
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

176

University Grades System Application using Dynamic Data
Structure

Nael Hirzallah1, Dead Al-Halabi2 and Baydaa Al-Hamadani3

 1 Computer Engineering, Fahad Bin Sultan University
Tabuk, Saudi Arabia

2 What is Next
Amman, Jordan

3

Abstract

Most e-Learning platforms implemented in educational institutes
provides a tool for instructors to enter the grades and for students
to view them. This tool with the appropriate workflow is
considered one of the most sensitive and important applications
in any University Information Management System.
Consequently, implementing this tool should consider the fact
that it must be flexible and adaptable from time to time. This
paper focuses on evaluating few different approaches to
implement such a tool that belong to a so-called Static Approach.
It also discusses the limitations of this approach. The paper then
introduces a different, yet dynamic approach to implementing a
Grades System Tool. An analytical study of the efficiency of the
suggested system is also presented.
Keywords: Dynamic Grades Tool, Static Grades Tool, Data
Structure, Grades System.

 University of Huddersfield
Oldham, UK

1. Introduction

Many educational institutes are moving towards
implementing a full e-Learning platform that offers state-
of-the-art tools for students, academic and administrative
staff, as well as the university community at large. Among
the tools that are considered important is the virtual driving
force for students, which is the one used to manage the
Grades. This tool is used to record the worthiness of
students’ efforts during a semester. Therefore, there is a
demand to increase the trust in a university Grades Tool
(GT) by most parties involved in the higher education
process, such as, Teachers, Students, Managers, and
Administrators, [1, 2]. A GT has to be able to adopt new
development strategies and accompany the modernization
in its background and planning, in order to achieve its
objectives, [2, 3]. It has to be built using a strong, efficient,
and customized system to enable efficiency in time and

efforts to all high education partners. Furthermore, saving
time and money by an institution is one of its top priority
requirements. Besides, recognizing new techniques and
continuous development in the university sub systems
indicates the growth of the institution reputation in local
and global societies. This is considered by executives as an
important marketing feature, [4, 5].

In this paper, two GT running in two different universities
will be discussed. These tools are labeled as static due to
their inability to adopt new Grading System policies to a
certain extent. The paper then introduces a dynamic grades
tool approach that depends on linked list structures in its
implementation. The advantages of such approach over
static GT will be discussed, as well.

The paper is organized as follows: section two summaries
the Grading System policies used in Jordanian universities.
Section 3 presents a study of two existing GT’s that are
using the static data structure approach. In section 4, the
paper introduces the Dynamic Grades Tool Approach
(DGTA) followed by a discussion on the requirements,
preparation, implementation, and performance of a DGTA.
Finally, in section 6, the paper draws its conclusion.

2. Grading systems

2.1 University’s Grading Policy

All Jordanian universities use either percentage or point-
for-weight grading systems (i.e. letter grade system) [2, 5].
Table 1, [3], shows the basic transfer scheme from a

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

177

percentage grading system to a point grading system that
exists in Jordan.

Table 1: Basic grade scheme used in Jordan.

The Jordanian Grading Systems (GS) policy states the
following issues, which should be considered by any GT
[4]:
1. GS applies a numerical grade system in addition to the

letter grade.
2. Every instructor is responsible for the following:

entering student grades, evaluating students work,
judging the course progress for her / his courses, and
changing or modifying the final reported grades.

3. Every instructor is responsible for evaluating student's
written documents or oral discussions.

4. Instructor (s) can make the grade more specialized,
pursuant to his/her rights and authority given by the
educational institute s/he works in.

5. All the oral evaluations have to be graded.
6. All sub grades have to be entered into a GT.
7. Course instructor (s) has the responsibility to enter

valid data. Data have to be in the range of [minimum,
maximum]. Also, s/he must make sure that the data are
verified, accurate, and consistent.

8. Grades have to be accepted and verified at the
department level and then at the faculty level.

2.2 The Value-Driven Meaning of Grades

GS is changeable and variant from time to time according
to a given course specific policy. The transfer between a
numeric GS to a letter GS or vice versa is possible and
often needed.

There are two major paths for evaluating student's work in
terms of percentages: either summative or formative. Both
metrics should give indication of the imagination,
creativity, and skills necessary for the rapidly changing
requirements of modern social life.

Thus, any assessment criteria should guarantee the
following:

1. Fairness
2. Validity
3. Reliability

The summative assessment is based on the overall
summation of sub-activities that had occurred during a

semester for a particular course. It involves written paper,
such as 1st, 2nd, and Mid exams, assignments, essays,
tutorials, quizzes, self reading materials, and class projects.
On the other hand, the formative assessment is a self-
reflective process for a student. It is based on class
discussions, questions, and seminars. The Final grade can
be a mix between summative and formative; its assessment
shall be at the end of the semester [8].

3. Existing Grads Tools

The observations discussed in this section are based on the
experience gained by working on various systems in
different institutions as a user with the role of an instructor.
Static GT (SGT) is a client/ server application. Client
sends and receives the required class information that
belongs to an instructor. The user screen will be filled with
the required information by opening a channel with the
server.

There are three types of universities in Jordan: public,
private, and distance higher education, [5]. The discussion
will focus on two of these universities, labeled in this paper
as “A” and “B”. University “A” is a public university and
“B” is a private one. University “A” uses letter grades,
while “B” uses percentage grades. University “A” has two
policies for obtaining the final grade. The first one states
that the final grade is divided into: 1st Exam, 2nd Exam,
course-work, and a Final exam. While in the second policy,
the final grade is divided into: a Mid exam, course-work,
and a Final exam. On the other hand, University “B” has
only one policy to obtain the final grade: 1st exam, 2nd
exam, course-work, and a Final exam.

The detailed weight distribution for each sub grade was
left flexible and usually set by either the department or the
instructor. Different course weight division may exist. One
example is (15, 25, 10 and 50), while another one has (20,
20, 10 and 50).

In University “A”, which uses letter grades system, the
course weight distribution may be changed from one
semester to another.

Figure 1 shows a snapshot of a weight distribute of one
course offered by University “A” in one semester. The
screen is divided into two blocks; the above one acts as a
list of templates. One may select a course template then fill
the sub weights values in the second block below it.

Scale U.S. Grade Equiv.
80-100 A
70-79 B
50-69 C
0-49 F

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

178

Figure 1: distribute grades weight in “A” under SGT.

Figure 2 shows another snapshot of an SGT screen from
university “A” that allows instructors to enter grades for a
specific course section. The screen illustrates the
relationship between the course section and the student list
that belongs to that section. The screen includes the
following information: the teacher name, academic year,
course number, section number, lecture room, semester
number, and lecture time. It also includes student number,
student name, 1st, 2nd, and 3rd grades, course work, and
the Final exam. The last two columns are for the total
grade, one in percent and the other in letters.

Figure 2: university “A” SGT entering grade screen.

University “B” uses percentages for evaluating the work of
students in a semester. Sub grade weights are to be figured
out from the data rather than from the system. There was
no checking for exceeding the sub grade limit weight, if
any, except at the end, when computing for the total grade
out of 100. For example, if all entered grades of one exam
are between [0, 20] then one may conclude that the
maximum grade for that exam is 20. Figure 3 shows a
snapshot of a screen of the SGT that allows instructors to
enter grades for a course section in a semester.

Figure 3: snapshot of screen of SGT of university “B”

The screen in Figure 3 is like that of Figure 2. It includes
the following information: semester number, course
number, section number, and the credit hours for the given
course. It also contains: students’ numbers, students’
names, first and second grades, course work, final exam
and total grade. The second last column describes the
students situation in the course in terms of Withdraw,
Absent from Final Exam, or Denied.

Generally speaking, static data structure implementation is
easy to deal with and fast to implement. Its data access is a
straight forward process; only a direct location is needed to
obtain the data, such as the index value. There is no time
wasted and an indexing schema can be used to organize its
access time.

The main disadvantage is the waste of unused memory.
Take for example the following scenario: if a course has its
evaluation metric (Exam1, Exam2, Course-Work, and a
Final exam) for 80 students, this means that there is a need
for four columns multiplied by 80 records, which equals to
320 memory fields. Assume another course that is
distributed as: mid-exam, Course-work, and a Final exam,
for 80 students. This would need 3 columns multiplied by
80 records which equals to 240 fields. Therefore, if the
system is set to have statically 320 fields, this would
results in 80 wasted fields. In other words, the system
creates k-columns even if the number of needed ones is
less than k, in order to accommodate the worst case
scenario. This is of course for one course. Now, assume
that you have N-courses, then there will be 80 X N wasted
fields.
Moreover, a waste in memory would result in delays in the
access times when retrieving data under heavy load
conditions. This would affect application ranking as it
considers strongly page-load speeds.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

179

4. Suggested proposal for DGT

4.1 Dynamic features

The theory behind dynamic allocation is based on the
following statement: only what is necessary to build will be
built. Thus, there is no need for unusable storage to be
created, and no memory to waste.

Access and retrieving times are the most important features
to be considered. The difficulty in implementing a system
based on dynamic approach comes from analyzing and
considering the risks that may occur due to scenarios that
are rare to occur.

Dynamic approach takes in its consideration time and
storage factors. Storage retrieving mechanism should exist,
in addition to focusing on time scheduling.

4.2 DGT Procedures

The main two features concerned in dynamic approach that
depend on each other are space and time. Figure 4
illustrate this relationship. Assume the x-axis represents
time and the y-axis represents memory size allocated. The
figure shows ascending relationship between them. That is,
by time the memory space needed increases. Yet there is
no fixed rhythm for dynamic approach as it is in the case of
the static approach. Note that the memory size needed by
the end of a semester for the same class in both approaches
are the same. However, in the static approach the memory
gets allocated at early times, while in the dynamic
approach, it gets allocated by time. This will have a good
effect on the complexity and access time.

Figure 4: data size for static and dynamic structures

The main steps to populate a DGT with data are as follows:
1. Preparation: Identify the essential data and build

the corresponding data structure.

2. Grading: For sub-grade 1, build the dynamic data
structure associated with it and fill it with the
proper data.

3. Repeat step two for subsequent sub-grades, say
second exam, first quiz, first assignment, and so
on, till the Final exam.

For step one, prior to a semester, students register in a
section for a course. The course coordinator usually sets
the weight of each sub-grade. For example the first exam
gets a weight of W1, the second exam gets W2, and so on
up to Wk , where k is the number of sub-grades. One
scenario could be as follows: (W1=10, W2= 20, W3=5,
W4=15 and W5= 40) where k =5.

Step two can be accomplished automatically at its
previously assigned time, as stated in the course syllabus,
or manually by the course coordinator.

Figure 5 shows how the data structure of such a system
would look like. It has an array of pointers that has the size
of N, where N represents the number of students registered
in the class. Each pointer links the array with a structure
that contains the student’s number and a pointer to a link
list for the student's grades. In what follows, the C++
notations will be used.

 StudRecord

StudNumber
* ptr

Struct StudRecord {
 int StudNumber
 GradeRecord *ptr
}

 GradeRecord

Description
Mark
* ptr

Struct GradeRecord {
 String Description,
 float Mark
 GradeRecord *ptr
}

 StudRecord

200910037
* ptr

Array of Class Students

 StudRecord

200915032
* ptr

 StudRecord

200910037
* ptr

 StudRecord

200920011
* ptr

 GradeRecord

First
12.5
* ptr

 GradeRecord

Second
11

* ptr

Figure 5: DGT data structure

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

180

Step two procedure is illustrated in Figure 6. The
procedure gets the number of sub-grade to be entered and
assigns it to i. For all the students in the class (1 to N) the
sub-grade value is entered separately. Each value is
checked against its maximum value, which is Wi. If it is
validated, a new node of type GradeRecord will be created
and initialized.

4.3 Performance Analysis

The rapid changes in the GS policy have to be reflected in
the tool or application. A classical evaluation of the
student work, that is, using three written exams namely:
first, second and final, would be probably better
implemented if using a GT that uses static data structures,
SGT. This suitability comes from the ascending
relationship between the mostly fixed measurements
requirements and static data structures, [5]. The problems
arise when there are many student works evaluation
schemes rather than just one or two. For example, TMA
(Tutor-Marked Assignment) is a vital example in student
work evaluation environment that usually varies in number
and weight from one section to another, from one course to
another, and from one semester to another [7].

Grade
Procedure

i = sub-grade #
X = 1

A = new
GradeRecord

B = Null

N = # of Students
A = B = Null

A.Next=B

G=Enter Grade

G > Wi

Output Error

A.Grade = G
X++; B=A

X > N

End

No

Yes

Yes

No

Figure 6: Flow chart of Grading procedure

Therefore, the GT is a changeable tool that has to provide
a capability to understand the new non-functional and
functional requirements in order to be able to support
efficiency, reliability, portability, usability, performance
and space, in addition to validation, accuracy, and
consistency of data (grades - functional requirements that
depend on the system domain). For that DGT is a more
suitable solution under the requirements changing
condition.
In this section we present an analytical module to study the
worthiness of implementing the suggested solution
methodology of adopting dynamic data structure in GT in
terms of complexity (big-O and memory size).

Big-O analysis depends on the run time of the application.
DGT is a client-server tool or application, and it is
assumed that the computation for a DGT is done on the
server side. It is also assumed that the network
infrastructure is well built to eliminate communication
negative factors, as well as has negligible page-load
timings.

For the analysis, the following specific assumptions were
considered:

• A course has four weights, k=4, that is W1, W2,
W3 and W4.

• All algorithms had been run and the computation

of big-O is based on the fact that the procedures
have reached the final exam. (i.e. complete course
evaluation).

The O (F(N)) = Big-O for preparation algorithm added to
it the Big-O for the mid-term (W1) grade, added to it the
Big-O for course work (W2) grade, and so on. The
preparation procedure will pass on every cell in the array
and fill it with the student number and a null pointer for the
grade list. This process will take O(N). While the Grading
procedure will pass on every student in the list and add the
corresponding grade as required, (such as adding item in a
linked list). This process will take O(i) where i is a
constant to indicate the number of sub-grades for one
student to evaluate. For N students, this will yield O(N).
Thus, O(F(N)) will result in the following:

O (F(N)) = O(N)

A brief comparison was made between SGT (existing
system) and DGT (suggested solution) based on the
processing time and memory size. In SGT with respect to
memory, it remains the same throughout the application
life time. Thus, the memory size is of the order of Big-O (c
X N), where c is a constant that represents the number of
fields to be entered (5 in our earlier assumption).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
ISSN (Online): 1694-0814
www.IJCSI.org

181

While in the suggested solution, the amount of memory
used depends on time. As an example, the number of fields
to be created for the first exam at time t1 will be N. Later,
another N fields will be created for the second exam at
time t2.

Memory complexity in DGT is observed to be reduced.
Also there is an obvious reduction in the processing time
as well, due to less memory being used.

5. Conclusion

The paper has presented the importance of the right
implementation to a Grades Tool. Couple of real
implementation examples was discussed that belong to
traditional static programming habit (array of records).
Such approach was labeled Static Grades Tool (SGT), and
its limitations were presented. The paper then presented
the use of dynamic data structures (array of link-lists) in
such applications, labeling them as Dynamic Grades Tool,
(DGT). A reduction in storage and processing times were
the driving factors. Moreover, an analysis on the run time
using big-O method gave good indicators on the
superiority of DGT over SGT.

References
[1] http://www.ju.edu.jo/units/registration/Home.aspx, Last visit

20-4-2010
[2] http://www.uop.edu.jo/admission/Default.aspx?lang=en&lo

cation=admission, last visit 20-4-2010
[3] http://www.wes.org/gradeconversionguide/
[4] http://www.uop.edu.jo/Admission/Grading.aspx?lang=en&l

ocation=FS, last visit 20-4-2010
[5] Software & Systems Requirements Engineering: In Practice,

Brian Berenbac, daniel j. paulish, juergen kazmeier, arnold
rudorfer, Mnc raw hell, 2009.

[6] Data Structures and Algorithms in Java, Michael T.
Goodrich, Roberto Tamassia, John Wiley & Sons, 4TH
edition, 2006

[7] http://www.open.ac.uk/assessment/pages/tma-submission-
methods.php, last visited 30-5-2010

[8] http://www.nmsa.org/Publications/WebExclusive/Assessme
nt/tabid/1120/Default.aspx, last visit 30-5-2010

[9] Distributed systems: Principles and Paradigms, Andrew S.
Tanenbaum and Maarten van steen, prentice Hall, 2nd
edition, 2002

[10] Principles of Distributed database systems, M. Tamer Ozsu
and Patrick Valduriez, 2nd edition, 1999

http://www.uop.edu.jo/Admission/Grading.aspx?lang=en&location=FS�
http://www.uop.edu.jo/Admission/Grading.aspx?lang=en&location=FS�

