
A Dynamic Load Balancing Algorithm for Distributing Mobile 
Codes in Multi-Applications and Multi-Hosts Environment 

Nevin Vunka Jungum1, Nawaz Mohamudally1 and Nimal Nissanke3 

 1 School of Innovative Technologies and Engineering, University of Technology Mauritius 
La Tour Koenig, Pointe-aux-Sables, Mauritius 

2 School of Computing, Information Systems and Mathematics, London South Bank University 
London, UK 

Abstract 
Code offloading refers to partitioning software and migrating the 
mobile codes to other computational entities for processing. Often 
when a large number of mobile codes need to be distributed to 
many heterogenous hosts, this can easily lead to poor system 
performance if one host gets too many mobile codes to process 
while others are almost idle. To resolve such situation, we 
proposed a proposed a load balancing algorithm to ensure fairness 
in the distribution of the mobile codes. The algorithm is based on 
the popular Weighted Least-Connections (WLC) scheduling 
algorithm while taking into consideration the dynamic 
recalculation of the hosts’ weights and system attributes such as 
CPU idle rate and memory idle rate which the WLC algorithm 
does not take into consideration. Using simulation, various 
number of mobile codes were distributed to the hosts/servers and 
the proposed algorithm outperform existing Least-Connections 
and Weighted Least-Connections scheduling algorithms thus 
improving system efficiency. 

Keywords: software partitioning, mobile codes, dynamic load 
balancing, scheduling algorithm 

1. Introduction

Most of existing research [1][2][3] focuses on software 
partitioning for offloading of one application, running on a 
smartphone for example, to another device that could be 
another smartphone, desktop computer or server, that is a 
one-to-one case. However, in future real-life scenarios as 
computational resources gets pervasive in our physical 
environment, we would be faced with perhaps several 
applications being offloaded from the users’ devices to 
multiple participating computational devices or nodes, 
hence a many-to-many situation. 
In such environment, if the overall distributed system, 
comprising of all hosts/participating devices, cannot handle 
efficiently a huge amount of mobile codes being offloaded 
to multiple devices, then there will be a big scalability issue; 
which would in turn makes the execution of the partitioned 

mobile codes response time increase and hence that of the 
overall system. 
As per the strategy developed in [4] to prioritize the list of 
hosts, which we will refer at times as participating devices 
or nodes, multiple devices will simultaneously use this 
scheme to decide which participating nodes will be 
prioritized. Thus, this implies dynamic change of 
participating nodes’ resources on arrival of mobile codes, 
which we will refer at times as ‘tasks’, and possible 
reallocation of tasks to other participating nodes. 
Hence, a load balancing mechanism seems relevant in such 
situation to help in managing the load of participating nodes. 
Load balancing is important in such mobile distributed 
system to enable quick execution of mobile codes offloaded 
and guarantee the optimal exploitation of computing 
resources made available by the participating nodes. The 
sum of the expected time to compute (ETC) is used to 
measure the load of a participating node [5][6]. The load 
imbalance is mostly caused due to variations in the arrival 
and service patterns. Thus, an offloaded mobile code may 
at times wait for processing on a participating node while 
other participating nodes are available and ready to be used 
[7]. The degree of load imbalance is measured by the load 
imbalance factor in the mobile distributed computing 
system. Whenever load balancing overhead is smaller than 
the load imbalance factor, a load balancing decision need to 
be made. Load balancing techniques attempt to ensure that 
all participating nodes executing the mobile codes does 
almost similar quantity of work. 
The load balancing mechanism has to use system resources 
such a way that resource utilization, execution time, 
network bandwidth and task scheduling overhead are 
optimized. Since there are different types of participating 
nodes, such as always powered powerful servers and 
smartphones, that is, heterogenous computational nodes, 
execution times of offloaded mobile codes will be different. 
Thus, mobile codes offloaded by the user’s devices are 
distributed among the participating nodes to ensure equal 
workload among the latter at any time. Mobile codes may 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 4, July 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3991567 1

2020 International Journal of Computer Science Issues



 

 

also be migrated to another participating node if the 
execution is being delayed to ensure equal workload. 

2. Load Balancing Scheduling Algorithms 

Generally, load balancing algorithms are classified either as 
static or dynamic algorithms. Static load balancing methods 
like round-robin (RR) scheduling algorithm and weighted 
round-robin (WRR) scheduling algorithm are based on pre-
defined strategies while not taking into consideration the 
real-time load state of the participating nodes. On the 
contrary, dynamic load balancing algorithms such as the 
Least-Connection (LC) algorithm and Weighted Least-
Connection (WLC) algorithm while distributing the 
partitioned mobile codes, does check the dynamic load 
condition of the participating nodes. All mobile codes 
offloaded to the partitioning nodes are distributed to the 
latter having the least number of requests. And when 
multiple mobile codes are offloaded in a specific time 
period, the algorithms would decrease the load balance 
degree. Some commonly used load balancing algorithms 
are as follows [8]: 

2.1 Round Robin Scheduling Algorithm 

This algorithm assumes that the resources of all 
participating nodes are the same. Newly arrived tasks are 
assigned to participating nodes as per a rotation order. It is 
a straight-forward technique but does not take into account 
the participating nodes different computational capabilities. 

2.2 Weighted Round Robin Scheduling Algorithm 

This algorithm considers using weights assigned to the 
participating nodes to designate their computational 
capabilities. For example, a fixed powered desktop 
computer might have a weight of 5 compared to a resource 
limited smartphone which would be given the weight of 1. 
That is, the former is five times powerful (in terms of 
processing speed, memory, networking, storage and so on) 
than the latter. Task distribution is proportionate to their 
respective weight to ensure participating nodes with higher 
computational capabilities get more tasks to execute. 

2.3 Least-Connection Scheduling Algorithm 

Assumption is made that all participating nodes 
computational capabilities are identical and thus allocate 
task to the former having the least number of connections. 
But, in a mobile pervasive environment comprising of 
heterogeneous participating nodes, this approach would not 
result in the ideal task distribution. 

2.4 Weighted Least-Connection Scheduling 
Algorithm 

In this algorithm [9], a weight is attached to each 
participating node based on their respective computational 
capabilities. The load of a participating node, hence, server, 
is defined by the number of connections to it. Each time a 
new task is offloaded, a ratio of each server’s actual 
connections and weight are computed and then the task is 
allocated to the server having the least ratio. The algorithm 
is relevant in scenarios where the computational capabilities 
of the servers are different, for example, the participating 
nodes are smartphones, laptops, desktop computers and 
some powerful servers. 
Let us assume the participating node/server 𝑆
𝑆 , 𝑆 , … , 𝑆 , and 𝑊 𝑆  denotes the weight of server 𝑆  

having as default value of 1. 𝐶 𝑆  denotes the number of 
tasks/connections that are currently being serviced by the 
server 𝑆 . 𝐶 ∑𝐶 𝑆 , where 𝑖 0, 1, … , 𝑛 1  
denotes the totality of all tasks that are actually being 
serviced to all participating nodes. 
A freshly offloaded task will be allocated to the 
participating node 𝑆  w.r.t. this condition: 

min , where 𝑊 𝑆 0 

In one round, as 𝐶  is a constant, therefore, the condition 
can be further reduced to: 

min , where 𝑖 0, 1, … , 𝑛 1  and 

𝑊 𝑆 0 
Since division operation results in more computation 
overhead compared to multiplication, the condition can be 

expressed from   to 𝐶 𝑆 ∗ 𝑊 𝑆

𝐶 𝑆 ∗ 𝑊 𝑆  where 𝑊 𝑆 0 . As per the algorithm, 
any participating node available to host mobile codes must 
have a weight superior than zero. Below is a description of 
the algorithm. 
 

Algorithm WLC Scheduling Algorithm 

FOR (m=0; m<n; m++) { 
IF (𝑊 𝑆 0  { 

FOR (i=m+1; i<n; i++) { 
IF 𝐶 𝑆 ∗ 𝑊 𝑆 𝐶 𝑆 ∗ 𝑊 𝑆  

m=i; 
 } 
 RETURN 𝑆 ; 
} 

} 
RETURN NULL; 
 

2.5 Limitation of the WLC Scheduling Algorithm 

As shown earlier, the WLC algorithm leverages the 
computational capabilities of each participating node using 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 4, July 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3991567 2

2020 International Journal of Computer Science Issues



 

 

their respective weight. Thus, a much optimal load 
balancing degree is achieved compared to the LC algorithm. 
However, the following issues are still unaddressed: 

 
(1) The weight is predefined and preset well before by the 
server/system administrator. It is not dynamically 
recalculated and set to reflect current real-time situations as 
mobile codes are offloaded to the participating nodes for 
processing. Thus, in the long run, some participating nodes 
with higher weights might be overloaded while others are 
almost idle or processing fewer tasks. This does result in an 
imbalance of the system hence decreasing the overall 
system performance. 

 
(2) Using only the number of connections to a server to 
determinate its load does not necessarily reflect the actual 
situation. For instance, server A has two tasks dealing with 
some sort of video analysis whereas server B has three tasks 
all dealing with encryption of some texts in a plain 
document. Clearly server A is consuming much more 
resources in terms of processing power, memory, storage 
and bandwidth compared to server B. But the WLC 
algorithm fails to identify such scenario since it considers 
only the number of connections to a server. 

3. An Adaptive Weighted Least Connection 
(AWLC) Scheduling Algorithm 

Improving the algorithm presented in section 4.3.1 will 
definitely help to achieve a much optimal load balancing 
degree. Hence the following strategy is used: 

 
(1) Collecting real-time information to use to calculate 
dynamically weight of each server will result to a more 
approximate evaluation of the time processing capacity of 
the former. To simplify the process by avoiding as much 
computation overheads, only the CPU idle rate and memory 
idle rate will be considered. Other features such as number 
of CPU, types of CPU, network bandwidth, hard drive or 
SSD speed, system architecture and so on will not be taken 
into consideration. Before a task is allocated to a server for 
execution, the current CPU idle rate and memory idle rate 
will be collected for each server and thus the weight of the 
latter will be calculated. 
 
(2) Based on their complexity, weights are assigned to tasks. 
In this work, a four categories approach is adopted for 
simplicity. A complex task is assigned a higher weight. The 
total weight of all tasks is the real time load of the server. 
Whenever a task needs to be processed, the real time load 
of each server will be calculated before task assignment. 
 
(3) Whenever a task needs to be offloaded, the ratio of each 
participating node’s real time load and weight are calculated; 

and allocates the task to the server having the minimum 
ratio to ensure load balancing of the system among the 
heterogeneous servers. 

3.1 Implementation of the AWLC Scheduling 
Algorithm 

Consider a group of servers 𝑆 𝑆 , 𝑆 , … , 𝑆 . CPU idle 
rate, memory idle rate and weight of server 𝑆  are 
represented by 𝑉 𝑆 , 𝑉 𝑆  and 𝑊 𝑆  respectively. As 
the weight of a server is higher, this implies greater 
processing capabilities of the latter. Whenever a server goes 
offline, that is, fails, its weight is set to 0. The weight of a 
server 𝑆  is computed as follows: 
𝑊 𝑆 𝑘 ∗ 𝑉 𝑆 𝑘 ∗ 𝑉 𝑆 , where 𝑘 𝑘 1 , 
𝑉 𝑆 ∈ 0,1  and 𝑉 𝑆 ∈ 0,1  
From the server weight equation, 𝑘  and 𝑘  denotes the 
level of importance assigned to the CPU idle rate and 
memory idle rate respectively. Assuming the memory idle 
rate is less important than the CPU idle rate, this implies 𝑘  
should be lesser than 𝑘 . Thus, in this work, we use the ratio 

:  for 𝑘 : 𝑘 . Depending on the context, this ratio can be 

changed as desired. We now have the server weight 
expressed as follows: 

𝑊 𝑆 ∗ 𝑉 𝑆 ∗ 𝑉 𝑆 , where 𝑉 𝑆 ∈
0,1  and 𝑉 𝑆 ∈ 0,1  

Let us assume we have four different types of tasks 𝑀
𝑀1, 𝑀2, 𝑀3, 𝑀4 , such that their respective weights are 

assigned 𝑃 𝑃1, 𝑃2, 𝑃3, 𝑃4  based on their level of 
complexity. Tasks with higher complexity gets larger 
weights to them. 𝐶 𝑆  denotes the number of connections 
presently connected to the server 𝑆 . 𝐶  denotes the number 
of 𝑗  tasks server 𝑆  is executing. 𝑀  denotes the new task 
ready to be allocated. The total weight of all tasks on a 

particular server 𝑆  can be computed as C ∗ 𝑃 . The 

occurrence that the CPU and memory are completely loaded 
simultaneously is very low. Therefore, we assume that 
𝑉 𝑆 , 𝑉 𝑆 : 𝑉 𝑆 , 𝑉 𝑆  ℝ 0, 𝑉 𝑆  𝑉 𝑆
0 , that is, the CPU idle rate and memory idle rate cannot 
be 0  simultaneously. Whenever a server goes down its 
weight is set to 0. 
For a participating node, a task with smaller weight 
represents small real time load, and a higher server weight 
represents a higher computational capacity. Thus, a newly 
offloaded mobile code will be allocated to the participating 
node that has the least ratio of the task weight and the server 
weight. In other words, the task will be allocated to say, 
server 𝑆 , by satisfying the condition: 

∗

min
∗

, where 𝑖

0, 1, … , 𝑛 1  

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 4, July 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3991567 3

2020 International Journal of Computer Science Issues



 

 

The determination condition is: 

∗

,
∗

, where 𝑖 0, 1, … , 𝑛 1  

Since the division computation overhead is much bigger 
than multiplication and the weight of a server cannot be 0, 
so that condition is optimize to the following: 

C ∗ 𝑃 ∗ 𝑊 𝑆  C ∗ 𝑃 ∗

 𝑊 𝑆 , where 𝑖 0, 1, … , 𝑛 1  
Also, the AWLC algorithm need to make sure the server is 
not scheduled when the latter’s weight is 0. The algorithm 
is as follows: 
 

Algorithm AWLC Scheduling Algorithm 

FOR (m=0; m<n; m++) { 
IF (𝑊 𝑆 0  { 

FOR (i=m+1; i<n; i++) { 

IF C ∗ 𝑃 ∗ 𝑊 𝑆  C ∗

𝑃 ∗  𝑊 𝑆   m=i; 

 } 
 IF (M==M1) 𝐶 ++; 
 IF (M==M2) 𝑆 ++; 
 IF (M==M3) 𝐶 ++; 
 IF (M==M4) 𝐶 ++; 
 RETURN 𝑆 ; 
} 

} 
RETURN NULL; 
 

Hence, the weight of server 𝑆  is 𝑊 𝑆 ∗ 𝑉 𝑆 ∗
𝑉 𝑆  and similarly, the server 𝑆  has weight 𝑊 𝑆

∗ 𝑉 𝑆 ∗ 𝑉 𝑆 . 

4. Evaluation of the AWLC Scheduling 
Algorithm 

4.1 Set-up of the Simulation 

An open-source modeling and simulation of cloud 
computing infrastructure and services software, Cloudsim 
[10], is used to simulate the AWLC algorithm and its output 
is compared with that of the LC and WLC scheduling 
algorithms. 
The LC, WLC and AWLC scheduling algorithms are 
simulated in three scenarios with different number of tasks 
to process. The number of tasks is 150, 1500 and 15000 in 
each scenario and they are randomly generated with varying 
sizes. We added 15 participating nodes/servers in each 
scenario. The mean value represents the average amount of 
time all servers in the scenario takes to complete the task, 

hence it reflects how efficient the system is. The load 
balancing degree of the system is represented by the 
standard deviation. 

4.2 Results and Comparative Analysis 

Scenario 1: 150 tasks 
The three algorithms were simulated based on 150 tasks that 
were randomly generated. Figure 1 below shows their 
respective performance. We can see that the load balancing 
degree of the AWLC scheduling algorithm is far better than 
the WLC and LC scheduling algorithms. Figure 2 compares 
the mean and standard deviation of the three algorithms. 
The AWLC scheduling algorithm seems to promise better 
efficiency compared to the LC and WLC scheduling 
algorithms. The standard deviation of the AWLC 
scheduling algorithm is the minimum indicating that the 
load balancing degree of the latter is superior than the WLC 
scheduling algorithm. The standard deviation of the LC 
scheduling algorithm is the highest suggesting a disparity in 
the allocation of tasks to the servers. 
 
Scenario 2: 1500 tasks 
In this scenario, the number of tasks increased to 1500. The 
three scheduling algorithms were simulated based on 1500 
tasks that were randomly generated. Figure 3 shows their 
respective performances. 
The AWLC scheduling algorithm did better compare to the 
LC and WLC scheduling algorithms. The standard 
deviation of the AWLC scheduling algorithm is the 
minimum indicating that the load balancing of this 
algorithm is the best among three scheduling algorithms as 
shown in Figure 4. 
 
Scenario 3: 15000 tasks 
The number of tasks is considerably increased from 1500 to 
15000 in this third scenario and Figure 5 shows the three 
scheduling algorithms performances. 
In the case of receiving 15000 randomly generated tasks of 
diverse weights, servers using the AWLC scheduling 
algorithm for task allocation has the best load balancing 
degree. In contrast, the load balancing degree of the LC 
scheduling algorithm is the poorest. 
Figure 6 shows a comparison of the mean and standard 
deviation of the three scheduling algorithms. We can see 
that the load balancing degree of the AWLC scheduling 
algorithm is far better than the WLC and LC scheduling 
algorithms. The high standard deviation of the LC 
scheduling algorithm as in the previous two scenarios 
clearly indicates a disparity in the allocation of tasks to the 
servers. And it is also clear that for system efficiency, the 
AWLC scheduling algorithm does better in terms of 
performance. 
 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 4, July 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3991567 4

2020 International Journal of Computer Science Issues



 

 

For all three scenarios consisting of 150, 1500 and 15000 
tasks, the AWLC scheduling algorithm shown producing 
the best performance. Compared to the WLC and LC 
scheduling algorithms, the load balancing degree and 
efficiency of the system using AWLC scheduling algorithm 
improved considerably. 

 
 
 
 
 
 

 
Fig. 1 Performance of the three scheduling algorithms for processing 150 tasks 

 

 
Fig. 2 Mean and standard deviation of the three scheduling algorithms for processing 150 tasks 

 

 
Fig. 3 Performance of the three scheduling algorithms for processing 1500 tasks 

 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 4, July 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3991567 5

2020 International Journal of Computer Science Issues



 

 

 
Fig. 4 Mean and standard deviation of the three scheduling algorithms for processing 1500 tasks 

 

 
Fig. 5 Performance of the three scheduling algorithms for processing 15000 tasks 

 

 
Fig. 6 Mean and standard deviation of the three scheduling algorithms for processing 15000 tasks 

 
 
 

 
 
 
 
 

 
 
 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 4, July 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3991567 6

2020 International Journal of Computer Science Issues



 

 

4. Conclusion 

A load balancing algorithm is proposed to cope with the 
disparity in the resource utilization among participating 
devices to host mobile codes. As such an algorithm for load 
balancing is proposed. The algorithm is based on the 
Weighted Least-Connections scheduling algorithm while 
taking into consideration the dynamic recalculation of 
weights and host attributes such as CPU idle rate and 
memory idle rate. Using simulation, various number of 
tasks were distributed to the hosts/servers and the proposed 
algorithm outperform existing Least-Connections and 
Weighted Least-Connections scheduling algorithms thus 
improving system efficiency. 

Acknowledgments 

We grateful to our colleague Dr George Collymore 
{george_collymore1@my.vcccd.edu} for his contribution 
in conducting the simulation of the proposed algorithm 
using the Cloudsim [10] open-source software. 
 
References 
[1]  Ou, S., Yang, K., Liotta, A., "An adaptive multi-constraint 

partitioning algorithm for offloading in pervasive systems", 
Pervasive Computing and Communications, 2006. 

[2]  Abebe, E. and Ryan, C., "Adaptive application offloading 
using distributed abstract class graphs in mobile 
environments", Journal of Systems and Software, Vol 85 No 
12, 2012. 

[3] Nevin Vunka Jungum, Nawaz Mohamudally and Nimal 
Nissanke, "Application Partitioning for Offloading in Mobile 
Pervasive Environments", in proceedings of The 10th 
International Conference on Emerging Ubiquitous Systems 
and Pervasive Networks, EUSPN 2019, November 4-7, 2019, 
Coimbra, Portugal. 

[4] Nevin Vunka Jungum, Nawaz Mohamudally and Nimal 
Nissanke, "Device Selection Decision Making using Multi-
Criteria for Offloading Application Mobile Codes", in 
proceedings of The 6th IEEE International Conference on 
Advanced Computing and Communication Systems, ICACCS 
2020, March 6-7, 2020, TamilNadu, India. 

[5] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, 
and Debra Hensgen, "Task execution time modeling for 
heterogeneous computing systems", in Heterogeneous 
Computing Workshop, 2000, (HCW 2000) Proceedings. 9th, 
pages 185–199, IEEE, 2000. 

[6] Y. Azar, A. Epstein, and L. Epstein, "Load balancing of 
temporary tasks in the lp norm", Theoretical computer science, 
361(2):314–328, 2006. 

[7] M. Sriram Iyengar and M. Singhal, "Effect of network latency 
on load sharing in distributed systems", Journal of parallel and 
distributed Computing, 66(6):839–853, 2006. 

[8] Chuang Kan, “A New Dynamic Loading Balance Algorithm 
Based on LVS Cluster”, Ocean University of China, 2008 

[9] Song WEN, “Load Balancing of Linux Virtual System”, 
retrieved from www.linuxvirtualserver.org 

[10] Buyya R., Ranjan R., Calheiros R. N., “Modeling and 
Simulation of Scalable Cloud Computing Environments and 
the Cloudsim Toolkit: Challenges and Opportunities”, Proc. of 
International Conference on High Performance Computing & 
Simulation, Kochi, India, 2009. 

 
 

Some Additional Data 

For 150 Tasks 
 

  LC  WLC  AWLC 

Server  Time  Time  Time 

1  1472.52  1498.17  1145.17 

2  1479.85  1630.23  1415.99 

3  1347.98  1457.19  991.826 

4  1186.81  1762.29  1274.30 

5  1135.53  1616.57  1051.70 

6  1523.81  1917.12  1238.14 

7  1208.79  1429.87  1307.90 

8  1150.18  1653.00  1314.36 

9  1963.37  2099.27  1366.75 

10  1619.04  2404.37  1294.82 

11  1399.26  1853.37  1297.00 

12  3838.82  1584.69  1337.34 

13  1040.29  1621.12  1135.69 

14  1062.27  2026.41  1221.73 

15  1582.41  2026.41  1532.80 

       

Mean  1534.07  1772.01  1261.71 

Standard 
Deviation  661.53 

267.28  134.17 

 
 
For 1500 Tasks 

 
  LC  WLC  AWLC 

Server  Time  Time  Time 

1  18667.88  18581.82  11854.55 

2  20036.50  18727.27  11905.46 

3  17846.72  18818.18  11956.36 

4  12755.47  18818.18  11930.91 

5  10346.72  18845.46  11803.64 

6  18777.37  17745.46  11785.46 

7  13248.18  18545.46  12701.82 

8  21186.13  16400.00  12040.00 

9  14397.81  18545.46  11658.18 

10  17901.46  19309.09  11174.55 

11  28686.13  18327.27  11250.91 

12  14562.04  18109.09  12701.82 

13  14452.56  19600.00  12472.73 

14  25237.23  19490.91  12600.00 

15  21897.81  17636.36  11734.55 

       

Mean  18000  18500  11971.39 

Standard 
Deviation  4783.19 

780.54  455.27 

 
 
 
 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 4, July 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3991567 7

2020 International Journal of Computer Science Issues



 

 

For 15000 Tasks 
 

  LC  WLC  AWLC 

Server  Time  Time  Time 

1  26660.58  18503.65  13388.81 

2  26113.14  18540.15  13446.11 

3  10401.46  18503.65  13407.91 

4  10675.18  18503.65  13369.71 

5  10456.20  18357.66  13293.32 

6  19051.10  18467.15  13178.72 

7  13850.37  18759.12  13388.81 

8  14069.34  18321.17  13503.41 

9  27208.03  18175.18  13388.81 

10  17299.27  18613.14  13274.22 

11  17135.04  17883.21  13293.32 

12  20638.69  17919.71  13293.32 

13  14507.30  18613.14  13312.42 

14  10784.67  18357.66  13293.32 

15  11332.12  18284.67  13331.51 

       

Mean  16678.83  18386.86  13344.25 

Standard 
Deviation  5878.95 

237.35  77.56 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 4, July 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.3991567 8

2020 International Journal of Computer Science Issues




