
Agent-based module for simulating mutual exclusion algorithms 

SENOUA César 1, KAMLA Vivient Corneille2, YENKE Blaise Omer3, KAMGANG Jean-Claude4

1National institute of cartography, P.O. Box 157 Yaoundé, Cameroon 

2Dep. of Mathmatics and Computer Science, ENSAI, University of Ngaoundere, Cameroon 

3Dep. of Computer Science, University of Ngaoundere, Cameroon 

4Dep. of Mathmatics and Computer Science, ENSAI, University of Ngaoundere, Cameroon 

Abstract 
In this paper, we were able to model and simulate mutual exclusion 

algorithms using an SMA approach. Mutual exclusion is one of the 

fundamental paradigms of distributed systems to ensure consistent 

access to resources shared between several entities in the system. 

It ensures that not more than one entity can run a shared resource, 

called the critical section (security property) and that any request 

for access to the critical section will be satisfied within a finite time 

(liveliness property). We have represented an agent as an entity of 

the system in the modeling. The JADE platform is used for 

simulation mutual exclusion algorithms. Communication between 

agent’s present limits for resource management critical by a large 

number of entities using the agent directory service. We were able 

to optimise the communication platform between our agents, 

defining message formats and proposing efficient data structures. 

Analysis of the results of the simulation shows the properties of the 

mutual exclusion algorithms are satisfactory. 

 Keywords: Simulation, Distributed Algorithm, JADE, Mutual 

Exclusion.  

1. Introduction

Multi-agent systems (MAS) are one of the areas increasingly 

used in computer research as a system for solving complex 

problems. This is especially true for the field of simulation 

[5]. Agent-based simulation offers the possibility to directly 

represent the simulated entities, their behaviors and their 

interactions [9]. Indeed, the computing concept of 

MultiAgent Systems is very well adapted to perform 

simulations of systems composed of entities [11].  An 

example of mutual exclusion is the situation of a system in 

which N processes sharing a physical (a printer for example) 

or logical (a file) resource. In order to avoid inconsistent 

situations, the shared resource can only be used by one 

process at a time, in other words, the resource must be used 

on a mutually exclusive (MS) basis. Several works on 

mutual exclusion algorithms exist in the literature, but due 

to the constraints of large-scale environments, many of the 

algorithms in the literature are unsuitable, or at least difficult 

to implement [12]. Thus, the analysis of research results in 

the field of study of mutual exclusion algorithms is done by 

simulation.  

The objective of this work is to propose an agent module 

from JADE to model and simulate the mutual exclusion 

algorithm. JADE has already almost all the elements for the 

realisation of distributed agent-based applications. The only 

problem is that it has no examples of implementation of 

classical mutual exclusion algorithms and of grouping in the 

literature for users. The interest of this module is multiple. 

First, this module serves as an introduction to the operation 

of the JADE API for users new to JADE, in order to see how 

to realise an implementation of distributed mutual exclusion 

algorithms. Second, it allows scientists using JADE to test 

their classical or group distributed mutual exclusion 

algorithms. Third, it also aims at optimising the 

infrastructure. As in reference [7] JADE does not adapt 

properly due to the limitations of the message transport and 

the agent directory service. We defined the data structures 

during the writing of the algorithm implementations to 

facilitate the efficient execution of agents to overcome 

performance bottlenecks. 

2. Related works

There are a large number of distributed simulation tools: 

there are both commercial products and software in the 

public domain. It should be noted that this list is not 

exhaustive, and that there are also other tools that have been 

used very successfully to build various applications. 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 6, November 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.4431052 19

2020 International Journal of Computer Science Issues

mailto:senouacesar@gmail.com
mailto:vckamla@gmail.com
mailto:boyenke@univ-ndere.cm
mailto:jckamgang@yahoo.fr


  

The SimGrid1 project [10] allows the study of scheduling 

algorithms on heterogeneous platforms. It is a tool that 

provides basic functionality for the simulation of 

heterogeneous distributed applications in distributed 

environments. The specific objective of the project is to 

facilitate research in the field of programming distributed 

and parallel applications on distributed computing platforms 

from a simple network ranging from workstations to 

computing grids. 

 

Sinalgo [2] is a simulation platform for testing and 

validating distributed algorithms. This platform is written in 

JAVA. It is initially dedicated to protocols for wireless 

sensor networks.  

Network Simulator [1] is a computer network simulation 

software tool, it is one of the most widely used simulators in 

research laboratories, to simulate and study the performance 

of network protocols. It provides a platform for developing 

new protocols and testing them. 

 

The DAJ [3] development tool is used to implement, test, 

simulate and visualise distributed algorithms in java. 

 

We note that simulators are tools that are useful in the study 

of distributed algorithms. They allow experimenters to test 

or validate their algorithms under experimental conditions. 

However, none of these tools are standardized and are object 

oriented, yet there are multi-agent concepts that are of 

increasing interest in the field of simulation. 

 

3. Problem description 

In the field of simulation, researchers are often confronted 

with difficulties related to tools. When they want to simulate 

their distributed mutual exclusion algorithms on a 

simulation platform in order to analyse the results of the 

execution, they face some difficulties. Firstly, having access 

to certain experimental platforms (for example Grid’5000) 

is not always obvious and also difficulty in reproducing the 

results. Secondly, proprietary platforms (e.g.  Parsec does 

not make its code or documentation available) do not allow 

users to better understand the low-level mechanisms used by 

the environment. 

 

In addition to all these problems and proposed solutions, the 

other major problem is the ignorance of the existence of 

1 http://grail.sdsc.edu/projects/simgrid/ 

certain simulation platforms that are not yet very well 

known. And in fact, when these platforms are not available 

or rare to find it slows down the work. In the end, some 

people end up giving up on developing their algorithms on 

simulation platforms. 

 

Faced with these problems, we propose to exploit simulation 

platforms that provide functionalities, independent of a 

specific application, allowing users to make modifications 

to meet more specific needs. It is in this context that we have 

studied the multi-agent simulation platform JADE, which 

provides a toolbox, to propose an agent-based module for 

the simulation of distributed mutual exclusion algorithms. 

 

4. A package for the simulation of mutual 

exclusion distributed algorithms 

4.1 Approach 

 
JADE offers an agent structure to build a multi-agent 

system, but managing access to a resource shared between 

several agents is not easy. To do so, we have studied the 

execution process of an agent and the interactions between 

these agents in order to better adapt it to our work. This 

allowed us to launch several agents in parallel on a machine 

by preparing them for the execution of distributed exclusion 

algorithms, and also to propose message formats allowing 

an efficient communication of these agents during the 

execution of the distributed exclusion algorithms. And 

finally, we have defined data structures for communication 

network topologies. 
 

4.2 Communication network topologies 

 
JADE has a very precise architecture allowing the so-called” 

standardized” construction of agents in accordance with the 

standards proposed by FIPA and includes all the mandatory 

components that control an SMA. These components are: 

the Agent Management System (AMS) which is the agent 

responsible for managing agent life cycles, the Directory 

Facilitator (DF) agent which registers the services offered 

by the agents and the Message Transport service (MTS) 

agent, also called Agent Communication Channel (ACC), 

which controls all message exchanges on the platform[8].  

 

However, the AMS, which holds the list of the platforms 

agent identifiers, is limited when a large number of agents 

must go through it to get the identifier of an agent with 

whom the agent wants to communicate. In addition, if we 

need to register an agent at the DF level in order to find him 

according to his description when we need his identifier, it 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 6, November 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.4431052 20

2020 International Journal of Computer Science Issues



is limited when we have several requests. Because of the 

diversity of its limitations that we encountered, it was 

interesting to propose a data structure that would allow our 

agents to create a network topology that would allow us to 

efficiently exchange messages without going through AMS 

and DF. So, for these agents to be able to communicate by 

exchanging messages, each agent must know the address or 

identifier of the person they want to communicate with. This 

has enabled us to create a data structure at the level of each 

agent that allows us to save the agents’ identifiers. The 

existence of this data structure is important for each agent 

because it allows the agent to know all the agents in the 

system without asking AMS. It also avoids overloading the 

AMS with requests when the number of requests increases. 

 

4.3 Agent communication 

 
As mentioned above, our approach aims to propose an 

agent-based module for the simulation of distributed mutual 

exclusion algorithms, the most important step is the 

synchronisation of the execution of nodes because the 

problem of mutual exclusion is at the level of competition to 

an on-shared or critical resource. Thus, synchronising access 

to this resource can be done by communication between the 

different processes in a distributed system. Indeed, the 

messages exchanged by JADE agents have a format 

specified by the ACL language defined by FIPA. This 

format lacks a number of parameters, in particular those that 

did not allow the agents to efficiently synchronise access to 

a non-sharable resource. At this stage, we encountered 

difficulties in representing the different messages exchanged 

between agents by dating the message. 

  

To solve this problem, we redefined the ACLMessage class 

because all messages in JADE are instances of this class. 

This allowed us to have a fairly complete message format 

between the nodes, allowing them to guarantee the proper 

functioning of the algorithm. The message format thus 

adopted between the agents is presented as follows: 

 

• Sender-ID: This information makes it possible to know at 

any time who sent the message; 

 

• Recipient ID: This field allows you to know to whom the 

message will be delivered; 

 

• The subject of the message; 

 

• The Time-stamp: this is the logical time of message 

transmission relative to the clock as defined by LAMPORT. 

 

 

 

 

 

4.4 General architecture of the approach 

 
Our work consists in proposing an agent-based solution for 

the execution of distributed mutual exclusion algorithms. 

Distributed mutual exclusion algorithms are executed 

according to defined network topologies (implementation). 

1. For a decentralised network topology, our system consists 

of n nodes where each node can have the identifiers of the 

other nodes. These agents are created and registered at the 

AMS level by an agent named” Network Agent” as shown 

in figure 1. The created agents execute the same code. 

System nodes use the same message format to communicate 

effectively. 

 

 

 

Fig. 1 Decentralised network topology 

2. For a hierarchical network topology, our system consists 

of n nodes, where each node has the identifiers of its 

group (the child nodes). To define the hierarchical topology, 

we first have the” network agent” which launches the” root” 

agent. This created agent launches the other agents named” 

Parent Agent” and coordinates the opening and closing of 

sessions when running distributed group mutual exclusion 

algorithms. Then, the” Parent Agents” launch the nodes and 

coordinate locally the use of a session. Each node has the 

identifier of the parent agent and the other nodes. The figure 

2 shows the hierarchical network topology between the 

system’s agents. 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 6, November 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.4431052 21

2020 International Journal of Computer Science Issues



5. Simulations and experimental results 

5.1 Simulation  

In order to test that the distributed mutual exclusion 

algorithms can be simulated on the Jade multi-agent 

platform, two specific algorithms have been implemented: 

the Maekawa mutual exclusion algorithm and the 

TBGMEACα algorithm. 

 

 

 

 

 

 

 

 

Fig. 2 Hierarchical network topology 

Maekawa’s mutual exclusion algorithm is chosen for 

execution on a distributed network topology because it 

provides a robust system. And the TBGMEACα algorithm is 

chosen for execution on a hierarchical network topology 

because hierarchical distributed systems are an important 

class of distributed systems [4]. The mutual exclusion 

algorithm is a situation in which, when a process Pi wants to 

enter a critical section, it sends a Request message to a set of 

processes Rpi. Upon reception of Rpi — Authorisation 

messages, process Pi accesses the critical section. When it 

leaves the critical section, it sends a Release message to the 

processes of the Rpi set in order to give them back the 

permissions obtained. A process assigns only one 

authorisation at a time. When a process Pj receives the 

request from process Pi, it answers it favorably 

(by sending an Authorisation message) if it has not already 

given its authorisation to another Process, or unfavorably 

(by sending a Failure message) if it has already given its 

permission to a request from a process Pk older than that of 

process Pi. When the request from process Pk is older than 

the one received from process Pi, process Pj sends to process 

Pka Query message in order to know if it managed to access 

the critical section or not. When receiving the Polling 

message, process Pk informs process Pi by sending a Relax 

message if it has not managed to enter the critical section: 

this means that it has already received a Failure message. 

 

The figure 3 below shows us an extract of the data resulting 

from the execution of the Maekawa mutual exclusion 

algorithm by the agents on JADE. 

 

Fig. 3 Result execution of the Maekawa algorithm 

 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 6, November 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.4431052 22

2020 International Journal of Computer Science Issues



The algorithm TBGMEACα (Tree Based GME Algorithm 

for Clusters)  

 

It’s an algorithm based on that of Beauquier et al [6]. It uses 

the technique of partial network flooding to guarantee the 

EMG. The algorithm is in two phases: opening and closing 

of a session. These phases are initiated by the root. Indeed, 

when a process p makes a first request (the very first in the 

system) for a session X, it is sent to its cluster leader via the 

ASK (X) message. The leader saves the X session as the 

requested session, and sends the request to the higher-level 

cluster leader; thus, from leader to leader the request 

eventually reaches the root. As soon as the root receives the 

ASK (X), it begins the operation of opening X by sending 

OS(X) not only to the process that originated the ASK(X), 

but also to any other leaders that have not received any 

requests from their descendants. We call this technique 

partial flooding. In the TBGMEACα algorithm, it is a 

question of flooding the network with information, whether 

it is for the opening or closing of a session; this way of doing 

is significant at the opening of a session in the sense that, as 

long as no process wants to access a different session from 

the current one, the processes wishing to use the current 

session can enter and exit the critical session concurrently 

and as many times as they wish without generating 

additional costs to the algorithm. This is because each of 

them has registered a particular session (e.g. X) as the 

current session the gold of the login. 

Simulation results 

In the case of the Maekawa exclusion algorithm, each node 

(agent) executes the code (program) and communication is 

done by exchanging messages. The tables 1 and 2 below 

present the simulation results of Maekawa’s mutual 

exclusion algorithm by agents (nodes). In the case presented 

below four agents (nodes) were used to run the Maekawa 

algorithm.  

Table 3 below shows the result of the simulation of the 

TBGMEACα algorithm. The algorithm is deployed on a 

three-level hierarchical network. We have the root which is 

the parent of Node 0 and Node 1. Node 0 is the parent of the 

nodes: Node 00, Node 01, Node 02. And Node 1 is the parent 

of the nodes: Node 10, Node 11, Node 12. 

Table 1: Result of the execution of the Maekawa mutual exclusion algorithm 

 

Nodes  Request  Reply  Fail  Inquire  Relinquish  Critical 
section 

Release 

Node0  T=0 

Node1 

Node2 

Node3 

Node1  Node1 

Node3 

Tϵ[4,5] 
Node 0 

Node1 

Node2 

Node3 

Node0  T=0 

Node1 

Node2 

Node3 

Node1  T=1 

Node0 

Node2 

Node3 

Node0  Node3 

Node2 

    

Node2  T=3 

Node0 

Node1 

Node3 

Node3 

Node0 

Node2 

Node1 

Node3  Node3   

Node3  T=2 

Node0 

Node1 

Node2 

Node2 

Node0 

Node2 

Node1 

Node2  Node2   

After the critical section and sending release messages, from the Node 0 

Nodes  Request  Reply  Fail  Inquire  Relinquish  Critical 
section 

Release 

Node0  T=6 

Node1 

Node2 

Node 3 

      

Node 1  Node 3  Tϵ[7,8] 
Node 1 

Node0 

Node3 

Node2 

Node1  Node3  Tϵ[7,8] 
Node1 

Node0 

Node3 

Node2 

Node2  Node1       

Node3  Node1       

 

 

 

Table 2: Result of the execution of the Maekawa mutual exclusion algorithm 

 

 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 6, November 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.4431052 23

2020 International Journal of Computer Science Issues



After the critical section and the sending of release messages, from the Node1 

Nodes  Request  Reply  Fail  Inquire  Relinquish  
Critical 

section 
Release 

Node0   Node3      

T=0 

Node1 

Node2 

Node3 

Node 1  

T=9 

Node0 

Node2 

Node3 

  

    

Node2  Node3       

Node 3  Node 2     
Tϵ[10,11] 

Node 3 

Node0 

Node1 

Node2 

Node0 

Node1 

Node2 

After the critical section and the sending of release messages, from the Node 3 

Nodes  Request  Reply  Fail  Inquire  Relinquish  
critical 

section 
Release 

Node0        

Node1  Node2      

Node 2       
Tϵ[13,14] 

Node2 

Node0 

Node1 

Node3 

Node3  

T=12 

Node0 

Node1 

Node3 

      

 

Table 3: Result of the execution of the TBGMEACα algorithm 

Nodes  Send 

ASK(0) 

Send 

Request 
session (0) 

Send 

OS (0) 
critical 
Section 

Receive 

OS (0) 
Receive 

Request 
session (0) 

receive 

ASK (0) 

Node 00  T=0 

Node 0 

  

Tϵ[1,2] 
Node 00 

 

Node 0 

 

  

Node 0 

 

 

Root 

 

Node00 

Node01 

Node 02 

 

  

 Node00 

Node 02 

Root 
 

 

 Node0 

Node 1 

  Node 0 

 

 

Node 1 

 
 

 Node10 

Node11 

Node 12 

   

 

Node 02 

 

T=3 

Node 0 

 

  Tϵ[4,5] 
Node 02 

  

 

 

5.2 Discussion   

Looking at the tables 1 and 2, obtained from the result of the 

execution of Maekawa’s mutual exclusion algorithm, we 

also notice that, each node having requested access to a 

critical section in a given time succeeds in accessing it when 

the critical section is free. This means that vivacity (a 

property of mutual exclusion algorithms) is ensured during 

the execution of the Maekawa mutual exclusion algorithm 

by the nodes because: 

• At T= 0, Node 0 sent a REQUEST message to the nodes 

(Node 1, Node 2, Node 3) but enters the critical section at 

T= 4 and leaves the critical section at T= 5. 

 

• At T=1, Node 1 sent a REQUEST message to the nodes 

(Node 0, Node 2, Node 3) but enters critical section at T=7 

and leaves critical section at T=8. 

 

• At T= 3, Node 2 sent a REQUEST message to the nodes 

(Node 0, Node 1, Node 3) but enters the critical section at 

T=13 and leaves the critical section at T=14. 

 

• At T=2, Node 3 sent a REQUEST message to the nodes 

(Node 0, Node 1, Node 2) but enters critical section at T=10 

and leaves critical section at T=11. 

 

One other remark can be made. Indeed, in no case could we 

have more than one node in critical section (executing the 

same part of non-sharable code) at a given time during the 

execution of Maekawa’s mutual exclusion algorithm. This 

is because the time (Tϵ[4.5]) when Node 0 executes the 

critical section is different from the time (Tϵ [7.8]) of Node 

1, and is also different from the times Tϵ [10.11] and Tϵ 

[13.14] respectively of Nodes 2 and 3 when they were 

executing the critical section. This means that safety is 

assured. It appears that the proposed agent-based approach 

is important for evaluating mutual exclusion algorithms 

since the agents execute the algorithm in a way that satisfies 

the mutual exclusion properties. 

 

Looking at the table 3 From the result of the execution of the 

TBGMEACα algorithm, we notice that the execution of the 

described TBGMEACα algorithm is ensured because when a 

child node requests the opening of a section 0, it sends the 

request to the higher level cluster leader; thus, from leader 

to leader the request ends up reaching the root. This is the 

case of Node 00 in the table 3. Node 00 sends an ASK (0) 

message to its parent Node 0 to ask it to log in 0. Node 0 in 

turn sends a Request session (0) message to the root that is 

its parent.  

We notice again that the root opens the requested session 

when it receives the message from its children via an OS 

message; and those children forward the message to their 

descendants. This is the case of the root in the table 3 which 

sends the message OS (0) to his sons Node 0 and Node 1, 

who in turn send Node 00, Node 01, Node 02 and Node 10, 

Node11, Node 12 to their respective descendants. Finally, 

we note that if the nodes want to access a session, and no 

other node wants to access a different session, then these 

nodes can enter it concurrently. This is the case of Node 00, 

and Node 02 in the table 3. Hence the concurrent entry 

property (Efficiency) of group mutual exclusion algorithms 

is ensured. And if a node wants to access a session 0, then 

that node finally executes its critical section. This is the case 

of Node00 which solicited session 0. Hence the absence of 

blocking and consequently the property of Assured 

Vivacity. And also, in no case could two 

sessions of different open groups be observed at the same 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 6, November 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.4431052 24

2020 International Journal of Computer Science Issues



time: this shows the Security. This is the case of session 0, 

which is the only one open when the Node has solicited. 

From this discussion we can conclude that, it is possible to 

simulate the distributed algorithms of mutual exclusion on 

JADE in order to better analyse the results. 

 

6. Conclusion and future work 

The objective of this work was propose from the JADE 

multi-agent framework, an agent-based module for the 

simulation of distributed mutual exclusion algorithms. 

JADE is a simple and easy to use platform. It allows to 

implement a multi-agent system in a way that the agent 

behavior is easily understandable, modifiable, and is 

reasonable for implementing message-oriented applications 

that can be applied in reality. This flexibility allowed us to 

study the execution process of an agent and the interactions 

between these agents. On the basis of these studies, we 

proposed a module allowing to launch several agents in 

parallel on a machine by preparing them for the execution of 

distributed exclusion algorithms. We have also implemented 

and simulated two classical and group distributed mutual 

exclusion algorithms to verify the properties of these mutual 

exclusion algorithms. 

 

Our results should help researchers in the study of 

distributed mutual exclusion algorithms to perform their 

simulation on the JADE platform. The results obtained so 

far show that it is now possible to test or simulate the 

distributed mutual exclusion algorithm on the multi-agent 

JADE platform. 

 

In perspective, adjustments can still be made on the 

implementation of the distributed mutual exclusion 

algorithms from the JADE platform. We will study the 

behavior of JADE in terms of migration of agents for 

simulation in a dynamic system. 

 

 

 

References 
 

[1]http://nchc.dl.sourceforge.net/sourceforge/nsnam/. 

[2]http://www-verimag.imag.fr/˜devismes/sinalgo/. 

[3]http://www.risc.uni-linz.ac.at/software/daj/. 

[4] Swaroop A. Efficient group mutual exclusion protocols for 

message passing distributed computing systems. PhD thesis, 

National Institute of technology, Kurukshetra, Haryana, India, 

PIN-136119, october2009. 

[5] Fabien BADEIG. Un environnement actif pour la simulation 

multiagents. PhD thesis, Universite Paris Dauphine, septembre 

2010. 

[6] Datta A. Beauquier J., Cantarell S. and Petit F. Group mutual 

exclusion in tree networks. Journal of Information Science and 

Engineering, Vol.19: pp. 415–432, 2003. 

[7] Lars Lundberg Paul Davidsson Dawit Mengistu, Peter Troger. 

Scalability in distributed multi-agent based simulations:the jade 

case. Second International Conference on Future Generation 

Communication and Networking Symposia, 2008. 

[8] Tiziana Trucco Giovanni Rimassa Fabio Bellifemine, Giovanni 

Caire. JADE PROGRAMMER’S GUIDE. TILAB, formerly 

CSELT, University of Parma, 08-April-2010. 

[9] Ferber. Les systemes multi-agents, vers une intelligence 

collective. Inter Editions,1995. 

[10] H.Casanova. Simgrid: a toolkit for the simulation of 

application scheduling. Proceedings of the First IEEE/ACM 

International Symposium on Cluster Computing and the Grid 

(CCGrid2001), Brisbane, Australia, pages 15–18, May 2001. 

[11] ENOUDINA LAZHAR. Modélisation et simulation basees 

multi-agents du contrôle de processus industriels. phd thesis, 

universite 20 aout 1955skikda, 2009. 

[12] Julien Sopena. Algorithmes d’exclusion mutuelle : tolérance 

aux fautes et adaptation aux grilles. PhD thesis, December 2008. 

 

 

M. SENOUA César is a researcher in computer engineering. He is 

currently a researcher at the National Institute of Cartography/MINRESI, 

Cameroon. He obtained his master’s degree in 2014 from the University of 
Ngaoundere in Cameroon. His current research focuses on distributed 

systems, geographic information systems, multi-agent systems. 

 

Dr. KAMLA Vivient Corneille is a Lecturer in the Department of 
mathematics and computer science in the National school of agroindustrial 

sciences, University of Ngaoundere, Cameroon. He is a holder of a  Ph.D 

degree in Applied Mathematics in 2008 from the University of Yaounde 1 
in Cameroon and the University of Pau and Pays de l’Adour (UPPA), in an 

international joint supervision. His current research interests include multi-

agent systems, distributed systems, simulation and modeling. 

 
Pr. Blaise Omer YENKE is a Senior Lecturer and researcher in computer 

engineering. He is the head of Department of computer engineering at the 
University Institute of Technology, University of Ngaoundere, Cameroon. 

He obtained his Ph.D. degree in computer science in 2010 from the 

University of Yaounde 1 in Cameroon and the University of Grenoble in 
France, in an international joint supervision. His current research interests 

include HPC, distributed systems, fault tolerance, sensor networks design 

and sensor’s architecture. 

 
Pr. KAMGANG Jean Claude is a Senior Lecturer and researcher in 

mathematic. He is the head of Department of mathematics 

and computer sciences in the National school of agroindustrial sciences 
University of Ngaoundere, Cameroon. His current research interests 

include Epidemiology Mathematics, control, dynamic systems, modeling 

and analysis of dynamics. 

IJCSI International Journal of Computer Science Issues, Volume 17, Issue 6, November 2020 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org https://doi.org/10.5281/zenodo.4431052 25

2020 International Journal of Computer Science Issues

http://nchc.dl.sourceforge.net/sourceforge/nsnam/
http://www.risc.uni-linz.ac.at/software/daj/



