
Parallel approximation of RSA encryption

Saint-Jean A.O. Djungu1

1 Mathematics and Informatics Department, Faculty of Sciences, University of Kinshasa

Kinshasa, R.D. Congo

Abstract

RSA is the most popular public key cryptography

algorithm. Therefore, one of the major weaknesses

of RSA is that it requires a lot of computing time

compared to secret hey cryptography algorithms. For

example in hardware, some authors claim that RSA

is around 1000 times slower than DES (Data

Encryption Standard).

In addition, current consumer architectures embed

several computing units, distributed on processors

and possibly on graphics cards. These resources are

now easily exploitable thanks to parallel

programming interfaces like OpenMP or CUDA.

This article proposes parallel versions of RSA

allowing to take advantage of the whole of the

computing resources, in particular on multi-core

architectures with shared memory.

Keywords: Cryptography, encryption, RSA, parallel

algorithm

1. Introduction

An encryption algorithm transforms a message,

called plain text, into an encrypted text that will only

be readable by its legitimate recipient [5, 11]. As

indicated in Fig. 1, this transformation is carried out

by an encryption function parameterized by an

encryption key. A privileged interlocutor can then

decrypt the message using the decryption function if

he knows the corresponding decryption key.

Fig. 1 : Communication principle

Described in 1978 by R.L. Rivest, A. Shamir and

L.M. Adleman [10], RSA is the most widely used

public key system. It is not strictly speaking a

standard but its use is described and recommended

in a large number of official standards, in particular

for banking applications.

RSA is an asymmetric cryptography algorithm,

widely used in electronic commerce, and more

generally for exchanging confidential data on the

Internet.

With RSA, each user has a couple of keys, a public

key (or encryption), which he generally makes

available to everyone in a directory, for example, and

a secret key (or decryption), known to him alone. So,

to send a confidential message to Grael, Anael

encrypts the clear message using Grael's public key.

Only the latter, using the corresponding secret key,

can decrypt the received message.

In many communications, data confidentiality

matters little but it is necessary to ascertain their

origin and their integrity, that is to say to verify that

they have not been modified during transmission.

The RSA algorithm can be used to provide:

• confidentiality: only the owner of the

private key can read the message encrypted

with the corresponding public key.

• non-alteration and non-repudiation: only

the owner of the private key can sign a

message (with the private key). A signature

decrypted with the public key will therefore

prove the authenticity of the message.

This article is organized as follows: section 2

presents the various basic operations related to

modular arithmetic. In section 3, the procedure for

generating the RSA parameters is shown. The

mechanisms for stuffing and decomposing messages

into blocks are given in section 4. The parallel

version of modular exponentiation is the subject of

section 5. Next, in section 6, the declination of

parallel versions of encryption and RSA decryption.

The signing of messages with RSA constitutes the

essential of section 7. Finally we conclude and

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987139 19

2020 International Journal of Computer Science Issues

present perspectives for the implementation of our

parallel RSA algorithms.

2. Modular arithmetic

Let be a positive integer n. The operations of

modular arithmetic are defined in the ring of integers

ℤ/nℤ between elements of this ring. When n is prime,

ℤ/nℤ is a finite field which we will denote by ℤn. In

the following, we represent the elements of ℤ/nℤ by

integers in [0, n -1].

By definition, a modular operation consists in

calculating the remainder of the Euclidean division

of the whole result of the operation by n to guarantee

that the final result belongs to the interval [0, n - 1],

that is to say : ∀⊗ ∈ {+, -, ×, /} [7]:

⊗: [0, n -1] × [0, n -1] → [0, n -1]

 a,b → a ⊗ b − qn avec q = ⌊
a ⊗ b

n
⌋

where ⌊… ⌋ is the bottom integer. In the case of an

addition, the division is useless because if a, b <n

then a + b <2n. The reduction is thus achieved by a

single subtraction.

2.1. Addition and subtraction

Addition and subtraction are the two simplest

modular operations. Let a < n and b < n, then:

a + b mod n = {
𝑎 + 𝑏 𝑖𝑓 𝑎 + 𝑏 < 𝑛
𝑎 + 𝑏 − 𝑛 otherwise

and

a - b mod n = {
𝑎 − 𝑏 𝑠𝑖 𝑎 − 𝑏 < 𝑛
𝑎 − 𝑏 + 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2.2. Inversion

The modular inverse of a relative integer a for

multiplication modulo n is an integer u satisfying the

equation:

 𝑎𝑢 ≡ 1 𝑚𝑜𝑑 𝑛

In other words, it is the reverse in the ring of integers

modulo n. Once thus defined, u can be noted a-1, it

being implicitly understood that the inversion is

modular and is done modulo n. The definition is

therefore equivalent to:

 u ≡ a-1 mod n

The inverse of a modulo n exists if and only if a and

n are prime to each other, (i.e. if pgcd(a, n) = 1). If

this inverse exists, the operation of division by a

modulo n is equivalent to multiplication by its

inverse. The algorithm 1 allows to calculate the

inverse of a [11]:

Algorithm 1: Inverse (a, n: integers)

(𝑎0, 𝑏0, 𝑢0, u) ← (n, a, 0, 1)

q ← ⌊
𝑎0

𝑏0
⌋

r ← 𝑎0 − 𝑞𝑏0

as long as (r> 0) do {

 temp ← (𝑢0 − 𝑞𝑢) 𝑚𝑜𝑑 𝑛

 𝑢0 ← 𝑢

 u ← temp

 𝑎0 ← 𝑏0

 𝑏0 ← 𝑟

 q ← ⌊
𝑎0

𝑏0
⌋

 r ← 𝑎0 − 𝑞𝑏0

}

if 𝑏0 ≠ 1 then

 a has not inverse modulo n

else

 return u

2.3. Multiplication of Montgomery

In 1985, Montgomery introduced a very efficient

method to perform modular multiplication by

defining a new system for representing integers.

Let n be the modulo involved in the operation. We

will now assume that n is an odd number. The

number of bits of n is the integer k such that:

 2𝑘−1 ≤ 𝑛 < 2𝑘

Denote r = 2k. Since n is odd, then r is prime with n

and therefore invertible modulo n. We will denote r1

the inverse of r modulo n.

Let θ (Montgomery transformation) be the

application of 𝐼𝑛 = {0, 1, … , 𝑛 − 1}in itself defined

by:

 𝜃(𝑎) = 𝑎. 𝑟 𝑚𝑜𝑑 𝑛.

This application θ (multiplication by r modulo n) is

a bijection of 𝐼𝑛 in itself since r is invertible modulo

n and we can write:

 𝑎 = 𝜃(𝑎). 𝑟−1 𝑚𝑜𝑑 𝑛.

Let c=a.b mod n. Then 𝜃(𝑐) =
 𝜃(𝑎). 𝜃(𝑏). 𝑟−1 𝑚𝑜𝑑 𝑛. This leads us to calculate c

= a.b mod n to calculate θ(a) and θ(b), to deduce θ(c)

by the previous formula and finally to find c by the

inverse Montgomery transformation.

Let us note by ⊗ the operation on {0, 1, …, n-1}

defined by:

 a ⊗ b = a.b. 𝑟−1 𝑚𝑜𝑑 𝑛.

The calculation a ⊗ b, Montgomery multiplication

of a and b, can be performed as follows [3, 8, 9]:

Algorithm 2: MultiMontgomery (a, b, n: integers)

Find an integer k such that 2𝑘−1 ≤ 𝑛 < 2𝑘

r ← 2𝑘

𝑟−1 ← Inverse(r, n)

𝑠 ← - 𝑟−1 𝑚𝑜𝑑 𝑟

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987139 20

2020 International Journal of Computer Science Issues

t ← ab

q ← 𝑠. 𝑡 𝑚𝑜𝑑 𝑟

t ← (t + q.n)/ 𝑟

if t ≥ n then t ← t − n

return t

a

⊗

b

=

a

.

b

.

 𝑟−1 𝑚𝑜𝑑 𝑛
.

In algorithm 2, we can take k= ⌈𝑙𝑜𝑔2 𝑛⌉, where ⌈… ⌉
denotes the function "upper integer which rounds a

number up" [1].

Note that in the description of algorithm 2, we do not

divide by n, but by r, which changes everything since

r is a power of 2. Of course, for a single operation,

this is not interesting since there are several

preparatory calculations to do. But if you chain a

large number of operations then it becomes a winner.

2.4. Exponentiation

Exponentiation is a crucial operation in the RSA

algorithm. To do this, the fast exponentiation

algorithm uses a binary decomposition of the

exponent e = (ek−1, . . . , e0)2 where ei = 0 or 1, 0 ≤
𝑖 ≤ 𝑘-1. The algorithm 3 below makes it possible to

calculate z = 𝑥𝑒 mod n.

Algorithm 3 : Exponentiation(x, e, n : integers)

z ← 1

e ← (ek−1, . . . , e0)2 where 𝑒𝑖 = 0 or 1, 0 ≤ 𝑖 ≤ 𝑘 − 1

for i ← (k-1) up to 0 do{

 𝑧 ← MultiMontgomery(z, z, n)

 if 𝑒𝑖 = 1 then

 𝑧 ← MultiMontgomery(z, x, n)

}

return z

3. Generation of RSA parameters

If encryption is to be performed by Anael, then the

key creation step is the responsibility of Grael. It

does not intervene with each encryption because the

keys can be reused. The primary difficulty, which

encryption does not solve, is that Anael is very

certain that the public key she holds is that of Grael.

The renewal of the keys occurs only if the private

key is compromised, or as a precaution after a certain

time (which can be counted in years).

Grael must choose p and q, two distinct odd prime

numbers and use algorithm 4 to determine the

encryption keys:

Algorithm 4 : RSA(p, q : prima numbers)

n ← p*q

φ ← (p-1)*(q-1)

Determine c (encryption exponent) such that

3 < 𝑐 < 𝜑

d ← 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝑒, 𝜑)

if (d exist) then

 return (The public encryption key (n, e) and the

private decryption key (n, d)

4. Message jam and cutting

Let m be the plain text and l(m) the length of m

expressed in bytes. Let b be the block size of the

block encryption in bytes [5].

1. Determine a number n such that 1 ≤ 𝑛 ≤ 𝑏

and 𝑛 + 𝑙(𝑚) is a multiple of b.

2. Complete the plain text by adding n bytes,

all of value n.

When the length of the completed message is a

multiple of the block size, the completed plain text is

cut into blocks. The plain text m is thus transformed

into a sequence of blocks m1, … , mk. The number of

blocks k can be calculated by ⌈(𝑙(𝑚) + 1) 𝑏⁄ ⌉. In the

following, we will assume that the plain text m

consists of an integer number of blocks m1, … , mk.

After deciphering, the jam must be removed.

5. Parallel arithmetic

In this section, we are interested in the parallelization

of exponentiation, the most expensive operation in

the RSA algorithm. Note that the parallel

implementation under OpenMP or CUDA of

Montgomery's multiplication has been the subject of

several researches [1, 4, 6, 7].

5.1. Parallel multiplications

It is a question, using a multiprocessor machine or a

GPU card, of finding the product of two numbers a

and b [12, 13]. As shown in algorithm 5, we start

with the parallelization of the whole multiplication.

Algorithm 5: MultiParallel(a, b: integers)

a ← (ak−1, . . . , a0)2 where ai = 0 or 1, 0 ≤ 𝑖 ≤ 𝑘 − 1

t ← 0

for i ← (k – 1) up to 0 calculate in parallel

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987139 21

2020 International Journal of Computer Science Issues

t ← 2t + ai*b

return t

For modular multiplication, the parallel version of

algorithm 2 is as follows:

Algorithm 6: MultiMontgomeryParallel(a, b, n:

integers)

m ← ⌈log2 𝑛⌉
r ← 2m

𝑟−1 ← Inverse(r, n)

𝑛∗ ← - 𝑟−1 𝑚𝑜𝑑 𝑟

t ← MultiParallele(a,b)

q ← 𝑀𝑢𝑙𝑡𝑖𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑒(𝑡, 𝑛) 𝑚𝑜𝑑 𝑟

u ← MultiParallel(q,n)

t ← (t + u)/ 𝑟

if t ≥ n then t ← t − n

return t

5.2. Parallel exponentiation

By exploiting the parallel version of Montgomery's

multiplication, the parallel version of algorithm 3 is

then presented as follows:

Algorithme 7 : ExponentiationParallel(x, e, n :

entiers)

z ← 1

e ← (ek−1, . . . , e0)2 where 𝑒𝑖 = 0 ou 1, 0 ≤ 𝑖 ≤ 𝑘 −
1

for i ← (𝑘 − 1) up to 0 do{

 𝑧 ← MultiMontgomeryParallel(z, z, n)

 if 𝑒𝑖 = 1 then

 𝑧 ← MultiMontgomeryParallel(z, x, n)

}

return z

6. Encryption and decryption

6.1. Encryption

Anael begins by transforming the message m into a

series of numbers, for example by replacing the

letters and the various symbols used with numbers

(from 0 to 255 in the case of the ASCII code).

Starting from the message m and the pair (n, e), the

public encryption key of Grael (cf. Fig. 2), then the

message encrypted by Anael will be provided by

algorithm 8 below:

Algorithm 8 : EncryptionRSA(m, n, e)

Jam of m

m ← m1 || … ||mk where the block mi is of the size n

for i ← 1 to k calculate in parallel

 𝑐𝑖 ← ExponentiationParallel(mi, e, n)

end

The encrypted message is c ← c1 || … || ck (where ||

is the symbol of concatenation)

Fig. 2 : RSA public key encryption

6.2. Decryption

Starting from an encrypted message c and the pair (n,

d), the secret decryption key, then the unencrypted

message will be provided using algorithm 6.

Algorithm 9 : DecryptionRSA(c, n, d)

c ← c1 || … ||ck

for i ← 1 to k calculate in parallel

 𝑚𝑖 ← ExponentiationParallel(ci, d, n)

fin

The unencrypted message is m ← m1 || … ||mk

7. Digital signature

The digital signature (sometimes called electronic

signature) is a mechanism allowing to guarantee the

integrity of an electronic document and to

authenticate the author, by analogy with the

handwritten signature of a paper document [2].

7.1. Principle of the signature

A digital signature process consists in adding to the

plain text a small number of bits which depend

simultaneously on the message and its author. To

obtain the same functionality as the signature that is

affixed to the bottom of a text in paper form, it is

necessary that everyone can verify a signature but

that nobody can imitate it.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987139 22

2020 International Journal of Computer Science Issues

A signature scheme is therefore composed of a

signature function and a verification function. The

signature function is configured by a secret key

specific to the signatory; it associates a clear

message with a signature. The verification function

does not require knowledge of any secrets. It allows

from the clear message and the signature to verify

the authenticity of the latter.

A signature scheme must therefore have a certain

number of properties. In particular, it must in

practice be impossible to forge a signature: only the

holder of the secret key can sign in his name. The

signature should no longer be valid if the clear

message has been modified; it should be impossible

to reuse a signature. Finally, the signatory should not

be able to deny having signed a message.

A signature scheme therefore guarantees:

• the identity of the person sending the

message;

• the integrity of the data received, ie the

assurance that the message was not

modified during its transmission;

• non-repudiation of the message, which

means that the sender of the message cannot

deny being the author.

This is why digital signature processes constitute

proof in the same way as handwritten signatures.

Their legal value is now recognized by the law of

certain countries.

7.2. RSA signature

For the RSA signature scheme, a user signs a

message m by applying the RSA decryption function

to it with his secret key d (cf. Fig. 3). To verify the

signature, simply apply the RSA encryption function

configured by the associated public key (n, e), and

verify that the result of this calculation corresponds

to the clear message sent. The conditions imposed on

the size of the integers p and q are the same in the

context of the signature as in that of the encryption.

Fig. 3 : RSA signature

Fig. 3 shows that Anael signs a message m using the

RSA decryption function. Anael is the only person

who can create the s signature because the d key is

private. The verification uses the RSA encryption

function. Anyone can verify the signature since the

RSA encryption function is public. Thus, RSA can

be used to encrypt or to sign.

8. Conclusion

To make practical use of the famous RSA encryption

algorithm, we have proposed in this article a

mechanism which consists of encrypting or

deciphering in a concurrent manner the different

parts of the message. This same approach can be

used to sign messages.

As an extension to this article, we propose the

implementation of the different algorithms using the

OpenMP directives or the CUDA language and then

evaluate the speedup of each of them compared to

the sequential version.

References

[1] S. Baktir and E. Sava, Highly-Parallel

Montgomery Multiplication for Multi-core General-

Purpose Microprocessors, 2012.

[2] M. Baudet, Sécurité des protocoles

cryptographiques : aspects logiques et calculatoires,

PhD thesis, l’École Normale Supérieure de Cachan2,

2007.

[3] D. J. Bernstein, Fast multiplication and its

applications, Algorithmic number theory, 44:325–

384, 2008.

[4] Z. Chen and P. Schaumont. A parallel

implementation of Montgomery multiplication on

multicore systems: Algorithm, analysis, and

prototype, IEEE Trans. Comput., 60:1692_1703,

December 2011.

[5] N. Ferguson et B. schneier, Cryptographie en

pratique, éditions Vuibert 2e édition, 2004.

[6] P. Giorgi, L. Imbert and T. Izard, Parallel

modular multiplication on multi-core processors,

2013.

[7] T. Izard, Opérateurs arithmétiques parallèles

pour la cryptographie asymétrique, PhD thesis,

Universite Montpellier 2, 2011.

[8] P. Montgomery, Modular multiplication without

trial division, Mathematics of Computation,

44(170):519–521, Apr. 1985.

[9] T. Plantard, Arithmétique modulaire pour la

cryptographie, PhD thesis, Université Montpellier 2,

2005.

[10] R.L. Rivest, A. Shamir and L.M. Adleman, A

method for obtaining digital signatures and public-

key cryptosystems, Communications of the ACM,

21, pp. 120-126, 1978

[11] D. R. Stinson, Cryptographie : théorie et

pratique, éditions Vuibert 2e édition, 2003.

[12] M. Sus and C. Leopold, Common mistakes in

OpenMP and how to avoid them a collection of best

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987139 23

2020 International Journal of Computer Science Issues

practices, In OpenMP Shared Memory Parallel

Programming, volume 4315 of Lecture Notes in

Computer Science, pages 312–323. Springer-Verlag,

2008.

[13] R. Szerwinski and T. Guneysu. Exploiting the

power of GPUs for asymmetric cryptography, In

Springer, editor, Proc. Cryptographic Hardware and

Embedded Systems, volume 5154, pp. 79–99, 2008.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 2, March 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.3987139 24

2020 International Journal of Computer Science Issues

