
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

32

A Novel Hybrid Algorithm for Task Graph Scheduling

Vahid Majid Nezhad1, Habib Motee Gader2 and Evgueni Efimov3

 1 Department of Computer Engineering, Islamic Azad University, Shabestar Branch
Shabestar, East-Azerbaijan, Iran

2 Department of Computer Engineering, Islamic Azad University, Shabestar Branch
Shabestar, East-Azerbaijan, Iran

3 United Institute of Informatics Problems of National Academy of Science of Belarus
Minsk, Belarus

Abstract

One of the important problems in multiprocessor systems is
Task Graph Scheduling. Task Graph Scheduling is an NP-Hard
problem. Both learning automata and genetic algorithms are
search tools which are used for solving many NP-Hard problems.
In this paper a new hybrid method based on Genetic Algorithm
and Learning Automata is proposed. The proposed algorithm
begins with an initial population of randomly generated
chromosomes and after some stages, each chromosome maps to
an automaton. Experimental results show that superiority of the
proposed algorithm over the current approaches.
Keywords: Task Graph, Scheduling, Genetic Algorithm,
Learning Automata.

1. Introduction

Although computer performance has evolved
exponentially in the past, there have always been
applications that demand more processing power than a
single state-of-the-art processor can provide. To respond
to this demand, multiple processing units are employed
conjointly to collaborate on the execution of one
application. Computer systems that consist of multiple
processing units are referred to as parallel systems. In
designing parallel systems different aspects have to be
taken into consideration such as the manner of dividing a
program into some tasks and the manner of tasks
assignment to processors which is called Task Graph
Scheduling.

Task Graph Scheduling is an important issue in the
distribution of programs on the processors of a parallel
system. Because task graph scheduling is an NP-Hard
problem, methods of random search are utilized for
finding the nearly optimal scheduling [1]. Among the

various methods of random search, Genetic Algorithm
(GA) has been one of the best ones ever used for Task
Graph Scheduling [2-6]. Learning Automata (LA) is
another method that is used for Task Graph Scheduling
[7-9]. Also other methods are also used for Task Graph
Scheduling that we are going to consider some of them in
this paper [10-12].

In this paper parallel programs are presented by the Task
Graph. Fig. 1 depicts an example of the task graph for a
program. The numbers allocated to the graph nodes
represent the costs of the completion of that node, and the
numbers given to the manes of the graph represent the
connection cost among nodes. Each contrastive node is a
task.

Fig. 1 Example of task graph with 17 tasks.

The connection cost between two nodes is put forward
when the instruction of those two nodes are applied in

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

33

different processors. If both instructions are running on
same processor, in that case, the connection cost between
those two instructions is considered zero (in fact reality
the connection cost is not zero but very minimal time.
Due to the meagerness of this cost, it is considered zero).
The rest of the paper will be as follows:

In part two, an outline of the Genetic Algorithm is put
forward, afterwards, in part three learning automata is
introduced. After that, in part four, the new algorithm for
solving the problem of the task graph scheduling is
presented and in part five, result of experiments are
analyzed and then, in final part conclusions will be
investigated.

2. GENETIC ALGORITHM

Genetic Algorithms which act on the basis of evaluation
in nature search for the final solution among a population
of potential solution. In every generation the fittest of that
generation selected and after reproduction produce a new
set of children. In this process the fittest individuals will
survive more probably to the next generations. At the
beginning of algorithm a number of individuals (initial
population) are created randomly and the fitness function
is evaluated for all of them. If we do not reach to the
optimal answer, the next generation is produced with
selection of parents based on their fitness and the children
mutates with a fixed probability then the new children
fitness is calculated and new population is formed by
substitution of children with parents and this process is
repeated until the conclusion condition is established.

The most advantages of this algorithm compared with
common methods are: parallel search instead of serial
search, not requiring any additional information such as
problem solving method, in-deterministic of algorithm,
easy implementation and reaching to several choices. GA
uses several operators, each of which have different types
and can be implemented using different methods.

3. LEARNING AUTOMATA

Learning in LA is choosing an optimal action from a
series of allowable automata actions. This action is
applied on a random environment and the environment
gives a random answer to this action of automata from a
series of allowable answers. The environment's answer
depends statistically on automata action. The term
environment includes a set of outside conditions and their
effect on automata operation. Connection of an automaton

with the environment is shown in Fig. 2. In this paper the
used automata is an Object Migration Automata (OMA).

Fig. 2 Connection of LA with random environment.

4. The Proposed algorithm

In the proposed algorithm, the combination of genetic
algorithm (GA) and learning automata (LA) are used.
One of the most important features of the GA is that it has
stochastic behavior which is because of the genes too
much change. Therefore it is unstable but it has a high
speed in creating an approximately appropriate population
of chromosomes. The significant feature of LA is its
stability because actions or genes don’t change too much.
In other words, in each stage of LA rewarding and
penalizing are done. While rewarding, a gene strengthens
and doesn’t replace. While penalizing, a gene may get
weakened or it may be replaced.

The base of proposed algorithm is that, in the first stages,
GA be used. By too much change in genes we can reach
to an approximately appropriate population of
chromosomes. After that to avoid instability and
stochastic behavior of GA, the chromosomes are mapped
to automata and in order to make it stable, other stages
are done by LA. It means in our proposal algorithm the
advantage of both method are used.

In details, proposed algorithm mixes GA and LA as
follow: First for running genetic algorithm, some
chromosomes as initial population are produced. One of
these chromosomes is displayed in Fig. 3. As shown in
Fig. 3 the genes from left to right indicates first task,
second task, … and ninth task. And a random number is
assigned to each gene so that the random numbers
indicate two concepts:
 The priority of tasks. Greater numbers have more

priority.
 The number of the processor that is in charge of

running that task. For specifying the number of the
processor, we must use the mod of random number to
total number of processors.

Second, for running Learning automata each chromosome
maps to an automaton. For this propose each gene of

α(n) β(n)

Random Environment

Learning Automata

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

34

chromosome convert to an action of automaton. For
example the chromosome of Fig. 3 is converted to an
automaton in Fig. 4.

Fig. 3 An instance of chromosomes.

Fig. 4 Mapping a chromosome to an automaton.

Next, details of genetic algorithm about fitness function,
crossover operator, mutation operator and selection
operator in my proposed algorithm are described.

In Genetic Algorithm, fitness function determines
whether chromosomes are going to stay alive or not. In
the problem of task scheduling, the object is to find a
short makespan. Eq. (1) Shows Fitness function for
evaluation of chromosomes.

 popsizekmf
k

k ,.....,2,1,1

mk : the makespan resulting from k th chromosome.
popsize: population size.

In this article, a novel method for crossover operator has
been described. The combination method used in this
article is a two-point one. First two points are randomly
chosen as subclasses, and then their contents and orders

are analyzed. For instance, as shown in Fig. 5 the
substring chosen from first chromosome, has a weight
order of 1-2-3-4. This weight order is used for changing
the substring chosen by second chromosome. Thus, the 6-
13-15-11 is changed to 15-13-11-6. WMX algorithm is
not one, which changes only the contents of two points
selected from two chromosomes, but it also changes the
contents of classes according to weight priorities.

 Phase 0: Random substring selection from two chromosomes.

Phase 1: Random substring selection from two chromosomes.

Phase 2: Weight order used for genes Mapping Relation.

Phase 3: Two new produced chromosomes.

Fig. 5 Example of Crossover Operator.

For operating mutation, two genes are randomly selected
from a chromosome and their amounts are changed with
each other.

Selection operator in this article is as follows: In each step
of new population production, a percent of chromosomes,
which has least amount of fitness, are selected and enter
in the new population directly. The rest of the population
is produced through combining chromosomes.

Next details of automata and its operators are described.
In this automaton α {α1,...,αk } is the set of allowed action
for the learning automata. This automaton has k actions
(i.e. the number of the actions of this automaton is equal
to number of the tasks of the graph). Each action specifies
a special task when and where will be executed. ɸ{ ɸ1 ,
ɸ2 , ɸ3 ... , ɸ KN } is the set of situations, and N is the
memory depth for automata. The situation set of this
automaton is divided to k subsets and each task is
categorizing to where and which position it is located. In
the set of j’s action, position ɸ(j-1)N+1 is called internal

1
17

2
5

3
3

4
2

4
6

2
13

1
15

3
11

4
2

2
5

1
17

3
3

1
15

2
13

3
11

4
6

15 11 14 9 17 5 3 2 7

T1 T2 T3 T4 T5 T6 T7 T8 T9

Second chromosome

18 16 11 15 6 13 15 11 17

First chromosome

15 11 14 9 17 5 3 2 7

T1

T9

T8

T7

T6

T2

T3

T4

T5

 14

17

15

11
 2

5

3

7

9

Second chromosome

18 16 11 15 15 13 11 6 17

First chromosome

15 11 14 9 2 5 17 3 7

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

35

position and ɸjN position is called boundary position. A
nodes in ɸ(j-1)N+1 position is called is called a more
important node, and a node in ɸjN position is called a less
important node.

Since, each chromosome is presented as a learning
automaton, in each automaton, after considering the
fitness of a gene (either processor or action), which is
selected on a random basis, that gene is duly penalized or
rewarded. As a result of penalizing a gene, its position in
the boundary position of an action, leads to a change in its
action and, in consequence, creation of a new makespan.
Reward action occurs when the fitness of a task is smaller
than its threshold. Eq. (2) shows fitness of ti and Eq. (3)
shows threshold rate of ti.

i

i
i y

xtf)(

N

rtTh i
i)(

Eq. (4) And Eq. (5) show xi and yi equations. xi is the
sum of connection cost of all parent and offspring nodes
of ti node so that pti ≠ ptj and yi is the sum of the
connection costs of all parent and offspring nodes of ti
node.
pti : A processor that ti task is performed on it.
ptj : A processor that tj task is performed on it.
c(ti ,tj) : Communication cost between ti and tj tasks.
N: The number of all graph tasks.
ri : Consist of a number of related tasks to ti task that is
executed on a processor which ti task is run in it.

tjtijii ppifttcx),(

),(jii ttcy

ri has a reverse relation with xi; as ri increases xi
decreases and vice versa. If the fitness level of a ti task is
equal to zero, it means that all related tasks of ti are
performed on the same processor. Therefore, the lower
value of fitness is better for scheduling problem. In case
the fitness level of a task is more than the threshold
amount, then the task gets penalized. Two positions are
possible when penalizing a task:

a) The task’s value might be in a position other than
boundary position. In this case, penalizing makes it less
important. How the task’s value of t3 task is penalizes, is
shown in Fig. 6.

Phase 0: Automaton status before penalizing t3 task.

Phase 1: Automata status after penalizing t3 task.

Fig. 6 t3 task penalizing.

b) The task’s value might be in boundary position. In this
case, we look for a task in the graph that has the greatest
reduction in the amount of fitness when the values of
them are changed. Now if the value of found task is in the
boundary position, two values are changed with each
other and if otherwise, i.e. if the value of found task is not
in the boundary position, first the value of found task
should be moved to its boundary position and then values
change occurs. Fig. 7 shows how t4 task is penalized.

T1

T9

T8

T7

T6

T2

T3

T4

T5

 14

17

15

11
 2

5

3

7

9

T1

T9

T8

T7

T6

T2

T3

T4

T5

 14

17

15

11
 2

5

3

7

9

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

36

Phase 0: t4 task status before penalizing.

Phase 1: Value of t4 transmit to boundary position and values of t4
and t8 tasks are changed.

 Fig. 7 t4 task penalizing.

5. SIMULATION RESULTS

In this article, the performance of the proposed algorithm
is compared with well-known definite and indefinite
algorithms. Parameters that are used in PMC_GA and the
proposed algorithm are shown in table 1. Next, three
experiments are described and simulation results are
investigated.

Table 1: Algorithms Parameters

Algorithm
Memory

Depth
Mutation

Rate
Crossover

Rate
Population

PMC_GA - 0.3 0.7 100
Proposed 5 0.3 0.7 100

Test Algorithms which are used in this section are: MCP
(modified critical path) by Wu and Gajski [10], DSC
(dominant sequence clustering) by Yang and Gerasoulis
[11], MD (mobility directed) by Wu and Gajski [10], DCP
(dynamic critical path) by Kwong and Ishfaq [12],
PMC_GA by Hwang, Gen and Katayama [13].

First experiment: by observing the task graph in Fig. 8,
results obtained from various algorithms [13] and the
proposed algorithm is displayed in table 2. Also acquired
Gantt chart of the proposed algorithm is shown in Fig. 9.
It becomes evident that the proposed algorithm reaches
the better results in fewer generations.

Fig. 8 Example of task graph with 9 tasks [13].

Table 2: Comparative results of the proposed algorithm with others.

Algorithms MCP DSC MD DCP PMC_GA Proposed

No.
Processors 3 4 2 2 2 2

Finish Time 29 27 32 32 23 21

Iterations - - - - 50 15+25

Fig. 9 Gantt chart of proposed algorithm.

T1

T9

T8

T7

T6

T2

T3

T4

T5

 14

17

15

11
 9

5

3

7

2

T1

T9

T8

T7

T6

T2

T3

T4

T5

 14

17

15

11
 2

5

3

7

9

T1

P1

P0 T2 T5 T7 T8

T3 T6 T4

T9
2 5 10 11 15 19 20 21

Finish
Time

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

37

Second Experiment: the second experiment is performed
on the graph of Fig. 10 and the results obtained from
various algorithms [13] and the proposed algorithm are
shown in table 3. It can be seen that the proposed
algorithm reaches the response in fewer generations.

Fig. 10 Example of task graph with 18 tasks [13].

Table 3: Comparative results of the proposed algorithm with others.

Algorithms MCP DSC MD DCP PMC_GA Proposed

No.
Processors 4 6 3 3 2 2

Finish Time 520 460 460 440 440 440

Iterations - - - - 100 30+40

Third Experiment: for testing the proposed algorithm and
comparing it with the PMC_GA [13] on a larger DAG,
the simulations are performed in different conditions and
based on some standard task graph database [14]. Note
that we add some communication cost to the database
graphs and make some graph with communication cost to
test our proposed in a real condition and compare it with
the PMC_GA. Also terminating condition of both
methods is 10 iterations with same fitness. The simulation
results are shown in table 4. It becomes evident that the
proposed algorithm in comparison with PMC_GA reaches
better results.

Table 4: Comparative results with 50 tasks graphs (rnc50.tgz, rand0010stg,
rand0016stg) [14]

Algorithms PMC_GA Proposed

No. Processors 2 2

Finish Time for
mc50.tgz,rand0010 133 115

6. Conclusions

In this paper the hybrid algorithm is proposed for Task
Graph Scheduling in parallel systems. This algorithm
utilizes advantages of Genetic Algorithm and Learning
Automata methods to search into the state space. In
proposed algorithm by using good initial population of
PMC_GA and stability of Learning Automata in search
process, the number of generations needed for reaching
the optimal response decreases. Also the results of the
experiments show that the proposed algorithm from
optimal response point of view acts better than other
methods. Therefore, the results of the experiment show
the superiority of the proposed algorithm to current
algorithms.

Acknowledgments

This paper was under grant and supported by the Islamic
Azad University, Shabestar Branch. The authors wish to
express their thanks for the support.

References
[1] C C’ Shen and W.H. Tsai, “A Graph Matching Approach to

Optimal Task Assignment in Distributed Computing
Systems Using a Minimax Criterion,” IEEE Trans. on
Computer, vol. 34, no. 3, pp. 197-203. Mar 1985.

[2] P Shroff et al. .”Genetic Simulated Annealing for Scheduling
Data-dependent tasks in Heterogeneous Environments,”
Proceedings of Heterogeneous Computing Workshop. pp.
98-117. Apr. 1996.

[3] H Singh and A. Youssef. “Mapping and Scheduling
Heterogeneous Task Graphs using Genetic Algorithms.”
Proceedings of Heterogeneous Computing Workshop. pp.
86-97. Apr. 1996.

[4] L. Wang et al, “Task Matching and Scheduling in
Heterogeneous Computing Environments Using a Genetic-
Algorithm-Based Approach,” Journal of Parallel and
Distributed Computing. vol. 47. pp. 8-22, Nov. 1997.

[5] R. Hwang and M. Gen “Multiprocessor scheduling using
genetic algorithm with priority-based coding,” Proceedings
of IEEJ conference on electronics, information and systems;
2004.

[6] A. Wu, H. Yu, S. Jin, K-C. Lin and G. Schiavone. “An
incremental genetic algorithm approach to multiprocessor

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

38

scheduling,” IEEE Transactions on Parallel and Distributed
Systems;15(9):824–34, 2004.

[7] R .D. Venkataramana and N. Ranganathan, “Multiple Cost
Optimization for Task Assignment in Heterogeneous
Computing Systems Using Learning Automata,” in
Proceedings of Heterogeneous Computing Workshop, pp.
137–145, Apr. 1999.

[8] R. D. Venkataramana and N. Ranganathan, “A Learning
Automata Based Framework for Task Assignment in
Heterogenous Computing Systems,” in ACM Symposium on
Applied Computing, 1999.

[9] R. D.Venkataramana, “Task Assignment And Scheduling
Algorithms For Heterogenous Computing Systems”, Ph.D.
thesis, University of South Florida, August 2000.

[10] M. Wu and D. Gajski, “Hypertool: a programming aid for
message-passing systems,” IEEE Transactions on Parallel
and Distributed Systems, 1(3):330–43, 1990.

[11] T. Yang and A. Gerasoulis, “DSC: scheduling parallel tasks
on an unbounded number of processors,” IEEE Transactions
on Parallel and Distributed Systems,5(9), 1994.

[12] K. Yo-Kwong and A. Ishfaq, “Dynamic Critical Path
scheduling: An Effective Technique for Allocating Task
Graphs to Multiprocessors,” IEEE Trans on Parallel and
Distributed Systems, Vol. 7, No. 5, pp. 506-521,1996.

[13] R.Hwang, M.Gen and H.Katayama, "A comparison of
multiprocessor task scheduling algorithms with
communication costs", Computers & Operations Research
35, 976 – 993, 2008.

[14] Standard Task Graph Set is available online at:
http://www.kasahara.elec.waseda.ac.jp/schedule.

Vahid Majid Nezhad received the B.Sc. degree in Software
Engineering from the Islamic Azad University, Tabriz Branch, Iran, in
2004, and the M.Sc. degree in Software Engineering from the Islamic
Azad University, Tehran Branch, Iran, in 2007. Since 2007, he has
been with the Faculty of Computer Eng., at the Islamic Azad
University, Shabestar Branch, Iran, where he is currently an
Academic Staff. His research interests include Speech Processing
and Optimization Problems.

