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                                Abstract 

   In this paper, a new quintic spline method developed for computing 
   approximate solution of differential equations. It is shown that the present 
   method is of the order three and four derivatives and gives approximations 
   which are better. The numerical result obtained by the present method has 
   been  compared with the exact solution using C++ programming and also 
   illustrate graphically the applicability of the new method. By getting the 
   advantages of the mathematical building functions like pow (for power), 
   exp (for exponential),…etc. are provided in C++ programming library, all 
   processing steps are done efficiently and illustrated as Pseudocode model. 
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This method enables us to approximate the solution as well 

as its first and third derivatives at every point of the range of 

integration. We proved that this new method gives better 

numerical results than the previous known results. In recent 

years, Al-Said and Noor [2, 3], Khalifa and Noor [4] and 

Noor and Al-Said [5, 6] have used such types of penalty 

function in solving a class of contact problems in elasticity 

in conjunction with collocation, finite difference and spline 

techniques. 

The general fourth order initial value problem considered is 

of the form   

functions, Pseudocode.   

1. Introduction 

 A method for approximate solving initial value problems 

proposed for differential equations. In fact, this method is a 

variant of the well-known method of spline interpolation 

considered in [1]. A principal difference between 

considerations in [1] and ours is that, the new case of 

lacunary interpolations with others boundary conditions. 

∞<<∞−=+ xxgyxfy ,)()()4(                     (1)    

With the boundary conditions  

.)(and)(,)(,)( 00000000 yxyyxyyxyyxy ′′′=′′′′′=′′′=′=  (2) 

 Where 1,00 == nxx and that )]1,0([ 41 RCf n ×∈ − , 

and  that f is Lipschitz continuous in 
)4(and,,, yyyyy ′′′′′′ , similarly for the third order 

initial value problems. 

       The aim of this paper is to construct a new spline 

method based on a quintic spline function that has a 

polynomial part and to develop numerical methods for 

obtaining smooth approximations for the solution of the 

problem (1) subject to the initial conditions (2).  
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The existence and uniqueness for spline function of degree 

five which interpolate the lacunary data (1, 3) is presented 

and examined in Section 2, we derive the numerical method 

and briefly discuss its error analysis theoretically in Section 

3. Convergence analysis for second order, fourth order and 

fifth order methods is established in Section 4. Numerical 

results are presented to illustrate the applicability and 

accuracy their practical usefulness with C++ programming 

in Section 5. One of the C++ programming powerful 

includes (cmath) header file. The cmath header file provides 

a collection of functions that enables programmer to perform 

common mathematical calculations [7]. The instructions 

(codes) are illustrated in Pseudocode. Pseudocode is a 

compact and informal high-level description of a computer 

programming algorithm that uses the structural conventions 

of a programming language, but it is intended for human 

reading rather than machine reading [8]. 

 
2. Explanation of the Method 

 
We consider a mesh with nodal points the jx on ],[ ba  
such that;  

bxxxxa nn =<<<<=∆ −110 ...:  where 

1−−= jj xxh , nj .,..,2,1,0= . Also we denote a quintic 

spline function )(xS∆ , interpolating to a function y(x) 
defined on [a, b] is such that: 
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11)( ++ = iii yxS , 11 )( ++ ′=′ iii yxS and 11 )( ++ ′′′=′′′ iii yxS   (4) 
                                                                    

On the last interval ],[ 1 nn xx − we define )(1 xSn−  as 

follows: 
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Where 6and5,3,1,,1 =− ja jn ,  unknowns are to be 

determined. 

Theorem 1: Existence and Uniqueness Spline Model 

Gives the real numbers ,)()(
i

r xy i=0, 1, 2,…, n and r= 0, 

1, 3 and )()( 0 nxyandxy ′′ then they exist a unique 

spline function of degree six from equations (3)-(5) such 

that: 
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Proof: For whole interval ],[ 1 ii xx −  where 

ni .,..,2,1,0= . Assuming y(x) to be the exact solution of 

the equation (3), obtained by the spline (x)Si , along with 

the continuity condition of the first and third derivatives at 

]x,[x i1-i in (4), the following consistency relations are 

derived: 
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Solving the above system, the coefficients of )(xSi on the 

interval [xi,xi+1 2,....,3,2,1 −= ni] for . 
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By solving these equations, we see that the 

coefficients ina ,1− ; i=2, 4 and 5 are uniquely determined, 

since we have three equations and three unknowns, and 

finally, we can find the coefficients of )(1 xSn− similarly in 

the interval [xn-1,xn

)(xS

]. Hence the proof is complete.   

 

    3. Convergence analysis 
 In this section, we investigate the convergence 

analysis of the quintic spline method described in Section 

2.For this purpose, the error bound of the spline function 

 which is a solution of the problem (3) and (4) is 

obtained for the uniform partition I by the following 

theorem: 

Theorem 2: Let ]1,0[6Cy ∈ is the exact solution of the 

differential equations (1) and )(xS be a unique spline 

function of degree five which a solution of the problem (3) 

and (4). Then for ],[ 1+∈ ii xxx ;  i=0,1, 2,…, n-1, we have 
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where )(6 hW  denotes the modules of continuity of )5(y , 

defined by { }10;)(max)( 66 ≤≤= xxWhW  

Proof: 

Let ],[ 1+∈ ii xxx where i=1, 2, …, n-2.  

From equation (4) and the Taylor’s expansion formula, we 

have 
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)()( )5(
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fhWhxyxSi ≤−  

This proves Theorem 2 for ],[ 1 ii xxx −∈ , similarly we can 

obtain the result for ],[ 1 nn xxx −∈ .  This completes the 

proof. 

3. Illustration Examples: 
 
 
This section, several numerical examples are given to 

illustrate the properties of the method and all of them were 

performed on the computer using a program written in [7, 

8]. The absolute errors in Tables 1–2 are the values of  

| )(- y(x)| xS  at selected points, and also the following 

figures are shown that if increases of the order derivatives 

increases the errors. 

Problem 1: we consider the initial value problem yy =)5(  

where ]1,0[∈x  , 

,0)0()0()0()0()0( )4( ==′′′=′′=′= yyyyy  clearly 

that, the exact solution is  

 xexy =)( .  

The Pseudocode of problem 1 is: 

   for ( i = start point  to  end point , increase start point by h    

           for each step)  

          { 

Step 1: Find   

1y = y 0
'
0y+(h* )+((pow(h,2)/2)* ''

0y )+((pow(h,

3)/6)* )0(y ′′′ )+((pow(h,4)/24)* )0()4(y )+ 

((pow(h,5)/120)* )5(y (0)) 

'
1y = '

0y +(h* ''
0y )+((pow(h,2)/2)* )0(y ′′′ )+((pow

(h,3)/6)* )0()4(y )+((pow(h,4)/24)* )5(y (0)) 

1y ′′′ = )0(y ′′′ +(h* )0()4(y )+((pow(h,2)/2)* 

)5(y (0)) 

Step 2: Find   

S ′′ =(5/pow(h,2))*( 1y + 0y )+(1/(2*h))*(7*

'
1y +(3* '

0y ))+(h/24)*(3* 1y ′′′ -25* )0(y ′′′ ) 

S (4)
1y=(60/pow(h,4))*( - y 0

'
1y

)-

(30/pow(h,3))*( + '
0y )+(1/(2*h))*(7* 1y ′′′ + 

3* )0(y ′′′ ) 

S (5)
1y=(120/pow(h,5))*( - y 0

'
1y

)-

(60/pow(h,4))*( + '
0y )+(5/pow(h,2))*( 1y ′′′ +

)0(y ′′′ ) 

Step 3: Find 

              ''y  =(0.5)*((exp(h)+exp(-h)))  

             y (4) ''y =   

             y (5) 

S ′′

= (0.5)*(exp(h)- exp(-h)) 

Step 4: Find 

          Error 2 =  -   ''y  

          Error 4 = S (4) y - (4) 

               SError 5 = (5) y - 

0)4()5( =+′−− yyyy

(5) 

Step 5: Print  Error 1 , Error 2 , Error3  respectively. 

} 

 
 
Problem 2: Consider that the fifth order boundary value problem 

 where ]1,0[∈x  , 

and0)0()0()0()0( )4( ==′′′=′= yyyy  1)0( =′′y  the exact 

solution is )cos(
2
1

4
1

4
1)( xeexy xx −+= −  

 
The Pseudocode of problem 2 is: 

   for ( i = start point  to  end point , increase start point by h  

          for each step)  

          { 

Step 1: Find   
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1y = y 0
'
0y+(h* )+((pow(h,2)/2)* ''

0y )+((pow(h,

3)/6)* )0(y ′′′ )+((pow(h,4)/24)* )0()4(y )+ 

((pow(h,5)/120) * )5(y (0)) 

'
1y = '

0y +(h* ''
0y )+((pow(h,2)/2)* )0(y ′′′ )+((pow

(h,3)/6)* )0()4(y )+((pow(h,4)/24)* )5(y (0)) 

1y ′′′ = )0(y ′′′  + (h * )0()4(y ) + ((pow(h,2) / 

2) *  )5(y (0)) 

 

Step 2: Find   

S ′′ =(5/pow(h,2))*(- 1y + 0y ) 

+(1/(2*h))*(7* '
1y +(3* '

0y ))+(h/24)*(3* 1y ′′′ -

25* )0(y ′′′ ) 

S (4)
1y=(60/pow(h,4))*( - 0y )-

(30/pow(h,3))*( '
1y + '

0y ) 

+(1/(2*h))*(7* 1y ′′′ +3* )0(y ′′′ ) 

S (5)
1y=(120/pow(h,5))*( - 0y )-

(60/pow(h,4))*( '
1y + '

0y )+(5/pow(h,2))*( 

1y ′′′ + )0(y ′′′ ) 

 

Step 3: Find 

              ''y  = exp(-h)) 

             y (4) ''y =   

             y (5) 

S ′′

=  -(exp(-h)) 

Step 4: Find 

          Error 2 =  -   ''y  

          Error 4 = S (4) y - (4) 

               SError 5 = (5) y - 

Table (1): Maximum errors in solution of problem 1 

(5) 

Step 5: Print  Error 1 , Error 2 , Error3  respectively. 

} 

 

 
h E E(2) E(4) (5) 

0.1 1.62 * 10 9.49 * 10-4 9.01 * 10-2 -1 

0.05 2.06 * 10 4.85 * 10-5 9.59 * 10-2 -1 
0.01 1.58 * 10 3.69 * 10-7 2.65 * 10-2 0 

 
Table (2): Maximum errors in solution of problem 2 
 

h E E(2) E(4) (5) 

0.1 9.9996 * 10 4.8766 * 10-2 9.3849 * 10-3 -2 
0.05 5 * 10 1.409 * 10-2 3.8843 * 10-3 -2 

0.01 1 * 10 2.6651 * 10-2 16.411 * 10-2 -1 

 
 
The following figures observe the numerical results with 
respect two orders of derivative: 
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Absolute Error Graph for problem 1, when h = 0.05
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           5. Discussion: 
 

         A new technique, using the Taylor series, to 

numerically solution the pantograph equations is presented. 

It is observed that the method has the best advantage when 

the known functions in equation can be expanded to Taylor 

series with converge rapidly. In order to get the best 

approximation, we take more terms from the Taylor 

expansion of functions; that is, the truncation limit N must 

be chosen large enough. 

On the other hand, from Table 1, it may be observed that the 

solutions found for different h show close agreement for 

various values of x. In particular, our results in tables are 

usually better than the other methods, are shown in the 

above figures. Another considerable advantage of the 

method is that Taylor coefficients of the solution are found 

very easily by using the computer programs. 
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