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Abstract 

This paper presents a new algorithm for constructing and training 
wavelet neural network. This algorithm is based on the variation 
of the number of hidden neurons dynamically during the training 
process. The suggested method determines the optimal number 
of the hidden neurons and solves the optimization problem of 
wavelet neural network structure. The problem of finding a good 
neural model is then discussed through solutions offered by 
wavelet neural networks trained by conjugate gradient algorithm. 
Finally, experimental results, which confirm the efficiency of 
this approach, are reported. 
Keywords: Neural Network, Wavelet, Conjugate Gradient, 
Regressor, Local Minimum, Hidden Neuron. 

1. Introduction 

Artificial neural networks are computational models with 
particular characteristics such as the ability of learning, 
classifying, and modeling data. They seem to be a highly 
attractive solution, since their internal configuration and 
the natural parallelism inherent to those network 
architectures allow a higher performance than the 
conventional models. Many studies have been reported on 
the ability of feedforward neural networks for 
approximating nonlinear functions [1, 2]. The 
implementation of such networks suffers from the lack of 
efficient constructive method, needed to determine the 
neuron’s parameters, as well as choosing network’s 
architecture. Multilayer perceptrons (MLP) present a large 
class of feedforward neural networks [5]. An MLP is a 
static network with a forward direction of signal flow and 
without feedback loops, and is usually constructed with 
sigmoid neurons and trained with the back-propagation 
(BP) algorithm. However, due to its multilayered structure 
and the greedy nature of the BP algorithm, the training 
process often settles in undesirable local minimum of the 

error surface and converges too slowly. The constructing 
process of the MLP is very time consuming since the 
optimal number of hidden neurons is not known in 
advance, and it must be determined by trial and error. For 
those reasons, we propose in this paper a new algorithm 
for constructing and training wavelet neural network 
(WNN). The idea of using wavelet in neural network was 
proposed by Zhang and Benveniste [3]. Based on wavelet 
theory, WNN possesses the best function approximation 
ability. Since the constructing model algorithm is different 
from the common neural network BP algorithm, it can 
effectively overcome intrinsic defect in the common 
neural network. WNN has been proposed as an efficient 
universal tool for function approximation, which shows 
surprising efficiency in solving the poor convergence or 
even divergence encountered in other kinds of neural 
networks. It can dramatically increase the convergence 
speed. The structure of the WNN is almost similar to the 
RBF (Radial-basis Function) neural network [5] except 
that in the WNN, the radial basis functions are replaced by 
radial wavelets. The WNN performs well in comparison 
with the MLP and RBF networks [4]. In addition to the 
salient feature of approximating any non-linear function, 
WNN outperforms MLP and RBF networks due to its 
capability in dealing with the so-called curse of 
dimensionality and non-stationary signals. The WNN is 
more suitable in learning functions with local variations 
and discontinuities. However, the optimal number of 
hidden neurons of a conventional WNN is not known in 
advance. To solve this problem, we proceeded by 
changing the number of hidden neurons dynamically, that 
is when the network is trapped in a local minimum, a new 
hidden neuron is then added. Computer simulations 
demonstrate the advantages of the proposed algorithm.  
Many studies have been reported on the ability of wavelet 
neural networks to approximate nonlinear functions [6, 7]. 
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Wavelet neural networks are widely applied to a variety of 
practical problems such as signal processing [4], modeling 
and design of microstrip circuits, embedded passive 
components, semiconductor devices, filters, and amplifiers 
[8, 9].  
This paper is structured as follows: in section 2, we 
present a review of the WNN and its learning scheme. Our 
construction method of WNN model is described in 
section 3. In Section 4, we demonstrate the validation of 
the proposed algorithm by modeling two nonlinear 
functions. Section 5 presents a discussion of the main 
features of the novel approach. Finally in section 6, the 
conclusions of this study are reported. 
 
2. Wavelet Neural Network and Learning 
Scheme: a Brief Review 
 
2.1 Wavelet neural network 
 
Interest in wavelet analysis has been grown very rapidly in 
recent years. The wavelet theory is a rapidly developed 
branch of mathematics, which has offered very efficient 
algorithms for approximating, estimating, analyzing and 
compressing nonlinear functions [10]. Due to the 
similarity between discrete inverse wavelet transform and 
one-hidden-layer feedforward neural networks (i.e. three-
layer network), the idea of combining both wavelets and 
neural networks has been proposed by Q. Zhang and A. 
Benveniste [3]. A WNN is an adaptive discretization of 
the continuous inverse wavelet transform. It can also be 
considered as an one-hidden-layer feedforward neural 
network with radial wavelets as activation functions of its 
hidden neurons. A block diagram of a multiple-input-one-
output feedforward wavelet network is shown in Figure 1.  
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Fig. 1 Structure of wavelet neural network (q = 1). 

 

Since large dimensional wavelet transforms lead to a large 
number of coefficients, it is useful to introduce some 
simple ways for building multi-dimensional wavelets from 
one-dimensional ones. The most natural ones seem to be 

the radial form. Given a radial wavelet function 

RR d : , the expression of the kth ( qk 1 ) 

output of the WNN can be written as: 
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h
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Where q  is the number of linear output neurons. In 

practice, this equation is modified as follows: 
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where (.)  is the mother radial wavelet function, 

Rwki   is the linear weight between ith hidden neuron 

and kth output neuron, Rk   is the bias parameter of 

the kth linear output neuron, d
k RV   is the vector that 

represents the direct linear connection between input layer 

and kth linear output neuron, dRX   is the input vector 

of network, Rdi   is the dilation parameter and 
d

i RT   is the translation vector of the ith  hidden 

neuron. h is the  number of hidden neurons in the network. 

All the network parameters ( kiw , kV , k , id , iT ) must 

be adapted on the training data. The linear part of 

k(WNN(X)) , k
T

k θXV  , is used in order to more easily 

capture linear properties in regressions. In this work, the 
mother radial wavelet function   has been chosen as: 
 

    22
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X

edXXψ

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the so-called "Inverse of the Mexican hat". X  denotes 

the Euclidean norm of X  and (X)d dim . 

 
2.2 Learning algorithm 
 
After several experiments using the WNN coupled with 
different training algorithms (i.e. classical BP (steepest 
gradient descent) technique, conjugate gradient (CG) 
algorithm, Newton method, etc), we have chosen in this 
paper, the efficient WNN coupled with the CG algorithm. 
The WNN is trained with one of the CG algorithms [13], 
in order to minimize the mean squared error (MSE) 

between the desired output iY  and the WNN output: 
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where iX  is the ith  input vector of network, N  is the 

number of samples in the training data set N  

(   ,...,N;N,iRRYX qdii 1),(N ), and 

),Y(X ii  is the ith  sample of the inputs and desired 

outputs of network. 
The good initialization of the WNN (see section III.A) 
yields a fast training procedure. In this application, CG 
algorithm is clearly superior to the classical BP approach 
and is thus preferred for the WNN training. Detailed 
comparisons show that the CG algorithm is faster than 
classical BP technique and it is superior to the quasi-
Newton optimization algorithm when the number of 
parameters in the network is large [14, 15]. During the 
training process the WNN adjusts automatically its 

parameters (i.e. kiw , kV , k , id , iT ) so that the error 

MSE is minimized. The nth correction of the parameters is 
described as: 
 

nnn ηDWW 1                                                          (5)   
 

where  
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E  is the total error between the desired output (training 
data) and the actual output, it is expressed as:  
 

MSENE                                                               (8) 
 

η  is the learning parameter and nW  is the vector which 

contains all the parameters of the WNN at the nth 
iteration. 
 

3. Construction of Wavelet Neural Network 
 
3.1 Regressors-selection based approach 
 

The association of an efficient training algorithm, such as 
the CG algorithm, with the initialization procedure based 
on the regressors selection technique, represents an 
efficient tool to construct WNN models. In this section we 

describe the technique of regressors selection "stepwise 
selection by orthogonalization" proposed by Q. Zhang [4] 
and used to initialize the conventional WNN. This 
approach consists of: 

1. construct a library W  of discrete dilated and translated 

versions of a given mother radial wavelet RR d: . 

This library is constructed according to the available 

training data set N . The dilations and translations of the 

mother radial wavelet function induce a multiresolution 
analysis [11, 12]. The construction process of this library 
is described below. 
The wavelet library W  is considered as a set of regressor 
candidates. It should contain a finite number of wavelets. 
Given a wavelet function  , the construction of W  

consists in selecting some subset of the continuously 
parameterized family: 
 

   dRTRdTXd    ,  :                              (9)     

     
The standard discretization of this family is a regular 
lattice:  
 

  dl ZmZlmtXd   ,  :00                             (10)        
 

where 0d , 00 t  are two scalar constants defining the 

discretization step sizes for dilation and translation, 
respectively. Typically we take a dyadic grid for the sake 

of simplicity and we choose 20 d  and 10 t . Usually 

we only want to estimate a multidimensional nonlinear 

function on a compact domain dRD   and the wavelet 
function   is chosen to be compactly supported or 

rapidly vanishing. Hence we can replace in (10) dZm  

by tSm  with a finite set d
t ZS  ; on the other hand, 

Zl  should be replaced by dSl  with a finite set 

ZSd   corresponding to the desired resolution levels of 

the estimation. l  is then called the number of scale levels 
scanned during the construction phase of the wavelet 
library. In practice, 4 or 5 consecutive levels are usually 
sufficient. In this case, family (10) becomes:            
  

   td
l SmSlmtXd   ,  :00                           (11)      

 

In the next step, we should scan the training data set N , 

for each sample point ),Y(X ii  ( Ni ...1 ) we should 

determine the wavelets in (11) whose supports contain the 
sample point. We denote by W  the set of wavelets 
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resulting from the refining of family (11) and call it the 
wavelet library. For computational convenience the 
wavelets are normalized: 
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where kX  is the kth sample of the inputs in N , L  is 

the number of wavelets in the library W , and id , iT  

correspond respectively to the dilation and translation 

parameters ld0  and ldmt 
00  of the wavelet i .

 2. select the best regressors (i.e. wavelets) from this library 
in an iterative way which they best fit the training data set 

N . The aim of the algorithm ‘stepwise selection by 

orthogonalization’ is then to select a number Lh   

wavelets from W , the best ones based on the training data 

set N  for building the regression )(XWNN  (i.e. 

equation of WNN). The problem is then to find h  that 
minimizes the error function MSE.  
For convenience of presentation, let us define some 
vectorial notations:      
 

    TN
iii XXu     ...  1                                      (13) 

 

where Wi   and NXX ,...,1  are the sampled inputs 

in N . 

Now collect all the ,...,Liui 1 ,  , in a set U : 
 

 LuuU ,...,1                                                            (14) 
 

The problem of regressor selection is equivalent to 

selecting h  vectors iu  from U  that minimize the MSE. 

The problem is then to select, for the first stage, the 

wavelet in W  that best fits the training data set N , and 

then repeatedly select the wavelet that best fits the set N  

while working together with the previously selected 
wavelets. When the initialization procedure of the 
conventional WNN is achieved, this network is then 
trained by the CG algorithm. The choice of hidden 
neurons number h  (i.e. number of model parameters) 
depends on the complexity of the multidimensional 
nonlinear function, as well as the requested accuracy for 
the approximation. In this construction procedure, h  must 

be determined by trial and error. h  is determined 
according to the evolution of the error function MSE 

during the initialization procedure. In the next section, we 
present a new algorithm, which can be used to determine 
the optimal number of hidden neurons during the training 
procedure.  
3.2 Construction procedure using the proposed 

optimization approach 
 
The flowchart of the proposed algorithm is shown in 
Figure 2. At first, once we have the wavelet library, we 
select the best regressor (i.e. wavelet) from this library. 
Thus, the WNN contains initially one hidden neuron, 
which makes the learning process trapped sometimes in a 
local minimum, and the network cannot produce then the 
required response. 
The error function MSE defined as a function of the free 
parameters of the network WNN. This function may be 
visualized as a multidimensional error-performance 
surface or simply error surface, with the network 
parameters as coordinates. Any given operation of the 
network WNN during the training process is represented 
as a point on the error surface. For the WNN, to improve 
performance over time, the operating point has to move 
down successively toward a minimum point of the error 
surface; the minimum point may be a local minimum or a 
global minimum. On the other hand, the peculiarity of the 
error surface that impacts the network’s performance is the 
presence of local minima where the values of the error 
function MSE are not acceptable. In the parameter space 
there is another set of network parameters for which the 
error function MSE is smaller than the local minimum 
there where the network is stuck. 
Therefore, in our algorithm, a new hidden neuron is to be 
added each time the network becomes trapped in a local 
minimum. The addition of this new hidden neuron to the 
WNN changes the number of network parameters and 
creates a new WNN model ( i.e. creates a new set of 
network parameters). This causes variations in the shape 
of the parameter space so that the network can easily avoid 
the local minimum. In this case, the training process then 
proceeds because the shape of the parameter space is 
changed. We must, of course, consider when and how a 
new hidden neuron should be added. It is usually not clear 
whether the network is trapped in a local minimum that is 
why the MSE is used instead. Therefore, MSE is checked 
after every n  parameter corrections. We choose 10n , 
n  must not have a high value because the construction 
process of the WNN could become less faster. If the error 
MSE does not decrease by more than one percent of its 
previous value, new hidden neuron is then added from the 
wavelet library (one percent is sufficient in order to know 
if the error continues to decrease). Otherwise, if MSE 
decreases by more than one percent, the parameters will be 
corrected another n  times. We considered that the 
network have converged when the MSE is less than a 
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predetermined value  . We tested the proposed algorithm 
for different values of n  (10, 20, 30, 40, 50, 100,…). We 
noticed that if n increases, the construction phase gives the 
same results but this phase becomes slow. 
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(L: Number of wavelets in the
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Wavelet Neural Network:
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Fig. 2 Flowchart of the proposed algorithm. 
 

If the network is trapped in a local minimum after 10 
parameter corrections, then this network cannot avoid this 
local minimum after 20, 30, 40, 50, or 100 parameter 
corrections. And if the error surface is a very flat plateau, 
we could not know the necessary time in order to reach 
during the learning process a point on the error surface 
where the MSE begins to decrease, and many iterations 
may be required to produce a significant reduction in the 
error performance of the network. We found that 10n  
is sufficient in order to know if we could change the shape 
of the error surface (i.e. in order to know if we could add a 
new hidden neuron) or not and to obtain a faster 
construction procedure of the WNN model.  
To determine the value of   we used the method of cross-
validation [5]. It is a commonly used method for 
evaluating the performance of WNN models where the 
data set is partitioned into two subsets: a subset used for 
the estimation of the WNN model (called the training set) 

and another subset used for the evaluation of the 
generalization performance of the WNN model (called the 
validation set or testing set). The CG algorithm is 
considered to have converged when the MSE reaches a 
sufficiently small error threshold  . The learning process 
is then stopped when the training performance has peaked. 
At the end of the learning process, the network WNN is 
tested for its generalization performance measured on the 
test data set. If the generalization performance is 
satisfactory then the building process of the WNN is 
finished. The initial values of the added hidden neuron 
parameters are determined as follows: The dilation 

parameter jd  and the translation vector jT  of the jth 

added hidden neuron are selected from the wavelet library. 
In this case, the expression of the kth output of the WNN 
can be written as: 
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The linear coefficients kiw , T
kdkkk vvvV ),...,,( 21  and 

k  are determined by the least squares solution of the 

system of linear equations: 
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  dTi
d

iii RxxxX  ,...,, 21  is the ith input vector of 

network in N ,   NTN
kkkk RyyyO  ,...,, 21  is the 

desired output of the kth output neuron, and A  is the 
pseudoinverse of the matrix A .  
    At the end of the first selection phase, the WNN 

contains Lh1   wavelets selected from the library W  

and that best fit the training data set N . In order to know 

if the number of selected wavelets is optimal, we 
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introduced a new selection phase. The wavelet library 1W  

in this phase contains the wavelets selected in the previous 

selection phase and that best fit the data set N . This 

library 1W  contains of course the wavelets of optimal 

WNN. The new selection phase allows to select 12 hh   

vectors iu  from  
11

,...,1 hll uuU   that minimize the 

MSE where 
1

,...,1 hll  are the indices of wavelets 

previously selected from W  (  Lll h ,...,1,...,
11  ). 

During this phase, if the threshold   has been reached 

with 1h  ( 12 hh  ) wavelets then the optimal network 

WNN will contain 1h  hidden neurons, else the optimal 

WNN will contain 23 hh   ( 12 hh  ) hidden neurons 

and that will best fit the data set N . These neurons will 

be selected during a new selection phase. This procedure 
is repeated as long as the number of hidden neurons in a 
selection phase is less than the number of hidden neurons 
selected in the previous selection phase. Note that the 
optimal number of hidden neurons is the smaller number 
of hidden neurons that gives MSE . 
 
4. Validation of the Proposed Algorithm: 
Modeling Examples 
 
In this section, we present experimental results of the 
proposed approach on approximating two nonlinear 
functions. The run of our neural network software is 
executed on a 2 GHz Pentium PC. 

 
4.1 Approximation of the heart beat function 
 
In this section, we present experimental results of the 
proposed approach for approximation of the real nonlinear 
function, which is: beat of the heart. First, no noisy data is 
considered and the training data set is composed of 70 
samples ( 70N , 1d , 1q ). The learning 

parameter is 1.0η  . Figure 3 shows the variation of the 

hidden neurons number of the WNN during the selection 
phases. The wavelet library contains initially 128 
wavelets. Figure 7 shows that the construction phase of 
the WNN is done with 6 selection phases. In the first 

selection phase, the threshold 61067.3   has been 
reached with 13 hidden neurons. These 13 neurons 
represent the wavelet library for the second selection 
phase. In the second phase, 10 hidden neurons have been 
selected, and the hidden neurons number has been 
decreased. For the third selection phase, the wavelet 
library contains 10 wavelets. During this phase, the 

number of hidden neurons has been again decreased and 
this number became equal to 7. The threshold   is always 

equal to 61067.3  . The numbers of hidden neurons 
determined by the fourth and fifth selection phases are 5 
and 4, respectively. However, in the sixth selection phase 
the number of hidden neurons is 4; thus all the wavelets of 
the wavelet library containing 4 hidden neurons have been 
selected. Since the last two selection phases gave the same 
number of hidden neurons, therefore we can conclude that 
the optimal number of hidden neurons is obtained, and it is 

equal to 4 where 61067.3  . The WNN obtained in 
the sixth selection phase, containing 4 hidden neurons, is 
the neural model of the non-noisy heart beat data. Figure 4 
shows the results obtained with the WNN and the original 
non-noisy data (desired output). This figure shows the 
results computed from the training data set and the test 
data set. The test data set contains 25 samples and the 

calculated error on this set is 61044.5 MSE .  
The time of computation for building the WNN of the 
heart beat function is 33.21 seconds. 
In figure 5 we present the results obtained at the output of 
different networks (i.e. MLP and conventional WNN) and 
computed from the training data set. In table 1 we listed 
the error MSE calculated at the end of the learning 
process. All networks are trained by the conjugate gradient 
algorithm. The number of hidden neurons used in each 
network is equal to 4 and the learning parameter is 

1.0η  .  
 
Table 1: Performance evaluation of different neural networks of the heart 

beat function. 
Neural network MSE 

Proposed WNN 61067.3   

MLP 21028.1   

Conventional WNN 31092.1   

    
 Next, we apply our algorithm to the heart beat function, 
but in the case of noisy data. The training data set is 
composed of 129 samples. The learning parameter is 

1.0η  . The construction procedure of the WNN of this 

function demands 4 selection phases (Fig. 6). The wavelet 
library contains initially 128 wavelets. In the first phase, 

we have reached the threshold 6108.3   with 33 
hidden neurons. The wavelet library of the second phase 
contains the 33 hidden neurons previously selected, and at 
the end of this phase, 26 hidden neurons are selected. For 
the third selection phase, the wavelet library contains 26 
wavelets. During this phase, the number of hidden neurons 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org      114 

 

has been again decreased and the number of hidden 
neurons became 16. During the fourth selection phase, we 
have selected all the neurons of the wavelet library, which 
contains 16 wavelets. The threshold   is always equal to 

6108.3  . The WNN obtained by the fourth selection 
phase, and which contains 16 hidden neurons, represents 
the neural model of heart beat noisy data. Figures 7 and 8 
show the original noisy data (desired output) and the 
reconstruction result obtained at the output of the WNN, 
respectively. 
 

 
Fig. 3 Number of hidden neurons as a function of the number of 

iterations. 

 
Fig. 4 The reconstruction result by the proposed WNN. 
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Fig. 5 Comparison between MLP, proposed WNN, and conventional 

WNN (desired output (solid line), proposed WNN (dashed line), 
conventional WNN (dotted line), MLP (dashdot line)). 

Fig. 6 Number of hidden neurons as a function of the number of 
iterations. 

 

The results presented in this section have demonstrated the 
efficiency and the ability of using our WNN training 
technique in modeling noisy data and functions with local 
variations and discontinuities. 
The time of computation for building the WNN of the 
noisy data is 41.56 seconds. 

 

Fig. 7 The original noisy data of the heart beat. 
 

Fig. 8 The reconstruction result by the proposed WNN. 
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4.2 Approximation of two-dimension nonlinear 
function 

 

Finally, we apply our algorithm to the two-dimension 
function:  

)5sin()(),( 1
2
2

2
121 xxxxxf                                 (17)     

 The training data set is composed of 441 samples 
( 441N , 2d , 1q ). The learning parameter is 

1.0η  . Figure 9 shows the variation of the hidden 

neurons number of the WNN during the selection phases. 
The result shows that the number of selection phases is 4. 
The wavelet library contains initially 233 wavelets. We 
have selected for each phase of the 4 phases the following 
numbers of wavelets: 46 wavelets for the first phase, 33 
for the second, 20 for the third, and also 20 for the fourth 

phase. The threshold   is equal to 6101.5  . The WNN 
obtained in the second phase, and which contains 20 
hidden neurons, represents the neural model of the 
function f . Figures 10 and 11 show respectively the 

primary function f  and the reconstructed result by the 

WNN. Figure 9 shows the results computed from the 
training data set and the test data set. The test data set 
contains 100 samples and the calculated error on this set is 

61076.6 MSE .  
The time of computation for building the WNN of the 
nonlinear function f  is 184.32 seconds. Figures 16 and 

17 show the results obtained at the output of each network 
and computed from the training data. In table 2 we listed 
the error MSE calculated at the end of the learning 
process. All networks are also trained by the conjugate 
gradient algorithm. 
 

 
Fig. 9 Number of hidden neurons as a function of the number of 

iterations. 
 

 
Fig. 10 The original function f . 

Fig. 11 The reconstruction result by the proposed WNN. 
 

Table 2: Performance evaluation of different neural networks of f . 
   

 

Neural network MSE 

Proposed WNN 6101.5   

MLP 31091.4   

Conventional WNN 41037.1   
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Fig. 12 Comparison between the proposed WNN and the conventional 

WNN.  
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Fig. 13 Comparison between the proposed WNN and MLP. 

 

5. Discussion 

Experimental results have shown that the WNN 
constructed by our method has a smaller number of hidden 
neurons, a faster learning speed, and a smaller 
approximation error (MSE) in comparison with the other 
existing networks [3, 9]. However, in case of MLP (or 
conventional WNN), the number of hidden neurons is not 
known in advance, and the network architecture is usually 
determined by trial-and-error tests. Therefore, the 
construction method of MLP is very time consuming and 
in most cases, the optimal number of hidden neurons is not 
obtained. On the other hand, the proposed construction 
procedure of the WNN is very fast because the 
construction process of the wavelet library is based on the 
training data set, and the samples of this set are used to 
determine the different parameters of the library wavelets. 
There are several advantages of the proposed approach, 
for instance, it provides useful guidelines for the 
construction of an optimal WNN model and this model is 
more suitable in learning noisy data and functions with 
local variations and discontinuities, where the MLP (and 
RBF network) does not have the ability to model similar 
type of these functions.  
The main difference of the proposed method from other 
methods is that originates from a wavelet frame with a 
multiscale structure. The proposed approach is presented 
for quick construction of WNN with a smaller MSE, and 
is more constructive in the sense that it automatically 
determines the network size and estimates the network 
parameters in a reasonable number of iterations. 
It should be noted that the size of the neural network 
depends on the size of the training data set. These reflect 
the complexity of the problem. A small network is not able 
to solve the problem for any size of the training data set, 
but increasing the network size makes it difficult to 

optimally estimate a large number of parameters from the 
moderate-size training set. This type of network is 
considered as an overtrained network [5] that tends to 
memorize rather than to generalize from data. A neural 
network that is designed to generalize well will produce a 
correct input-output mapping, even when the input is 
slightly different from the examples used in the training 
set. 
The proposed algorithm can be applied to model any 
nonlinear multidimensional function. The WNN modeling 
procedure offers an accurate mathematical equation 
representing the network and which can be lead to 
calculate the derivatives (first order derivative, second 
order derivative, …) of the network output with respect to 
its inputs. 

6. Conclusion 

We presented in this paper a new approach for structure 
optimization of WNN, based on the variation of the 
hidden neurons number during the training process. In this 
approach, there is no need to determine the number of 
hidden neurons by trial and error because the system 
adjusts them automatically. The proposed algorithm 
determines the optimal number of hidden neurons and 
solves the problem of the wavelet network structure 
optimization in a new way. Experimental results 
demonstrate its superiority over the construction procedure 
of the MLP and the conventional WNN. We used the 
proposed algorithm to model two nonlinear functions. The 
results presented in this study have demonstrated the 
efficiency and the ability of using a WNN model, 
implemented by the proposed approach, for efficient 
modeling of nonlinear multidimensional functions. 
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