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Abstract 
We stretch existing knowledge on model formulation and 
develop an enhanced mathematical model to study the pattern of 
spread of infectious diseases in Rivers State. The SIR model 
formalism was used to compartmentalize the population and the 
resulting model equations were solved numerically. The disease 
free equilibrium and endemic equilibrium of the system were 
established and analyzed for stability. A graph representation of 
the sub groups is presented and discussed based on the results 
from simulation. 
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1. Introduction 

Disease is “a condition of the body, or some part or organ 
of the body, in which its functions are disturbed or 
deranged; a morbid physical condition; a departure from 
the state of health, especially when caused by structural 
change (Oxford Advanced Learners Dictionary, 2006).” 
This definition encompasses a wide range of ailments 
from AIDS to arthritis, from the common cold to cancer. It 
is classified as infectious, non infectious and notifiable. 
Our interest following therefrom is in Infectious 
classification and our emphasis in this paper is developing 
a mathematical model to study the pattern at which the 
infectious disease spread in Rivers State. 
 
Infectious diseases remain a major cause of illness and 
death in the world today (WHO, 2009). In many countries 
of the developed World, infectious diseases of the 
childhood in particular have been generally conquered. 
This however, is far from being the case in developing 
countries, where they are responsible for 45% of all death 
(WHO, 2008). Coming down home, the data of infectious 
disease prepared by the Department of Health Planning 
and Research, Federal Ministry of Health at our disposal 
shows the same trend in Rivers State. This thus brings to 
fore the need to properly study and understand the pattern 
at which these diseases spread and provide timely 

information to experts who will use it in guarding against 
any epidemic and combating the scourge. The leading 
killers are acute respiratory infections, HIV/AIDs, 
tuberculosis, malaria and measles (Lucas and Gilles 2003). 
These infectious diseases can be endemic or emerging; it 
is endemic when it is sustained in a population without the 
need for external input. This means on average, each 
infected person is infecting exactly one other person any 
more the number infected will grow exponentially and 
there will be an epidemic, any less the disease will die out, 
it is emerging. 
 
These infections are caused by introduction into the body, 
micro organisms such as bacteria, viruses and fungi which 
are disease causing pathogens that reproduce and cause 
disease by directly damaging the cells or by releasing 
toxins. This normally provokes the immune system into 
responding, which accounts for many common symptoms. 
Infection can be localized within a particular area or 
tissue, as a boil or distributed as influenza (British Medical 
Association, 2007) 
 
An infectious disease is a clinically evident illness 
resulting from the presence of pathogenic microbial 
agents, including pathogenic viruses, pathogenic bacteria, 
fungi, protozoa, multi-cellular parasites, and aberrant 
proteins known as prisons. These pathogens are able to 
cause disease in animals and plants. Infectious pathologies 
are also called communicable diseases or transmissible 
diseases due to their potential of transmission from one 
person or species to another by a replicating agent 
(Dorlands medical dictionary 2007). Transmission of an 
infectious disease may occur through one or more of 
diverse pathways including physical contact with infected 
individuals. These infecting agents may also be 
transmitted through liquids, food, body fluids, 
contaminated objects, airborne inhalation, or through 
vector-borne spread (Ryan et al 2004). Transmissible 
diseases which occur through contact with an ill person or 
their secretions, or objects touched by them, are especially 
infective, and are sometimes referred to as contagious 
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diseases. Infectious diseases are Health problems, which is 
a departure from good state of Health, caused by structural 
changes in which the proper body function is impaired, 
making it difficult for the organs of the body to function 
properly (Carlo, 2006) 

2. Related Work 

The literature of mathematical models is well researched 
and over the last few decades, studies into the pattern at 
which disease spread in a particular location to help 
provide early information for experts has gained sufficient 
grounds especially in Western Nigeria. A model is an 
approximate representation of a given part of the material 
world, the study or understanding of whose part it 
facilitates (Oko, 1998). Models may be used in the 
research and development or design of systems prior to 
their construction, or to simulate conditions, processes or 
entities which otherwise will be impossible or infeasible to 
deal with directly. Models are also used to study and 
modify existing system and processes and as integral parts 
of control systems. On the other hand modeling is the 
process of model building and analysis that usually 
culminate in a valid decision making in respect of the 
modeled entity. There are many types of modeling used in 
every day human activities; they include linguistics, 
physical and mathematical modeling, etc. Most research 
works on infectious disease simulation are done with 
deterministic modeling. It requires less data, relatively 
easy to set up and a lot of user friendly software can be 
developed. 
 
The earliest account of mathematical modeling of spread 
of disease was carried out in 1766 by Daniel Bernoulli. 
Trained as a physician, Bernoulli created a mathematical 
model to defend the practice of inoculating against 
smallpox. The calculations from this model showed that 
universal inoculation against smallpox would increase the 
life expectancy from 26years 7 months to 29 years 9 
months (Bernoulli, 1760). Following Bernoulli, other 
physicians contributed to modern mathematical 
epidemiology. Among the most acclaimed of these were 
A. G. McKendrick and W. O. Kermack, whose paper, ‘A 
contribution to the Mathematical Theory of Epidemics’ 
was published in 1927. 
 
The idea behind epidemiological model is 
compartmentalization in which the host population is 
divided into distinct classes, according to epidemiological 
status. One of such model is to classify individuals as 
susceptible to the disease (S), currently infected (I) and 
recovered (R). The total host population is N = S+I+R. 
This work explores the potentials of deterministic model 
in simulating infectious diseases in Rivers State. 

 
A simple deterministic (compartmental) model was 
formulated in this paper and was successful in predicting 
the behavior of an epidemic very similar to that observed 
in many recorded epidemics following Kermack and Mc 
Kendrick, 1927. Hethcote et al, 1980, developed an 
integral equation models which was used to simulate 
Endemic infectious disease. It was found that the constant 
parameter models include vital dynamics (Birth and 
Death), immunization and distributed infection period. 
Okwa et al 2009, simulated the transmission dynamics of 
malaria in four selected ecological zones of Nigeria in the 
rainy season. They found that the most infected 
mosquitoes were seen in the rain forest and rainy season. 
Githeko and Ndegwa 2001, developed a mathematical 
model for predicting malaria epidemic and found that the 
rate of infection is dependent on the level of rainfall and 
temperature. 
 
Koriko and Yusuf, 2008 developed a mathematical model 
for the tuberculosis disease population dynamics and 
posited that population dynamics depends more on the 
number of actively infected people in the population at the 
initial time and also on the disease incidence transmission 
rate at a given time. Also, it was shown that the disease – 
free equilibrium is stable while the endemic equilibrium 
may or may not be stable on the various values of the 
model parameters. 
 
This work presents an enhanced and more efficient 
mathematical formulation to simulate infectious diseases 
dynamics in Rivers State, Nigeria using a modified SIR 
formalism 

3. Research Methodology 

A comprehensive epidemiological data was collected from 
Federal Ministry of Health, Podium Block, Port Harcourt, 
Rivers State. The data contained reported cases of diseases 
(communicable, non communicable and notable) prepared 
by the Department of Health Planning and Research, 
Federal Ministry of Health. These data were obtained from 
the different Primary Health Centers located across the 
Local Government Areas of Rivers State and covered the 
period of 10 years from the year 2000 to 2009. 
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Table 1: 2006 census figure of the 23 Local Government Areas 
(LGAs) in Rivers state, collected from the Ministry of Local 

Government Affairs, Rivers State 

LGA Name 
Area 

(sq.km) 
Population 

Administrati
ve capital 

Code 

Port Harcourt 109 541,115 Port Harcourt 500 

Obio-Akpor 260 464,789 Rumuokoro 500 

Okrika 222 222,026 Okrika 500 

Ogu/Bolo 89 74,683 Ogu 500 

Eleme 138 190,884 Eleme 501 

Tai 159 117,797 Sakpenwa 501 

Gokana 126 228,828 Kpor 501 

Khana 560 294,217 Bori 502 

Oyigbo 248 122,687 Afam 502 

Opobo/Nkoro 130 151,511 Opobo Town 503 

Andoni 233 211,009 Ngo 503 

Bonny 642 215,358 Bonny 503 

Degema 1,011 249,773 Degema 504 

Asari-Toru 113 220,100 Buguma 504 

Akuku-Toru 1,443 156,006 Abonnema 504 

Abua/Odual 704 282,988 Abua 510 

Ahoada West 403 249,425 Akinima 510 

Ahoada East 341 166,747 Ahoada 510 

Ogba/Egbema/

Ndoni 969 284,010 Omuku 510 

Emohua 831 201,901 Emohua 511 

Ikwerre 655 189,726 Isiokpo 511 

Etche 805 249,454 Okehi 512 

Omuma 170 100,366 Eberi 512 

 
 

 
 

Figure 1: Map of Rivers State showing all the Local Government 
Areas  

 
4.0 Model/Analysis 

A mathematical model is a set of equations, which are the 
mathematical translation of hypothesis (or assumptions) 
when interpreting model prediction. It is thus important to 
bear in mind the underlying assumptions. An assumption, 
by our definition, is an unverified proposition, tentatively 
accepted to explain certain facts or to provide a basis for 
further investigation. 
 
In 2008, Koriko and Yusuf simulated tuberculosis disease 
population dynamics. In that model, which was based on 
the standard conventional theory of SIR, the assumption 
was that the increasing population was a constant rate. 
This enhanced model proposes that people affect the 
population randomly. This is comparable to a wave train 
approaching the shoreline from different directions than 
from the positive x-direction, say, Asor and Okeke (2000), 
Asor (2001), Asor and Okeke (2001). Following therefrom, 
we make the following proposition: 
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4.1 Proposition 1 
Let P and N represent the Study area population and the 
new entrants into the population at random respectively. 
Then, P is as susceptible as ∑(P,N). So, 
 

S = ∑(P,N) 
 
The proof of the proposition is quite simple and we design 
the following model parameters and their description to 
generate our sets of differential equations: 
 
Let 

P Population size 
N total number of new people coming in randomly  
S total number of people in the study area that are 

susceptible 
IA total number of people that are actively infected 

by the disease 
IL total number of people that are latently infected 

by the disease 
Np Probability that a susceptible person is not 

vaccinated 
E Efficacy rate of vaccine 
TL success rate of latent disease therapy 
TA Active diseases treatment cure rate 
R Disease incidence rate per susceptible  
d Human natural death rate 
p Proportion of infection instantaneously 

degenerating in active condition 
i Disease induced death rate 
βA Breakdown rate from latent to active condition 

 
Based on the standard SIR model, we compartmentalize 
the model population into the susceptible (S) and the 
infected (I) which is further broken down into latently 
infected (IL) and actively infected (IA) while the recovered 
sub-population is ploughed back into the susceptible 
group due to the possibility of re-infection after successful 
treatment of the earlier infection. The model monitors the 
temporary dynamics in the population of susceptible 
people S(t), disease latently infected people IL(t) and 
disease actively infected people IA(t) as captured in the 
model system of ordinary differential equations that 
follows:  
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    Eq. (1) 
 
Changes in the susceptible population are accountable  

i. from new entrants into the study area randomly at 
a random rate N; 

ii. by the people who are cured from active disease; 
iii. from those successfully treated for latent disease; 
iv. from natural death at death rate, d and  
v. from infection with an incidence rate of infection. 

 
The instantaneous incidence rate of infection, a, per 
susceptible will depend on number of contact with 
infection per susceptible people and the probability that 
the contact lead to infection. In the same way, the latently 
infected population dynamics depends on the proportion 
of the infection that results in latent infection 

  SIp A1  and this is reduced by loss due to natural 

death, successful treatment of latent patients, and 
occasional breakdown of latent infection into active 
infection.  
 
Finally, the change in the actively infected population is 
dependent on the proportion of disease infection of the 
susceptible sub-population degenerating instantaneously 
into active infection plus the number of latently infected 
people breaking down into active patients while this is 
diminished due to natural death, successful cure of active 
patients, and death caused as a result chronic active 
infection.  
 
It is important to note that in this model, the assumption is 
that successfully treated latent patients and cured active 
patients become susceptible immediately after their 
treatments whenever they are exposed to infection again 
irrespective of their infection history. Realistically, this 
group may sometimes enjoy some temporary immunity to 
infection and whenever they are re-infected, they may 
require more intensive treatment as a result of some multi-
drug resistance that must have been built over time. 
 
5.0 Equilibrium Analysis 

Modeling infectious diseases demands that we investigate 
whether the disease spread could attain a pandemic level 
or it could be wiped out. The equilibrium analysis helps to 
achieve this. Thus, we shall consider two equilibriums – 
the diseases-free equilibrium and endemic equilibrium. 
 
At equilibrium, 
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Hence, the system of equation becomes: 
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     Eq. (3) 
 
Obviously, at the disease-free situation,  
 
IL = 0, and  
IA = 0. 
 
Thus, from equation (3) we have  
 
P + N - S = 0    Eq. (4) 
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   Eq. (5) 

So, the disease-free equilibrium is (N0, 0, 0).  However, for 
endemic equilibrium, we solve equation (3) for S, IL and IA 
respectively.  This gives 
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Thus, we can take our endemic equilibrium as  

 *** ,, AL IIS      Eq. (9) 

 

 
 

Figure 2: Data Flow Diagram for the proposed System 
 

6.0 CONCLUSION 

Following analysis, modeling infectious diseases demands 
that we investigate whether the disease spread could attain 
a pandemic level or it could be wiped out. The equilibrium 
analysis helps to achieve this. 
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