uses a binary decomposition of the 

exponent e = (ek−1, . . . , e0)2 where ei = 0 or 1, 0 ≤
𝑖 ≤ 𝑘-1. The algorithm 3 below makes it possible to 

calculate z = 𝑥𝑒  mod n. 

 

Algorithm 3 : Exponentiation(x, e, n : integers) 

z ← 1 

e ← (ek−1, . . . , e0)2 where 𝑒𝑖  = 0 or 1, 0 ≤ 𝑖 ≤ 𝑘 − 1 

for i ← (k-1) up to 0 do{ 

        𝑧 ← MultiMontgomery(z, z, n)  

        if 𝑒𝑖  = 1 then 

 𝑧 ← MultiMontgomery(z, x, n) 

} 

return z 

 

3. Generation of RSA parameters 
 

If encryption is to be performed by Anael, then the 

key creation step is the responsibility of Grael. It 

does not intervene with each encryption because the 

keys can be reused. The primary difficulty, which 

encryption does not solve, is that Anael is very 

certain that the public key she holds is that of Grael. 

The renewal of the keys occurs only if the private 

key is compromised, or as a precaution after a certain 

time (which can be counted in years). 

 

Grael must choose p and q, two distinct odd prime 

numbers and use algorithm 4 to determine the 

encryption keys: 

 

Algorithm 4 : RSA(p, q : prima numbers) 

n ← p*q  

φ ← (p-1)*(q-1)  

Determine c (encryption exponent) such that            

3 < 𝑐 < 𝜑 

d ← 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝑒, 𝜑) 

if (d exist) then 

       return (The public encryption key (n, e) and the 

private decryption key (n, d) 

 

4. Message jam and cutting 
 

Let m be the plain text and l(m) the length of m 

expressed in bytes. Let b be the block size of the 

block encryption in bytes [5]. 

 

1. Determine a number n such that 1 ≤ 𝑛 ≤ 𝑏 

and 𝑛 + 𝑙(𝑚) is a multiple of b. 

2. Complete the plain text by adding n bytes, 

all of value n. 

 

When the length of the completed message is a 

multiple of the block size, the completed plain text is 

cut into blocks. The plain text m is thus transformed 

into a sequence of blocks m1, … , mk. The number of 

blocks k can be calculated by ⌈(𝑙(𝑚) + 1) 𝑏⁄ ⌉. In the 

following, we will assume that the plain text m 

consists of an integer number of blocks m1, … , mk. 

After deciphering, the jam must be removed. 

 

5. Parallel arithmetic  
 

In this section, we are interested in the parallelization 

of exponentiation, the most expensive operation in 

the RSA algorithm. Note that the parallel 

implementation under OpenMP or CUDA of 

Montgomery's multiplication has been the subject of 

several researches [1, 4, 6, 7]. 

 

5.1. Parallel multiplications 
 

It is a question, using a multiprocessor machine or a 

GPU card, of finding the product of two numbers a 

and b [12, 13]. As shown in algorithm 5, we start 

with the parallelization of the whole multiplication.  

 

 

Algorithm 5: MultiParallel(a, b: integers) 

a ← (ak−1, . . . , a0)2 where  ai = 0 or 1, 0 ≤ 𝑖 ≤ 𝑘 − 1 

t ← 0 

for i ← (k – 1) up to  0 calculate in parallel 
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t ← 2t + ai*b  

return t 

 

For modular multiplication, the parallel version of 

algorithm 2 is as follows: 

 

Algorithm 6: MultiMontgomeryParallel(a, b, n: 

integers) 

m ← ⌈log2 𝑛⌉ 
r ← 2m 

𝑟−1 ← Inverse(r, n) 

𝑛∗ ← - 𝑟−1 𝑚𝑜𝑑 𝑟 

t ← MultiParallele(a,b) 

q ← 𝑀𝑢𝑙𝑡𝑖𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑒(𝑡, 𝑛) 𝑚𝑜𝑑 𝑟 

u ← MultiParallel(q,n) 

t ← (t + u)/ 𝑟 

if t ≥ n then  t ← t − n 

return t 

 

5.2. Parallel exponentiation  
 

By exploiting the parallel version of Montgomery's 

multiplication, the parallel version of algorithm 3 is 

then presented as follows: 

 

Algorithme 7 : ExponentiationParallel(x, e, n : 

entiers) 

z ← 1 

e ← (ek−1, . . . , e0)2 where 𝑒𝑖  = 0 ou 1, 0 ≤ 𝑖 ≤ 𝑘 −
1 

for i ← (𝑘 − 1) up to 0 do{ 

     𝑧 ← MultiMontgomeryParallel(z, z, n) 

     if 𝑒𝑖  = 1 then 

       𝑧 ← MultiMontgomeryParallel(z, x, n) 

} 

return z 

 

6. Encryption and decryption 

6.1. Encryption 

 

Anael begins by transforming the message m into a 

series of numbers, for example by replacing the 

letters and the various symbols used with numbers 

(from 0 to 255 in the case of the ASCII code). 

Starting from the message m and the pair (n, e), the 

public encryption key of Grael (cf. Fig. 2), then the 

message encrypted by Anael will be provided by 

algorithm 8 below: 

Algorithm 8 : EncryptionRSA(m, n, e)  

Jam of m 

m ← m1 || … ||mk  where the block mi is of the size n 

for i ← 1 to k calculate in parallel 

        𝑐𝑖  ← ExponentiationParallel(mi, e, n) 

end 

The encrypted message is c ← c1 || … || ck  (where  || 

is the symbol of concatenation)  

 
Fig. 2 : RSA public key encryption  

 

6.2. Decryption 
 

Starting from an encrypted message c and the pair (n, 

d), the secret decryption key, then the unencrypted 

message will be provided using algorithm 6. 

Algorithm 9 : DecryptionRSA(c, n, d)  

c ← c1 || … ||ck  

for i ← 1 to k calculate in parallel 

    𝑚𝑖  ← ExponentiationParallel(ci, d, n) 

fin 

The unencrypted message is m ← m1 || … ||mk 

7. Digital signature 

The digital signature (sometimes called electronic 

signature) is a mechanism allowing to guarantee the 

integrity of an electronic document and to 

authenticate the author, by analogy with the 

handwritten signature of a paper document [2]. 

 

7.1. Principle of the signature 
 

A digital signature process consists in adding to the 

plain text a small number of bits which depend 

simultaneously on the message and its author. To 

obtain the same functionality as the signature that is 

affixed to the bottom of a text in paper form, it is 

necessary that everyone can verify a signature but 

that nobody can imitate it. 
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A signature scheme is therefore composed of a 

signature function and a verification function. The 

signature function is configured by a secret key 

specific to the signatory; it associates a clear 

message with a signature. The verification function 

does not require knowledge of any secrets. It allows 

from the clear message and the signature to verify 

the authenticity of the latter. 

 

A signature scheme must therefore have a certain 

number of properties. In particular, it must in 

practice be impossible to forge a signature: only the 

holder of the secret key can sign in his name. The 

signature should no longer be valid if the clear 

message has been modified; it should be impossible 

to reuse a signature. Finally, the signatory should not 

be able to deny having signed a message. 

 

A signature scheme therefore guarantees:  

• the identity of the person sending the 

message;  

• the integrity of the data received, ie the 

assurance that the message was not 

modified during its transmission;  

• non-repudiation of the message, which 

means that the sender of the message cannot 

deny being the author.  

 

This is why digital signature processes constitute 

proof in the same way as handwritten signatures. 

Their legal value is now recognized by the law of 

certain countries. 

 

7.2. RSA signature  
 

For the RSA signature scheme, a user signs a 

message m by applying the RSA decryption function 

to it with his secret key d (cf. Fig. 3). To verify the 

signature, simply apply the RSA encryption function 

configured by the associated public key (n, e), and 

verify that the result of this calculation corresponds 

to the clear message sent. The conditions imposed on 

the size of the integers p and q are the same in the 

context of the signature as in that of the encryption. 

 

 
Fig. 3 : RSA signature  

 

Fig. 3 shows that Anael signs a message m using the 

RSA decryption function. Anael is the only person 

who can create the s signature because the d key is 

private. The verification uses the RSA encryption 

function. Anyone can verify the signature since the 

RSA encryption function is public. Thus, RSA can 

be used to encrypt or to sign. 

 

8. Conclusion 
 

To make practical use of the famous RSA encryption 

algorithm, we have proposed in this article a 

mechanism which consists of encrypting or 

deciphering in a concurrent manner the different 

parts of the message. This same approach can be 

used to sign messages.  

 

As an extension to this article, we propose the 

implementation of the different algorithms using the 

OpenMP directives or the CUDA language and then 

evaluate the speedup of each of them compared to 

the sequential version. 
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