
Evaluating Fuzzy Parallel Queries in a Fuzzy Parallel

Database

MILAMBU BELANGANY MICHEL 1 NTUMBA BADIBANGA SIMON2, MBUYI MUKENDI EUGENE3

1 Mathématiques et Informatique, Université de Kinshasa, Kinshasa, DRC

2Mathématiques et Informatique, Université de Kinshasa, Kinshasa, DRC

3Mathématiques et Informatique, Université de Kinshasa, Kinshasa, DRC

Abstract

 In this article we present the application of fuzziness in

querying imprecise databases with partitions residing on

different disks of a multi-processor computer. These fuzzy

queries are evaluated against conventional queries by

proposed an algorithmic evaluator. For the proper

evaluation, parallelism is applied to the algorithmic

model in order to analyze the flexibility of fuzzy queries

compared to classics that run in parallel.

Keywords: Inaccurate database, fuzzy queries,

fuzzy data, parallelism, algorithmic model.

1. Introduction

Indeed, the mode of reasoning in fuzzy logic is

more intuitive than classical logic. It allows

designers to better understand natural, imprecise

and difficult to model phenomena by relying on the

definition of rules and membership functions of sets

called "fuzzy sets".

Fuzzy sets constitute an interesting theoretical and

methodological framework for the flexible

interrogation of Relational Databases (RDB). In

fact, associates a membership function and a

linguistic label with a set or formalizes a gradual

property that can then be integrated as a preference

in a request addressed to a Relational DB. In this

sense, fuzzy queries extend Boolean queries by

taking into account tolerance and graduality in the

definition of user intentions. Fuzzy logic can also

brings a rich set of connectors allowing to combine

these preferences in a compensatory way or not [1].

A query language called SQLf [2] has thus been

proposed to exploit the expressiveness of fuzzy

queries.

Thus, in a reference set E, a fuzzy subset of this

reference frame E is characterized by a membership

function μ of E in the interval of real numbers [0, 1]

(membership degree which is the extension of the

characteristic function of a classical subset). In fact,

a fuzzy subset (we will say more briefly a fuzzy set)

is formally defined by the application m, but to

come back to the language of classical

mathematics, we will speak of a fuzzy set A, and

denote μA its function d 'membership [9].

2. Fuzzy Databases

Just as classical sets allow the definition of Boolean

predicates, fuzzy sets (Zadeh, 1965) which describe

classes of objects with vague boundaries can serve

as a basis for the definition of gradual predicates.

Often, elementary fuzzy predicates correspond to

natural language adjectives such as young, tall,

expensive, or high. [8] A fuzzy predicate P can be

modeled by a μP function (usually triangular or

trapezoidal in shape) of one (or more) domain (s) X

in the unit interval [0, 1]. The degree μP (x)

expresses the extent to which the element x satisfies

the gradual predicate P (or, equivalently, the extent

to which x belongs to the fuzzy set of objects that

correspond to the fuzzy concept P). An elementary

fuzzy predicate can also compare two attributes

using a gradual comparison operator such as plus or

minus equal.

3. Fuzzy Relational Questions

The purpose of the fuzzy interrogation of precise

databases is quite clear, we would like to be able to

ask, for example, for the list of articles checking

vague criteria such as a moderate price, good

quality, etc.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 5, September 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.4418884 29

2020 International Journal of Computer Science Issues

It is obviously much too restrictive to ask for items

lower than 100Fc, because there is a risk of

excluding the one which is worth 105Fc but which

would be very interesting for other criteria. We

therefore see that the problems posed are once

again the definition of predicates such as

"expensive", "large", "good quality" ... that of

vague quantifiers such as "most", "almost all", "

little "... and above all the conduct to adopt for the

aggregation of the criteria sought.

If the first problem is solved by the definition of

trapezoidal fuzzy predicates, the second can also be

solved by fuzzy sets in [0, 1].

3.1 SQLf

In SQL language, the fundamental query is:

select <object> from <relational base> where

<condition> which allows to obtain the list of

elements satisfying a more or less structured

condition. The question can be asked according to a

classification (a score) by:

select <object> from <base> where <condition 1>

group by <object> having <condition 2>

The query select A from R where P in which P is a

logical proposition where ¬, , are interpreted as

in fuzzy logic, must therefore provide a fuzzy set Q

such that:

Q(a) = sup A(x) = a min(R(x), P(x))

Illustration: instead of an exact query such as:

select #emp from Emp where age <35 and #dep in

(select #dep from Dep where budget> 100000

To obtain the young people from a set of employees

whose department has a high budget, we will define

the fuzzy sets 'young' and 'high' and the query:

select #emp from Emp

where age = 'young' and Emp. # dep = Dep. # dep

and budget = 'high'

will give the membership function:

(e) = min (jeune (e.age), sup {min (élevé (budget)),

(= (d.#dep, e.#dep) / d Dep)

3.2 Sequential execution

This is about processing a complex query on a

single processor and whose execution is too slow

due to its complexity. As below:

Fig 1: Sequential execution

4. Parallelism

The goal of parallel query execution is to gain

performance. In addition to response time, there are

several metrics to quantify the gain obtained by

parallel execution. The best known are the speed-up

and the scale-up. An ideal parallel system is one

that achieves both linear speed-up and constant

scale-up. Informally, an ideal speed-up indicates

that a task can be executed twice as fast if there are

twice as many hardware resources (processors,

disks, memory, ...). An ideal scale-up means that

twice the size of a task can be performed at the

same time if you have twice the hardware

resources.

The formal definition of speed-up is as follows:

either a task of fixed size executed sequentially in a

time Ts then executed in parallel on p processors in

a time Tp, the speed-up obtained by the parallel

execution is then defined by :

speed − up() =
𝑇𝑠

𝑇𝑝
and the speed-up is ideal if speed-up (p) = p.

We can deduce from the speed-up the efficiency Ep

of the parallel algorithm, i.e. the ratio between the

effective speed-up and the ideal speed-up:

Ep =
𝑇𝑠

𝑇𝑝 ∗ 𝑃

4.1 Parallel execution

Thus, two types of data parallelization exist:

Parallelism of processing: The query is broken

down into elementary queries which are executed in

parallel on the data[13].

Data parallelism: The query is executed in parallel

on subsets of the data.

Either the BDPF Relational Data Model represented

in relational form and housed on several logical

disks (four logical disks) of the same computer is as

follows:

Store (# N ° _Mag, Name_Mag, Position_Mag,

Code_Address)

Customer (#Customer_Code, Customer_Name,

Category, Telephone, Address_code)

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 5, September 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.4418884 30

2020 International Journal of Computer Science Issues

Address (#Code_Address, Town, District, Avenue,

N °)

Order (# N ° _Cmd, Type_Cmd, Date_Cmd,

Code_Client)

Product (#Code_Prod, Designation_Prod,

Qty_Stock, Price_Prod, Qty_V, Matr_Agent,

Code_Fsseur, N ° _Cmd)

Agent (#Matr_Agent, Name_Agent,

Postname_Agent, Function_Agent, Department, N

° _Mag)

Supplier (#Code_Fsseur, Name_Fsseur,

Category_F, Telephone_F)

Stock (N ° _Mag, Code_Prod, History_P,

History_Cmd)

Consider the complex query below containing the

fuzzy predicates launched on this fuzzy parallel

database:

Select *

From produit, Agent, Commande, Stock,

Fournisseur

---parallelism---

Where (select Designation_Prod, Qte_Stock,

Prix_prod, Qté_V, Nom_Mag From Produit,

Stock, Commande, Magasin Where

Magasin.N°_Mag = Stock.N°_Mag AND

Produit.N°_Cmd = Commande.N°_Cmd AND

Produit.Code_Prod = Stock.Code_Prod AND

Qte_Stock = ‘’recent’’ AND Qte_V = ‘’environ

bon’’ AND Historique_Cmd = ‘’un peu ancien’’

AND Historique_P =’’ancien’’)

It will be executed on the four CPUs activated

below in order to assess the execution speed of this

query when it is broken down into fuzzy sub-

queries r1, r2, r3 and r4 of the fuzzy query R.

Fig 2: processors

We see in the figure above that, when the fuzzy

interrogations are launched on several processors

(four in this case) the execution time decreases. In

this case, the degree of satisfaction is reached

because the execution only took 0.5 sec and the

occupation of each processor was 1.75%.

4.2. Tasks executed by different processors

in parallel

Following:

Generally :

The parallel efficiency on the number of processors

that perform the tasks after applying the evaluator

of the imprecise queries launched is:

Fig 3: Parallel efficiency on the number

We see here that the more number of processors

increases, the faster execution speed becomes and

the result is delivered in less time.

Fuzzy sequential and parallel algorithmic evaluator

model of the queries

Rs: Sequential Requests

Rp: Parallel queries

Rf: Fuzzy requests

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 5, September 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.4418884 31

2020 International Journal of Computer Science Issues

Rpf: Fuzzy parallel queries

Is: set of sequential interrogations

If: set of fuzzy questions

Df = {d1f, d2f,…, dnf} Df: set of fuzzy data, dif:

fuzzy data, i = 1 to n

time = 0

Repeat for i = 0 to n - 1 do

 For j = i to m - 1 do

 Selection Df [i] [j]

 j = j + 1

 time calculation and

evaluation

 time = time + 1

 end do

 i = i + 1

 end for

end Repeat

 if (time = 60) then

 Writing the execution took an hour

 Otherwise if (time> 60) then

 Write the execution

over an hour: time

Otherwise Write time

If = {I1f, I2f, I3f, I4f, I5f,…, Inf}

I1f = {Sr11f, Sr12f, Sr13f, Sr14f, Sr15f,…, Sriinf}

I2f = {Sr21f, Sr22f, Sr23f, Sr24f, Sr25f,…, Sriinf}

I3f = {Sr31f, Sr32f, Sr33f, Sr34f, Sr35f,…, Sriinf}

...

Iif = {Sri1f, Sri2f, Sri3f, Sri4f, Sri5f,…, Srimnf}

 time = 0

 For i = 0 up to n - 1 execute in parallel

 Pi = Sriif

 // Evaluation of the processing

time

 time = time + 1

 end for

𝐼𝑖𝑓 = ∑ 𝑆𝑟𝑖𝑓𝑛−1
𝑖=0

 If (time = 60) then

 Writing the execution

took an hour

 Otherwise If (time> 60) then

 Write the execution

over an hour: time

If not

 Write time

End.

It is noted that the fuzzy interrogations launched in

parallel ends quickly than those launched in

sequential. As in the figure below:

Fig 4: Fuzzy interrogations launched in parallel

5. Conclusion

This article is placed in the context of the

evaluation of fuzzy queries to which parallelism has

been applied. In itself, a fuzzy interrogation is more

flexible than a classic interrogation but when

performing a fuzzy interrogation on a computer

with only one CPU, we find that this flexibility is

covered just by the presentation of a good result

because it goes through all borders. On the other

hand, when a complex fuzzy query is parallelized, it

is the execution speed of the sub queries that

increases and the result is delivered in a few

milliseconds. This is visible thanks to the Fuzzy

sequential and parallel algorithmic evaluator model

of the queries which analyzes the progress.

References

[1]. Dubois, D., Prade, H. : Using fuzzy sets in exible

querying : Why and how? In : Proc. of the 1996

Workshop on Flexible Query-Answering Systems. (1996)

pp. 89{103

[2]. Bosc, P., Pivert, O. : SQLf : a relational database

language for fuzzy querying. IEEE Transactions on

Fuzzy Systems 3 (1995) 1{17

[3]. Gregory Smits et al, PostgreSQLf : un Système

d'Interrogation Floue

[4] A. Hadjali, S. Kaci, and H. Prade. Database

preference queries - a possibilistic logic approach with

symbolic priorities. Ann. Math. Artif. Intell., 63(3-4)

:357–383, 2011.

[5] O. Pivert and P. Bosc. Fuzzy Preference Queries to

Relational Databases. Imperial College Press, London,

UK, 2012.

[6] O. Pivert and G. Smits. On fuzzy preference queries

explicitly handling satisfaction levels. In S. Greco, B.

Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo,

and R. R. Yager, editors, IPMU (1), volume 297 of

Communications in Computer and Information Science,

pages 341–350. Springer, 2012.

[7] Luc BOUGANIM, Exécution parallèle de requêtes

relationnelles et équilibrage de charge, INRIA

Rocquencourt, 2013

[8] Daniel ROCACHER et al, Relations d’ordre floues

sur des quantités floues et expression des requêtes

flexibles, Irisa, 2014

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 5, September 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.4418884 32

2020 International Journal of Computer Science Issues

[9] Samuel BARTEL, Interrogation floue de bases de

données : extension de iSQLf, enssat, 2006

[10] Thomas GIRAULT et al, requêtes floues et SGBD

relationnels, vers un couplage renforcé, irisa, 2013

[11] Olivier PIVERT, Un Système d’interrogation floue,

Irisa, Université de Rennes 1, 2013

[12] Le THANH, Système de Gestion des Bases de

données parallèles et distribués : architecture et

algorithmique, ESSI3, Université de nice, 1994

[13] Jean Pepe M. Buanga, Simon Ntumba Badibanga,

Richard Kabamba Ilunga , Enhanced Parallel Skyline on

Multi-core Architecture with Low Memory Space Cost,

IJCSI International Journal of Computer Science Issues,

Volume 13, Issue 5, September 2016

First Author is Assistant of computer sciences and master

student at the University of Kinshasa, DRC. Research area

: Data analysis. Author of many publications, such as: Data

mart approach for stock management model with a

calendar under budgetary constraint, IJCSI, volume 15,

Issue 5, September 2018,

Second Author is professor and head of Mathematic and
informatics department of the University of Kinshasa. As
publications, Author of many publications, such as:
"Enhanced Parallel Skyline on multi-core architecture with
lax Memory space Cost", IJCSI, volume 13, Issue 5,
September 2016, Data mart approach for stock
management model with a calendar under budgetary
constraint, IJCSI, volume 15, Issue 5, September 2018,
Poster et the 2nd International conference on Big Data
Analysis and Data Mining, San Antonio, USA, 30
november- 01 December 2015 "; Data Mart Approach for
Stock Management Model with a calendar Uner Budgetary
contraint, IJCSI, volume 15, Issue 5, September 2016,

Third author is professor at the Mathematic and

informatics department of the University of Kinshasa.

Director of informatics laboratory of the faculty of sciences

at the university of Kinshasa. He is author of many articles

in many scientific journals like in IJCSI . Poster et the 2nd

International conference on Big Data Analysis and Data

Mining, San Antonio, USA, 30 november- 01 December

2015.

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 5, September 2020
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.4418884 33

2020 International Journal of Computer Science Issues

