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Abstract 
Clustering schemes offer a practical way of providing scalability 
when dealing with large and dense Mobile Ad hoc Networks 
(MANETs). The feasibility of a clustering method can be 
primarily determined by the complexity of the cluster head 
selection. Optimizing the cluster head selection allows for the 
network to be more efficient by minimizing the signaling 
overhead while ensuring that the network connectivity is 
maintained despite topology changes. In this paper, we 
investigate the problems of cluster head selection for large and 
dense MANETs. Two variants of the cluster head selection are 
examined: (1) the distance-constrained selection where every 
node in the network must be located within a certain distance to 
the nearest cluster head; and (2) the size-constrained selection 
where each cluster is only allowed to have a limited number of 
members. We show that the problem of minimizing the set of 
cluster heads is NP-hard for both variants. We propose two 
distributed selection algorithms, each having logarithmic 
approximation ratio, for these variants. We also discuss, using 
simulations, the resulting cluster size distribution and cluster 
head density, which impact the efficient operation of the network. 
Keywords: MANET, scalability, clustering algorithms, 
complexity, NP-complete. 

1. Introduction 

In the near future, the US military's Joint Tactical Radio 
System (JTRS) [1] is expected to create radios that work 
together to form autonomous ad hoc networks. Also, the 
US DARPA's Wireless Network after Next program 
(WNaN) [2, 3] aims at developing technologies and 
concepts enabling the deployment of massively dense 
networks. The technology created by the WNaN program 
is expected to provide reliable and highly-available 
battlefield communication systems at low operating cost. 
As a result, there will be challenges for routing protocols 
to support distributed and adaptive network operations in 
these large, dense and scalable MANETs. 

Out of many existing MANET routing protocols, 
OLSR [4] is being considered as a very potential candidate 
for IETF standardization and for military networking 
deployment. OLSR is a proactive protocol, which means 
the node knowledge about the network topology is 
periodically refreshed. 

When the size of the network grows, the amount of 
signaling overhead also increases to maintain the topology 
updates. One of the main issues of a MANET's routing 
protocol is hence its capacity to scale on large and dense 
networks. The two most popular techniques to reduce 
signaling overhead in MANETs are Fish Eye [5, 6] and 
clustering [7]. 

With the Fish Eye technique, the frequency of 
topology updates is inversely proportional to the distance 
to the updating source. Instead of sending signaling 
messages to distant nodes at the same rate as to nearby 
nodes, Fish Eye modifies the routing protocols such that 
these messages are only forwarded at a lower rate beyond 
some distance thresholds. A strong advantage of the Fish 
Eye technique is that the routing protocols can easily be 
modified to enable Fish Eye capability in practical 
implementation. Also, Fish Eye routers do not need extra 
network interfaces to relay information as compared to 
cluster heads' requirement in some cluster-based 
techniques. However, the Fish Eye technique still keeps a 
flat network architecture. Thus, every node still relays 
signaling messages for every other node, less frequently 
though. 

In cluster-based routing, the network is divided into 
clusters. Each cluster has a cluster head (CH) node and 
some ordinary member nodes. MANET routing protocols 
are run in each cluster and their signaling messages are to 
propagate only within the cluster. The CHs notify each 
other about their cluster's members frequently using a 
different communication channel. Inter-cluster 
communications are relayed by CHs. The CHs may in turn 
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form another MANET and be clusterized to an upper level 
if needed. 

In order to reduce the overhead of the CH 
communications, the number of clusters must be 
minimized in the whole network. The CHs are thus spaced 
out to cover all nodes of the network and this also 
improves the spatial reuse of CH intra-communications. 
Therefore, most cluster-based techniques form non-
overlapping clusters where CHs have multiple network 
interfaces with different communication ranges (e.g.: short 
range for intra-cluster and long-range for inter-cluster 
communications.) Notice that cluster-based technique can 
also be applied to MANETs where the nodes only have 
single network interface. In this situation, the inter-
communication between distant CHs takes place as point-
to-point communications. The traffic is then relayed by 
ordinary, intermediate nodes sitting between these CHs. 
While the network's communication performance can be 
different depending on the number of wireless interfaces 
each node has, the problem of CH selection is 
fundamentally unchanged. 

Compared to the flat network architecture inherent to 
the Fish Eye technique, the hierarchical structure of 
cluster-based routing is more suitable for a well-defined, 
multilevel tactical military network. In practice, the 
Hierarchical OLSR protocol (HOLSR [8]) has 
implemented a cluster-based routing mechanism for 
tactical MANETs. Figure 1(a) illustrates a combat unit in a 
tactical MANET. The combat unit includes a vehicle and 
the ground troops assigned to it. Communications between 
troops of different units are relayed by their vehicles. Each 
vehicle has two radio interfaces: short- and long-range. 
The short-range interface allows the vehicle to 
communicate with neighboring vehicles, with distances 
from hundreds meters to one kilometer. The long-range 
interface allows for communication with other vehicles 
farther than several kilometers. Each combat unit is 
represented by a node of the graph in Figure 1(b). The 
short-range radio interface allows units to form a multihop 
MANET. 

With cluster-based routing, three CHs are selected 
among the nodes in Figure 1(b). Each CH covers a cluster 
encompassing its direct neighbors. The CHs then 
communicate with each other using the long-range 
interfaces. Therefore, they may form another multihop 
MANET. The communications between nodes from 
different clusters are relayed by CHs. 

The CH selection is static in the current 
implementation of HOLSR. The CHs are chosen before 
the network's deployment. They broadcast messages 
inviting other nodes to join their clusters as a function of 
the nodes' distance to the nearest CH. No new CH is 
selected during the network's operation. This static 

selection may lead to problems of CHs' availability due to 
node mobility or due to CHs' failure. 

 
(a) A combat unit (equivalent to an HOLSR node). 

 

 
(b) Three CHs selected to cover all nodes. 

 
Fig. 1. Selection of CHs in a tactical MANET. 

   
In this paper we investigate the selection of CHs in a 

distributed environment such as MANET. We derive new 
results on the complexity and efficiency of two variants of 
the CH selection: distance-constrained and size-
constrained clustering. The analysis of our simulations 
allows for the recognition of some properties that are most 
relevant to the overhead and the performance of these 
networks. 

The rest of this paper is organized as follows. We 
present in Section 2 some existing work on CH selection 
in MANETs. The complexity of CH selection is 
investigated in detail in Section 3. We also present 
distributed algorithms to select CHs in MANETs. We 
analyze in Section 4 some properties of these algorithms, 
obtained by simulations, that are most relevant to the 
overhead and the efficiency of the network. Finally, we 
conclude this paper in Section 5. 

2. Related Work 

CH selection has extensively been studied in the literature 
of wireless ad hoc networks. It was showed in [9, 10] that 
using clusters for data-aggregation in large-scale sensor 
networks can significantly improve the sensors' lifetime. 
In [9], Heinzelman et al propose a protocol (LEACH) that 
allows nodes to select CHs using a distributed algorithm. 
Each sensor takes its turn as CH so that their energy 
consumption is balanced. LEACH ensures that the 
network has on average a fixed, predefined number of 
CHs at any time. Chen et al [10] improve this approach by 
first estimating the optimal number of clusters to 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

3

efficiently utilize data correlation of sensors. A new 
random CH selection algorithm is then proposed, aiming 
at minimizing the distance between the CHs and their 
members. 

Koshy et al [11] show that information entropy (used 
by the authors as a way to classify nodes as conservative 
or exploratory based on their activities) can also serve as a 
metric to form clusters. Nodes with low level of activities 
are more likely to become CHs. This method may 
therefore produce stable CHs. 

In [12], Xia et al propose a distributed CH selection 
protocol that forms clusters of nodes having similar sensed 
data in order to optimize the data aggregation at the CHs. 
Their protocol also considers including into the cluster the 
nodes located at any distance up to h -hops away from the 
CH. Thus, their work is closely related to our distance-
constrained CH selection with an additional constraint on 
the node's data similarity. 

Regarding MANETs, Chinara et al report in [7] an 
interesting survey on clustering algorithms, ranging from 
nodes' ID-based selection to mobility and connectivity 
metric-based selection. They show that while ID-based 
selection produces a fast and stable cluster setup, it suffers 
from the rigidness of the CHs' structure, because the same 
nodes are often selected independently of the network 
topology. Topology-dependent CH selection (based on 
mobility and connectivity metrics) can produce a more 
evenly distributed CH set. However, they may require a 
larger cluster setup time. An example of clustering based 
on mobility consideration is given in [13] by 
Konstantopoulos et al. 

We choose to consider the CH selection in this paper 
uniquely with the constraints related to the network 
topology graph, i.e. limiting the distance (in number of 
hops) between each CH and its members or limiting the 
size of each cluster. The reason behind those limitations is 
because other metrics (e.g.: energy, traffic load, mobility 
factors) can often be modeled using an appropriate 
weighted graph topology. For example: energy-saving CH 
selection in a network can be modeled by a CH selection 
in a weighted graph (the weight of each node is inversely 
proportional to its remaining energy amount) in which the 
sum of all CHs' weight is minimized. More generally, in 
graph theory, CH selection is studied with the dominating 
set problems [14]. 

Out of the two variants of CH selection that we present 
in this paper, the distance-constrained CH selection is 
cited as a known variant of the dominating set problem in 
[14]. Amis et al present in [15] a proof showing the NP-
completeness of this variant. The authors also propose a 
heuristic to select CHs based on the nodes' ID. However, 
this heuristic is known to fail to provide a good solution in 
some pathological cases, for example: when the nodes' ID 
are monotonically increasing or decreasing in a straight 

line. Also, the efficiency of the proposed heuristic, 
represented by the approximation factor of its result 
compared to an optimal solution, has not been investigated. 

The second variant that we examine in this paper, the 
size-constrained CH selection, is more related to the work 
done by Nam et al [16] where the CH selection tries to 
form clusters of equal size. Chatterjee et al [17] also 
propose a distributed clustering algorithm that takes into 
consideration various parameters such as ideal degree, 
transmission power, mobility, etc., while limiting the 
number of members in each cluster. 

To the best of our knowledge, there is no known result 
on the complexity of the size-constrained CH selection. 
Also, the existing work done on CH selection does not 
investigate the approximation factor of the proposed 
solutions for both problems that we examine. 

We present in this paper a proof showing the NP-
completeness of the size-constrained CH selection. A new 
proof, which is significantly shorter than the one in [15], is 
also presented for the distance-constrained CH selection 
problem. Moreover, we propose a distributed algorithm 
for each problem and show that they can achieve 
logarithmic approximation factors, which is known (see 
Feige [19]) to be best possible unless NP has super-
polynomial time algorithms. 

Notice that other variants of CH selection exist. For 
example, Kuhn et al [18] propose two algorithms of CH 
selection such that each node is a member of no less than 
k  different clusters to ensure fault tolerance. The study of 
these variants is beyond the scope of this paper because 
we are primarily concerned with the minimization of the 
number of CHs in the whole network. However, we 
acknowledge in our analysis that the number of clusters 
that encompass a node is a factor reflecting the robustness 
of the clustering scheme. 

Given the ad hoc nature of MANET routers and their 
low computational capacity, it is thus important that we 
investigate the complexity of these CH selection variants 
and propose distributed algorithms that can be applied to a 
tactical MANET environment. 

3. Cluster Head Selection 

We study in this section two variants of the CH selection 
for MANETs. The first variant selects CHs such that every 
dependant node is within a distance h  hops from the 
nearest CH. The second variant selects CHs such that the 
size of each cluster is not larger than  . We will discuss 
the complexity of both problems and derive distributed 
CH selection algorithms that are applicable to MANETs. 

In addition, a third variant, called distance-and-size-
constrained CH selection, which is a combination of the 
two variants described above, is also examined. 
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3.1 Distance-constrained CH Selection 

In this section we consider the selection of CHs in a 
MANET of n  nodes such that every node in this network 

is within distance h  hops of a CH, for a given positive h . 
Such a set of CHs is said to cover within h hops the whole 
network. It is natural to seek the minimum set of CHs to 
reduce the communication overhead between CHs. 

To start, we state a result on the NP-completeness of 
the decision problem of finding such a set of size no larger 
than k  CHs. Then, we present a greedy distributed 
algorithm allowing to select the CHs with an 

approximation factor of min(ln , ln )h n , where   is 

the maximum degree of the topology graph. 

3.1.1 Complexity 

Let = ( , )G V E  be a graph representing the network 

topology, | |=V n . Each vertex v V  represents a node 

and for all vertices ,u v V , ( , )u v E  if and only if 

two nodes u  and v  are direct neighbors. Let h  be a 
positive number, the minimum CH set of the MANET is 
then represented by the minimum set of vertices S V  

such that for every vertex u , either u S  or there exists 

a vertex v S  such that ( , )d u v h„ . ( , )d u v  denotes 

the shortest distance between nodes u  and v  in terms of 

hop. Such a set S  is called distance- h  dominating set of 

G  (cf. [14]). 

Notice that if = 1h  then the problem of finding such a 

minimum set S  is identical to the minimum dominating 
set problem, which is equivalent to the NP-hard minimum 
set cover in [20]. 

We examine the decision problem of the distance- h  

dominating set, defined as follows. Let <k n  positive, 

does the network admit a set of CHs of size at most k  

such that each node is either a CH or is within distance h  
hops away from a CH? One can see that such a set exists if 
and only if G  admits a distance- h  dominating set of size 

at most k . 
 

Theorem 1: The decision problem of the distance- h  
dominating set is NP-complete. 
 
Proof: It is easy to verify that this problem is in NP. Given 
a set S , | |S k„ , it can be checked in polynomial time 

that every vertex of G  is either in S  or within distance 

h  to a vertex in S  by calculating the shortest path from 

all vertices in S  to all vertices in \V S . 

To prove NP-completeness, we use induction on h  by 

reducing the problem distance- ( 1)h   dominating set to 

the problem distance- h  dominating set. Notice that this 

problem is known to be NP-complete when = 1h . 

Let = ( , )G V E  be a graph. We construct a new 

graph G  by extending G  in the following manner: for 

each v V , we add a new vertex v  and an edge 

connecting v  and v . Formally, = ( , )G V E    where 

= { | }V V v v V    and 

= {( , ) | }E E v v v V    . This construction is 

polynomial time. Our goal is to show that G  has a 

distance- ( 1)h   dominating set of size at most k  if and 

only if G  has a distance- h  dominating set of size at 

most k . 

Let S  be a distance- ( 1)h   dominating set of G  of 

size k . It is clear that S  is also a distance- h  dominating 

set of G . Because for each vertex \v V S , if v V  

then there is s S  such that ( , ) 1 <d s v h h„  by the 

definition of S . If \v V V  then v  is connected to a 

vertex *v V . Again, there exists s S  such that 
*( , ) 1d s v h „  in G  leading to ( , )d s v h„  in G . 

Now, let us assume that S   is a distance- h  

dominating set of G  of size k . We construct a set S  

from S   as follows. 

= ( ) { | \ }S S V s V s S V      . We have 

| | | |=S S k„  by construction and S  only contains 

vertices from V . For each \v V S  let s S  such that 

( , )d s v  is minimum. It is impossible that ( , )d s v h…  in 

G  since it would imply ( , ) 1d s v h  …  with v  the 

extended vertex of v  in G  and for all s S  , a 

contradiction of the definition of S  . Therefore, S  is a 

distance- ( 1)h   dominating set of G  of size at most k . 

3.1.2 Greedy distributed algorithm for CH selection 

There are many centralized algorithms to approximate the 
minimum dominating set (cf. [21, 22, 23]). However, it is 
known by Feige [19] that the minimum dominating set 
cannot be approximated within a ratio of (1 ) ln n , for 

any > 0 , unless NP has (log log )nnO  time algorithms. 
Therefore, known polynomial time approximation 
algorithms for this problem, which produce an 
approximation factor of ln n , are essentially best 
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possible. If the maximum degree of the network graph is 
 , then an approximation factor of ln  can be achieved. 

For a given positive h , we design a greedy, 
distributed algorithm appoximating the minimum 
dominating set for the selection of a distance- h  

dominating set. Let v  be a node, the distance- h  

neighborhood of v , denoted as ( )hN v , contains all 

nodes within h  hops from v . The distance- h  degree of 

node v  is ( ) =| ( ) |h hd v N v . Let ( )hW v  be the set of 

uncovered nodes in ( )hN v  and ( ) =| ( ) |h hw v W v . We 

assume there exists a distance- h  neighborhood discovery 

protocol that allows each node v  to know ( )hN v , 

( )hW v  and ( )hw u  for all ( )hu N v . Typically, for 

= 2h , the NHDP protocol for MANETs by Clausen et al 
[24] can easily be adapted to satisfy this requirement. 

Each node v  executes the following greedy algorithm 

to select the CHs according to the distance- h  constraint: 
 

Algorithm 
1. While v  is still uncovered: 

2. If there is ( )hu W v , u v , such that 

( ) = max( ( ) | ( ))h h hw u w z z W v  then send a 

message to ( )hW v  declaring the wish to select u  as 

CH. In case of a tie, then choose the node having the 
largest ID. 

3. If all nodes in ( )hW v  select v  as CH, then v  

sends a message to ( )hW v  to announce it is 

becoming a CH. v  is marked as covered. 
4. If v  has sent a message to select u  as CH and has 

received a message from u  announcing that it 
becomes a CH then v  is marked as covered. 

5. end while. 
 
In this greedy algorithm, at least one CH is selected 

after each round of its execution. To see that this is true: it 
is true for the first execution round in which there is at 
least one node u  selected by all its h -hop neighbors (at 

least the node u  with the largest ( )hw u  in the whole 

network will be selected.) Node u  then forms its cluster 
and this cluster is removed from the topology graph 
because the cluster's nodes are marked as covered. The 
algorithm is re-executed with this new topology graph. 

Therefore, the time complexity of the CH selection is 
at most linear in the size of the network. We also know the 
approximation factor achievable by this algorithm based 
on a similar result on the greedy set-covering algorithm in 

[21] (see also Chvátal [22]), to which the interested reader 
may refer for full details. 

 
Theorem 2: This greedy algorithm yields a dominating 

set of size of *(| | min(ln , ln ))hS nO , where *S  is 

the minimum distance- h  dominating set for the given 
instance. 

 
Proof: It is known from [21] that the greedy algorithm for 

the dominating set problem can achieve an H -

approximation. iH  is the i th harmonic number. If we 

expand the notion of neighborhood to consider all 
neighbors within h  hops, then the approximation factor 

becomes [ ]hH  where [ ] = (| ( ) |)maxv V hh N v n „ . 

On the other hand, we have: v V  ,  
1

=0

( 1) 1
| ( ) | 1 ( 1) = 1 .

2

hh
i

h
i

N v
   

     
 „  

Thus, [ ] min( , )hh n „  and 

[ ]

[ ] =1

1
= min(ln , ln ) (1)

h h
h i

H n
i



   „ O . 

3.2 Size-constrained CH Selection 

There is a major drawback with the previous selection of a 
CH set. Because this mode of selection is based solely on 
the distance constraint, it offers no control over the size of 
each cluster. If some clusters are too large and the CHs 
have to relay a high amount of control traffic for their 
dependants then congestions may occur in the network. It 
can directly impact the network's quality of service. 

Figure 2 shows the distribution of the cluster size for a 
network of = 100n  nodes with node density = 20 . 
This distribution is obtained by averaging the simulation 
results of 20000 random network scenarios. The CHs are 
selected according to the distance-2 constraint, i.e. each 
node is either a CH or is within 2 hops from a CH. The x -
axis depicts the size of clusters and the y -axis the 

percentage of nodes being in a cluster of that size. This 
percentage is calculated over 100 nodes and over 20000 
random scenarios that we simulated. We can observe that 
the cluster size's distribution is highly uneven: 62% of 
nodes in the network are in clusters that have more than 60 
dependants, whereas 29% of nodes are in clusters that 
only have 20 dependants or less. With the majority of 
nodes being dependants of large clusters, the network 
traffic can be congested due to the bottlenecks at the CHs. 
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Fig. 2. Distribution of cluster size for 100 nodes over 20000 scenarios. 

 

Therefore, we consider a second method of CH 
selection for MANETs, called size-constrained CH 
selection. Each CH is only allowed to include a maximum 
number   of nodes in its cluster. If some nodes in its 
neighborhood are still uncovered, then a new CH must be 
selected to cover them. We call this problem size-   
dominating set. 

Our goal is to seek a minimum set of CHs to reduce the 
overhead between them. Similar to the distance- h  
dominating set problem, we find that the decision problem 
for the size-  dominating set is also NP-complete for a 

general graph and 2… . We then present a distributed 
algorithm to select a small set of CHs with size constraint 
 . 

3.2.1 Complexity 

The decision problem of the size-   dominating set is 

defined as follows. Let <k n  positive, can the network 

be partitioned into at most k  clusters, each CH has no 
more than   dependants and is at distance 1-hop from its 
dependants? It is trivial that such a partition exists if and 
only if the network graph can be partitioned into at most 
k  subgraphs, each isomorphic to a star of degree at most 
 . 

Notice that if = 1  then the set of clusters becomes a 
maximum matching of the graph, which implies the 
problem can be solved in polynomial time using Edmonds' 
algorithm [25] for any graph. On the other hand, if  … , 
then it is equivalent to the classical NP-hard minimum 
dominating set problem. 

 
Theorem 3: The decision problem of size-  dominating 

set is NP-complete for all 2… . 
 

Proof: This problem is clearly in NP since it can be 
verified in polynomial time that each subgraph in a set of 
k  subgraphs is isomorphic to a star of degree at most  . 

To show that it is NP-complete, we reduce a general 
instance of the minimum dominating set problem to our 
problem. Notice that we only need to prove NP-
completeness for all graphs having =    , for any 

fixed 1… . 

Let 0 0 0= ( , )G V E  be a graph with maximum degree 

0  „ . We construct a graph G  from 0G  as follows. 

First, we create 0( )    copies of 0G , denoted as 

= ( , )i i iG V E  for 0= 1..( )i    . Each iG  is 

isomorphic to 0G . Let 0 0v V  be a node having 

maximum degree in 0G  (i.e. 0 0( ) =d v  ) and i iv V  

be the copy of 0v  in iG . We obtain G  by connecting all 

iv  together, for 0= 0..( )i    . This construction is 

polynomial time. Figure 3 shows the construction of G  

from an example of 0G . 

 

 
Fig. 3. Construction of the graph G  from 0G  with = 4  and = 1 . 

 

By the construction of G , its maximum degree is 

= ( ) =G id v    . Our goal is to show that 0G  

admits a dominating set of size at most k  if and only if 

G  admits a size-   dominating set of size at most 

0( 1)k     . 

Let 0 0S V  be a dominating set in 0G  of size k . Let 

i iS V  be the copy of 0S  in graph iG . It is trivial that 

0
=0= i iS S
    is a dominating set of G . Because each 

is S  covers a maximum number of 0  „  in iG , S  

is also a size-   dominating set of G . We also have 
0

0=0
| |= | |= ( 1)ii
S S k

    
    . 

We assume now that G  admits a size-  dominating 

set of size 0( 1)k     , denoted as S . Let 

=i iS S V . Because iV  and jV  are disjoint for all 
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i j , we have 0
=0

| |= | |ii
S S

    and =i jS S  . 

Two cases are possible: 

1.  ,| |=ii S k . If 0 0v S  then after removing the 

edges connecting 0v  to i iv V , we obtain the graph 0G  

with a dominating set 0S  of size k . Otherwise, if there is 

j  such that j jv S  then we can obtain by the same 

process a graph jG  isomorphic to 0G  with a dominating 

set jS . Now, if , i ii v S   then by the construction of 

G  every iv  is covered by a vertex i i iu S V   (i.e. 

none of the iv  is covered by another jv .) This means 

removing the edges connecting all iv  together does not 

change the coverage in G . Hence, 0S  is a dominating set 

in 0G . 

2.  0{0, , }i      , such that | |<iS k . It is 

straightforward in this case that { }i iS v  is a dominating 

set in iG  isomorphic to 0G , of size at most k . 

3.2.2 Greedy distributed algorithm for CH selection 

Similarly to the selection of CHs based on the distance 
constraint, we design a greedy, distributed polynomial 
time algorithm for our problem of size-constrained CH 
selection. 

We use the same notations as with the distance-
constrained CH selection. In particular, ( )N v  denotes the 

1-hop neighborhood of v  and ( ) ( )W v N v  is the set 

of v 's uncovered neighbors. Let ( ) =| ( ) |w v W v . We 

assume there is a neighborhood discovery protocol that 
allows each node v  to know ( )N v , ( )W v  and ( )w u  

for all ( )u N v . 

This algorithm is executed by v  until v  is covered, 
i.e. v  becomes a CH or a CH's dependant. 

 
Algorithm 
1. While v  is still uncovered: 

2. If there exists ( )u W v , u v , such that 

( ) = max( ( ) | ( ))w u w z z W v  then send a 

message to ( )W v  declaring the wish to select u  as 

CH. In case of a tie, then choose the node having the 
largest ID. 

3. If all nodes in ( )W v  wish to select v  as CH, then 

v  sends a message to ( )W v  to announce it is 

becoming a CH. This messsage contains a list of at 
most   neighbors that v  has chosen to include into 
its cluster. These neighbors u  are chosen according 

to the increasing order of their ( )w u . v  is marked 

as covered. 
4. If v  has sent a message to select u  as CH and has 

received a message from u  announcing that it 
becomes a CH with v  in the list of neighbors 
selected by u  then v  is marked as covered. v  
becomes u 's dependant. 

5. end while. 
 
The time complexity of this greedy algrorithm is at 

most linear in the size of the network because at least one 
new CH is selected after each round of execution of the 
algorithm. The following theorem allows for calculating 
the approximation factor of the solution. 

 
Theorem 4: This algorithm computes a ln -
approximation compared to the optimal size-   
dominating set. 

 
Proof: Let v  be a CH selected in an optimal size-   
dominating set. Each dependant of v  is given an equal 

cost of 
1

min( ( ), )d v 
. We can calculate the total cost of 

( )N v , denoted by *( )C v  as follows. *( ) = 1C v  if 

( ) <d v  ; and * ( )
( ) =

d v
C v


 if ( )d v … . On the 

other hand, the total cost of ( )N v  in a size-   

dominating set obtained by the greedy algorithm is ( )C v , 

calculated as follows. 
If ( ) <d v   then 

( ) 1

=1

1
( ) ln( ( )) (1)

d v

i
C v d v

i


„ „ O . Thus, 

*

( )
ln (1)

( )

C v

C v
 „ O . 

If ( )d v …  then for each node ( )z W v  becoming 

a member of another cluster before v  is selected as CH, a 

cost of zc  is assigned to this node: 
1

=zc


 if 

| ( ) |W v … , and 
1

| ( ) |zc
W v

„  otherwise. The worst 

case occurs when there are ( )d v   such nodes in 

( )N v  becoming members of other clusters with each 
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having a cost of 
1


; and for the   remaining nodes, they 

become members of other clusters with their respective 

costs of 
1 1 1

, , ,
1 1  
 . Therefore, 

( ) =1

( ) 1
( ) = zz N v i

d v
C v c

i





 „ . We then have, 

with H  being the  th harmonic number: 

 *

( )
1 1 ln (1)

( ) ( )

C v
H

C v d v 
   „ „ O . 

3.3 Distance-and-size-constrained CH Selection 

The size-constrained CH selection problem and algorithm 
presented in the previous section work explicitly with 1-
hop neighbors only. We examine in this section a third 
variant of the CH selection, which is a combination of the 
two previous variants, called distance-and-size-
constrained CH selection. The corresponding decision 
problem, called (distance- h , size- )–dominating set, is 

defined as follows. Let <k n  positive, can the network 

be partitioned into at most k  clusters such that each CH 
has no more than   dependants and is at distance at most 

h  hops from its dependants? 
Analogously, we find that this problem is also NP-

complete for all 1h…  and for all 2… . Due to space 
limitations, we only present the proof for the NP-
completeness of this problem. The size-constrained CH 
selection algorithm can be easily adapted to the distance-
and-size-constrained CH selection and will be left to the 
interested readers. 

 
Theorem 5: The decision problem of the (distance- h , 

size- )–dominating set is NP-complete for all 1h…  and 

2… . 
 

Proof: This proof is similar to the one of Theorem 3. 
Starting from the premise that the distance- h  dominating 
set is NP-complete (Theorem 1), we reduce a general 
instance of the distance- h  dominating set to the (distance-

h , size- )-dominating set problem. We present here the 
sketch of this proof. 

To start with, this problem is clearly in NP since it can 
be verified in polynomial time if each CH has at most   

dependants and is at distance h  hops, at most, from its 
dependants. 

By a similar construction of a graph as in Theorem 3, 

let 0 0 0= ( , )G V E  be a graph with 

0 0
[ ] = (| ( ) |)max v V hh N v  „ . We create 

0( [ ] )h     copies of 0G  and connect them 

together to obtain the graph = ( , )G V E , with 

[ ] = (| ( ) |)max v V hh N v   … . 

By considering two cases as done in the proof of 

Theorem 3, it can be showed that 0G  admits a distance- h  

dominating set of size k  if and only if G  admits a 

(distance- h , size-  )--dominating set of size 

( [ ] 1)k h    . This completes the proof. 

4. Simulation 

We present some simulation results in this section. Our 
simulations aim at showing, for the distance-constrained 
and the distance-and-size-constrained CH selection, the 
parameters that influence the network overhead such as 
the total number of clusters in the network and the CH 
density (i.e. the average number of CHs in the distance- h  
neighborhood of each node.) 

In the following simulations, the distance- h  CH 

selection algorithm is executed with = 2h . The size-  
CH selection algorithm is executed with various values of 
  and also extended to cover the 2-hop neighbors. That 
means a CH will: (1) include a maximum of   nodes 
among its uncovered direct neighbors to its cluster and (2) 
if all direct neighbors are covered and there is still room 
then include two-hop neighbors (only the ones reachable 
through a direct neighbor already in the cluster) until 
arriving at   dependants. 

It is worth pointing out that while it is feasible to 
implement the CH selection algorithms to cover 3h…  
hops neighborhood, there may be an overhead tradeoff to 
consider. Such an implementation requires a signaling 
protocol to collect information from all nodes up to h -
hops neighborhood (an example of this implementation is 
to retransmit NHDP's Hello messages up to h  hops.) This 
can lead to a significant increase in local signaling 
overhead as the number of Hello messages in the h -hops 

neighborhood grows in ( )hO . 

Our simulator is written in the C language. We assume 
there is no loss at the communication level. In a typical 
simulation, our program generates a random network 
topology according to some input parameters. Then the 
CH selection algorithms are executed by the nodes on this 
network topology and the parameters of interest are 
reported. The input parameters are the total number of 
nodes n  in the network, the average node density   and, 
only for the size-constraint algorithm, the maximum 
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allowable size   of each cluster. For a particular 
simulation configuration (i.e. a particular set of input 
parameters), the algorithms are executed on 20000  
randomly generated network topologies and the results are 
averaged. 

To generate a network topology from the parameters 
n  and  , we assume that the communication range of 
each node is unitary. Therefore, two nodes are direct 
neighbors if and only if their euclidean distance is no more 
than 1 . The n  nodes are then randomly placed on a 

square of size 2L  with =
n

L



. 

To start, we compare on an identical network topology 
the selections of CHs with and without size constraint. 
Then we continue by presenting the parameters of interest 
for each algorithm. 

4.1 Comparison of Cluster Formation 

Figure 4 compares the selections of CHs with and without 
size constraint for the same network topology. This 
network has = 200n  nodes with an average density of 

= 10  nodes per unitary disc. 
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(a) No cluster size constraint. 
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(b) Maximum cluster size = 10 . 

  
Fig. 4. Comparison between size-constrained and no size-

constrained for distance-2 CH selection in a network of 200 nodes. 
 

Figure 4(a) shows the formation of clusters when no 
size constraint is specified. We can see that the 
distribution of the cluster sizes is highly uneven between 
the clusters: four clusters (25% of the total clusters) have a 
size more than double that of the other clusters. Thus, the 
CHs of those large clusters may encounter traffic 
congestion. It is worth noting that, because of the border 
effects, nodes located far from the network borders usually 
have more neighbors, thus they have higher degrees, than 
nodes in the border's vicinity. This effect implies that the 
nodes far from the borders are susceptible to be among the 
first selected CHs by this algorithm. 

On the other hand, Figure 4(b) shows the cluster 
formation with a maximum size constraint = 10 , which 
equals the average node density. The cluster formation is 
more regular with most clusters having similar size. Thus, 
the network load is distributed more evenly among the 
selected CHs. However, there are almost twice as many 
CHs selected as in Figure 4(a) (29 CHs versus 16 CHs.) 

4.2 Number of Clusters and CH Density 

We examine in this section two parameters of interest that 
can influence the network efficiency: the number of 
clusters and the CH density. The number of clusters 
indicates the overhead of the network at the CH level. The 
CH density is calculated as the average number of CHs 
that each node can find in its 2-hop neighborhood. 
Therefore, the CH density reflects the robustness of the 
CH selection algorithm: in case of a CH failure, its 
dependants may backup immediately to an existing CH 
found in the 2-hop neighborhood. 

It is worth mentioning that we may need a protocol to 
support the recovery from a CH failure. Such a protocol 
would allow nodes having a failed CH to know who the 
alternative CHs are, and negociate with candidate CHs to 
find a cluster to join. We may also need to allow a 
temporary moment when the backup CHs have to accept 
new nodes even if their size exceeds the limit   before a 
new CH selection procedure is triggered. Nevertheless, 
having multiple CHs already selected in the neighborhood, 
and under the assumptions that the CHs exchange their 
database of members with their CH peers with regard to an 
eventual backup, can help to recover more quickly from a 
CH failure compared with having to re-elect a new CH 
and waiting for this CH to collect all the information about 
the members before disseminate it into the networks. 

4.2.1 Number of clusters 

Figure 5 compares the number of clusters formed by each 
selection algorithm. The total number of nodes in the 
network varies from 20 to 100 nodes. The node density 
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varies from 5 to 10 nodes per unitary disc. For size-
constrained CH selection (Figure 5(b)), we fixed = 10 . 

We can see that the number of clusters formed by both 
algorithms increases almost linearly with the number of 
nodes in the network. This trend is true independently of 
the node density. In sparse networks ( = 5,6,7 ), there 

are slightly more clusters when the cluster size is limited 
to = 10  than when it is not. This gap becomes larger 

for dense networks ( = 10 ): 14  clusters with size 

constraint compared to 8  clusters without size constraint 

for a network of 100  nodes. However, it is still a very 
efficient way to reduce signaling overhead compared to a 
flat network, because the number of CHs is less then 20% 
of the total number of nodes. 
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(a) No cluster size constraint. 
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(b) Maximum cluster size = 10 . 

  
Fig. 5. Comparison of the number of clusters between size-

constrained and no size-constrained for distance-2 CH selection in a 
network of = 20..100n  nodes and density = 5..10 . 

4.2.2 CH density 

Figure 6 compares the CH density between the two 
selection algorithms, with the same network 
configurations as above. We can see that for both 
algorithms, the CH density increases very slowly with the 
number of nodes. 

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 20  30  40  50  60  70  80  90  100

C
H

 d
en

si
ty

Number of nodes

nodes (n)=[20..100], density (ν=πn/L2)=[5..10], tries=20000

ν=5
ν=6
ν=7
ν=8
ν=9

ν=10

 
(a) No cluster size constraint. 
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(b) Maximum cluster size = 10 . 

  
Fig. 6. Comparison of the CH density between size-constrained and 

no size-constrained for distance-2 CH selection in a network of 
= 20..100n  nodes and density = 5..10 . 

 

Notice that for dense networks ( = 8,9,10 ), the 

curves in Figure 6(a) show a slight decrease in CH density 
for = 40..80n  nodes. This is due to the border effects: 

for dense and small networks ( = 8,9,10  and 40n„  

nodes), there are more nodes affected by the border 
effects. Therefore, some CHs located in the border areas 
cover less nodes than other CHs in the center, resulting in 
a higher ratio of CHs per node. 

It is clear from Figure 6(a) that the distance-2 CH 
selection without cluster size constraint cannot ensure 
backup in the event of CHs' failure, as its average CH 
density is only 1.7  CHs per node at most. That means if 
some CHs fail then at least 30% of the dependants cannot 
find a second CH in their 2-hop neighborhood for an 
immediate backup. With the size constraint CH selection 
(cf. Figure 6(b)), most networks with density 7…  can 
ensure an immediate backup since the CH density is 
always higher than 2. 
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5. Conclusions 

We investigate in this paper the complexity and 
performance of different cluster head (CH) selections in 
MANETs. Two variants of CH selection are examined. 
The first variant (a.k.a. distance-constrained) selects a set 
of CHs such that every node in the network is either a CH 
or is located within distance h  hops away from the 
nearest CH. The second variant (a.k.a. size-constrained) 
limits the maximum size of each cluster to   members. A 
third variant, combining the distance and size constraints, 
is also presented. 

The decision problems of these variants are showed to 
be NP-complete for a general network graph. We propose 
two distributed algorithms for these CH selections. Each 
algorithm has logarithmic approximation ratio, which is 
known to be best possible unless NP has superpolynomial 
time algorithms. The time complexity of these algorithms 
is at most linear in the size of the network. 

Our simulation results show that the distance-
constrained CH selection can find a smaller CH set 
compared to the distance-and-size-constrained selection. 
However, the cluster size is unevenly distributed among 
the clusters. This may create congestion at some CHs if 
they have to relay a large amount of traffic for their 
dependants. The simulations also show that the distance-
and-size-constrained CH selection can solve this issue by 
selecting more CHs in the network. The clusters then have 
similar size. 

Also according to our simulations, while the number of 
clusters in the network increases linearly with the network 
size for both algorithms, the CH selection with size 
constraint can offer a more robust connectivity to the 
dependants. Its CH density is higher than 2 for most 
network configurations. That means if some CHs fail, their 
dependants may be able to find an existing CH in the 
neighborhood ready for a quick backup. Notice that this 
backup feature needs an additional protocol to help nodes 
recovering from a CH failure, which is a subject for 
further research. 

Another issue relevant to the clustering performance is 
the management of node mobility and topology changes. 
We believe that the consideration of topology changes in 
CH selection algorithms is challenging and has the merit 
of being examined separately in a future study. 

Acknowledgments 

This work is funded by Defence Research & Development 
Canada (DRDC). 

 

References 
[1] A. Feickert, “The joint tactical radio system (jtrs) and the 

army’s future combat system (fcs): Issues for congress,” 
UNT Digital Library, Washington D.C., USA, November 
2005. 

[2] DARPA, “Wireless network after next,” Proposer 
Information Pamphlet, 
http://www.darpa.mil/sto/solicitations/WNaN/, March 2006. 

[3] P. Marshall, “Darpa progress towards affordable, dense, and 
content focused tactical edge networks,” in IEEE Military 
Communications Conference, MILCOM 2008, November 
2008, pp. 1–7. 

[4] C. Adjih, T. Clausen, P. Jacquet, A. Laouiti, P. Minet, P. 
Muhlethaler, A. Qayyum, and L. Viennot, “Optimized link 
state routing protocol (olsr),” IETF RFC 3626, October 2003. 

[5] M. Gerla, X. Hong, and G. Pei, “Fisheye state routing 
protocol (fsr) for ad hoc networks,” IETF Internet-Draft  
(expired), draft-ietf-manet-fsr-03, June 2002. 

[6] C. Adjih, E. Baccelli, T. Clausen, P. Jacquet, and G. 
Rodolakis, “Fish eye olsr scaling properties,” Journal of 
Communication and Networks, vol. 6, no. 4, pp. 343–351, 
December 2004. 

[7] S. Chinara and S. K. Rath, “A survey on one-hop clustering 
algorithms in mobile ad hoc networks,” Journal of Network 
and Systems Management, vol. 17, no. 1-2, pp. 183–207, 
2009. 

[8] L. Villasenor-Gonzalez, Y. Ge, and L. Lamont, “Holsr: a 
hierarchical proactive routing mechanism for mobile ad hoc 
networks,” Communications Magazine, IEEE, vol. 43, no. 7, 
pp. 118–125, July 2005. 

[9] A. P. Chandrakasan, A. C. Smith, W. B. Heinzelman, and W. 
B. Heinzelman, “An application-specific protocol 
architecture for wireless microsensor networks,” IEEE 
Transactions on Wireless Communications, vol. 1, no. 4, pp. 
660–670, 2002. 

[10]H. Chen and S. Megerian, “Cluster sizing and head selection 
for efficient data aggregation and routing in sensor 
networks,” in IEEE Wireless Communications and 
Networking Conference, WCNC 2006, vol. 4, April 2006, pp. 
2318–2323. 

[11]P. Koshy and S. V. Raghavan, “An information theoretic 
approach to cluster head selection in mobile ad hoc 
networks,” in IFIP-TC6 International Conference on Mobile 
and Wireless Communications Network, MWCN 2003, 
October 2003, pp. 120–123. 

[12]D. Xia and N. Vlajic, “Near-optimal node clustering in 
wireless sensor networks for environment monitoring,” in 
IEEE 21st International Conference on Advanced 
Networking and Applications, AINA’07, May 2007, pp. 
632–641. 

[13]C. Konstantopoulos, D. Gavalas, and G. Pantziou, 
“Clustering in mobile ad hoc networks through neighborhood 
stability-based mobility prediction,” Computer Networks: 
The International Journal of Computer and 
Telecommunications Networking, vol. 52, no. 9, pp. 1797–
1824, 2008. 

[14]T.W. Haynes, S. Hedetniemi, and P. Slater, “Fundamentals 
of Domination in Graphs (Pure and Applied Mathematics 
(Marcel Dekker)).” CRC, January 1998. 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

12

[15]A. Amis, R. Prakash, T. Vuong, and D. Huynh, “Max-min d-
cluster formation in wireless ad hoc networks,” in 19th 
Annual Joint Conference of the IEEE Computer and 
Communications Societies, INFOCOM 2000, vol. 1, March 
2000, pp. 32–41. 

[16]C.-S. Nam, Y.-K. Ku, J.-W. Yoon, and D.-R. Shin, “Cluster 
head selection for equal cluster size in wireless sensor 
networks,” in International Conference on New Trends in 
Information and Service Science, NISS’09, June 2009, pp. 
618–623. 

[17]M. Chatterjee, S.-K. Das, and D. Turgut, “WCA: a weighted 
clustering algorithm for mobile ad hoc networks,” Journal of 
Cluster Computing, vol. 5, pp. 193–204, 2002. 

[18]F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Fault-tolerant 
clustering in ad hoc and sensor networks,” in IEEE 26th 
International Conference on Distributed Computing Systems, 
ICDCS’06, July 2006, pp. 68–77. 

[19]U. Feige, “A threshold of ln n for approximating set cover,” 
Journal of the ACM, vol. 45, pp. 314–318, 1998. 

[20]R. M. Karp, “Reducibility among combinatorial problems,” 
in Complexity of Computer Computations, R. E. Miller and J. 
W. Thatcher, Eds. Plenum Press, 1972, pp. 85–103. 

[21]T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, 
“Introduction to Algorithms,” 2nd ed. The MIT Press, 
September 2001. 

[22]V. Chvátal, “A greedy heuristic for the set-covering 
problem,” Mathematics of Operations Research, vol. 4, no. 3, 
pp. 233–235, 1979. 

[23]L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed 
algorithm for constructing small dominating sets,” Journal of 
Distributed Computing, vol. 15, no. 4, pp. 193–205, 2002. 

[24]T. H. Clausen, C. Dearlove, and J. W. Dean, “Mobile ad hoc 
network (manet) neighborhood discovery protocol (nhdp),” 
IETF Internet-Draft (work in progress), draft-ietf-manet-
nhdp-12, March 2010. 

[25]J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of 
Mathematics, vol. 17, pp. 449–467, 1965. 

 

Dang Nguyen Dr. Nguyen is a research scientist at the 
Communications Research Centre, Ottawa, Canada. He has 
obtained his Master degree in 2003 and his PhD in 2006, both in 
Computer Science at University of Paris VI (Pierre and Marie 
Curie), France. He has undergone various research projects at 
INRIA (France), Orange’s Labs (France) and CRC (Canada) under 
major government grants and contracts. His research interest 
includes quality of service in MANETs, trust-based security and 
cryptography. 
 
Pascale Minet Dr. Minet is a senior researcher at INRIA 
Rocquencourt, France. She is the deputy-head of the HIPERCOM 
team-project and co-author of the OLSR protocol (IETF’s RFC 
3626). Her research interest includes quality of service and 
multicast in MANETs, wireless sensor networks with energy 
efficiency, node activity scheduling and energy-aware routing. 
 
Thomas Kunz Dr. Kunz received a double honors degree in 
Computer Science and Business Administration in 1990 and the 
Dr. Ing. degree in Computer Science in 1994, both from the 
Darmstadt University of Technology, Federal Republic of Germany. 
He is currently a Professor in Systems and Computer Engineering 
at Carleton University. His research interests are primarily in the 
area of wireless and mobile computing. The main thrust is to 
facilitate the development of innovative next-generation mobile 
applications on resource-constraint, hand-held devices, exploring 
the required network architectures (MANETs, wireless mesh 
networks, wireless sensor networks), network protocols (routing, 
Mobile IP, QoS support), and middleware layers. He authored or 
co-authored close to 150 technical papers, received a number of 
awards, and is involved in national and international conferences 
and workshops. 
 
Louise Lamont is the Research Manager for the Mobile ad hoc 
and Sensor Networking Group at the Communications Research 
centre. In this position Louise is responsible for identifying novel 
research areas for study at CRC and for proposing, implementing 
and securing funds for new projects in support of major client 
requirements such as DND. She manages several state-of-the-art 
laboratories for the conduct of research as well as technical 
demonstration in the area of mobile ad hoc and sensor networks. 
She is also responsible for establishing and maintaining liaison, 
collaboration and partnership with R&D groups at CRC and with 
external national and international organizations. 
 


