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                                   Abstract 
Ground water pollution is a serious environmental problem 
that may damage human health, destroy the ecosystem and 
cause water shortage. In all situations, we need tool to predict 
the pollutant distribution in ground water. The only tool that we 
can use is mathematical modeling. 
Recently, very intensive efforts have been devoted to develop 
meshless or element free methods that eliminate the need of 
element connectivity. The motivation is to cut down modeling 
costs in industrial applications by avoiding the labor intensive 
step of mesh generation. In this paper we develop and compare 
two types of a meshfree method for modeling groundwater 
contaminant transport: globally supported multiquadric radial 
basis function (MQRBF) and locally supported compactly 
supported radial basis functions (CSRBF). The algorithm uses 
collocation method with radial basis functions. RBF is a truly 
meshfree method and can be used to solve complex geometry 
and high dimensional problems very easily compared to other 
classical numerical method. Numerical results are presented 
for 1-D, 2-D and 3-D groundwater contaminant transport 
models. The results show that the method is very simple and 
accurate. 
Keywords: Meshl-free, Radial Basis Function, Multiquadric, 
Compactly supported, Groundwater Equation, Contaminant 
Transport. 
 

1. Introduction 

The demand for water resources is increasing day by day 
due to ever increasing population.  Groundwater plays a 
major role in the livelihood of mankind by providing water 
for drinking, irrigation and industrial purposes. The rapid  

 
 
population growth in the last three decades all over  the 
globe resulted in exploiting more groundwater [12]. A 
ground water model is thus a simplified version of the real 
system that approximately simulates the input-output 
stresses and response relations of the system. One has to 
understand here that normally the real system is simplified 
to model the system as such there is no unique model for a 
given groundwater system. Normally, models are 
classified as predictive, interpretive and generic models. 
Predictive models are used to predict the future response 
of the aquifer, which needs a calibrated and validated 
model. Interpretive models are used for studying system 
dynamics and it is generally used for optimal data network 
design. Generic models are used to understand the flow 
dynamics in hypothetical situations [12]. 
 
Groundwater contamination and soil pollution have been 
recognized as critical environment problems throughout 
the world for many years. In the protection and 
improvement of groundwater quality, two challenging 
problems are evident for uncontaminated aquifers, one 
must assess the potential dangers of pollution and for 
contaminated aquifers, it is necessary to develop and 
implement remediation strategies. In both situations, a 
predictive tool is needed to estimate the pollutant 
distribution in groundwater [7]. 
. 
Ne Zheng sun shows in [16] that the only tool that we can 
use is mathematical modeling. Over the past decade, mesh 
reduction techniques (Meshless or Mesh-free methods) 
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have emerged as effective numerical techniques for 
solving science and engineering problems. The motivation 
is to cut down modelling costs in industrial applications by 
avoiding the labor intensive step of mesh generation. In 
this study, we consider the collocation formulation to solve 
a system of groundwater model. The numerical solution is 
evaluated at scattered collocation points and the spatial 
partial derivatives are formed directly from partial 
derivatives of the radial basis functions without using any 
difference scheme. 
 
Applications of radial basis functions have gained quite 
some importance over the past years. They have been 
successfully applied to large variety of problems [1, 2, 3, 
4, 5, 15]. A major advantage with using RBFs is that the 
points on the grid do not need to be uniformed in anyway. 
To increase the computational efficiency of the numerical 
solution two different kind of radial basic functions are 
used: Multiquadric (MQRBF) and Wendland’s function 
(CSRBF). Compared to other mesh-free methods, the 
radial basis function methods have the following 
advantages: they require neither domain nor boundary 
discretization, domain or boundary integration is not 
required, in some cases, they converge exponentially for 
smooth solutions, since RBFs are univariate functions 
which depend only on the distances between points, RBFs 
are attractive to high dimensional problems, the 
implementation and coding are very easy. In [7, 15] they 
shown that computed results by RBF are quit steady as 
observed in some finite element method (FEM), Larsson 
and Formberg shown in [10] that RBF collocation method 
can easily achieved much higher-order accuracy than the 
finite difference method (FDM). 
 
In this paper we develop and compare two types global 
and local radial basis function mesh-free method for 
modeling groundwater contaminant transport. This paper 
is organized as follows. Section 2 describes the modeling 
aspects of time-dependent 3D governing equations of 
groundwater contaminant transport. In Section 3 we 
discuss the application of compactly supported RBFs and 
multiquadric RBFs. Section 4 discusses some numerical 
results. The paper ends with a conclusion. 

2.  Governing Equations 

The governing equations of groundwater contaminant 
transport modeling can be described as: 
 

2 2 2

2 2 2x y z x y z

C C C C C C C
D D D V V V C

t x y z x y z
      

      
         (2.1)

 

the initial and boundary conditions are chosen accordingly 
so that the exact solution is :  

( , , , ) ( 1 2 )( 3 4 )( 5 6 )
yx

yx z

VV Vz
DD DtC x y z t e c c e x c c e y c c e z      

                                                                                           (2.2)                    
where C is the concentration of the contaminant.

( , , )x y zV V V V  is the seepage velocity, ,x yD D and zD are 

the dispersion coefficients in the  ,x y and  z direction, 

respectively,  is the rate of decay, 1 2 3 4 5 6, , , , ,c c c c c c
are parameters constant. This problem was also considered 
in [11]. 
 

3. Global and Local Radial Basis Functions 

Following Kansa’s formulation scheme [8], the application 
of collocation radial basis functions to a system equation 
(2.1) and its boundary conditions start by first selecting a 
set of boundary points 

1 1 1{ ( , , ) , . . . , ( , , )}b b bx y z x y z  and

1 1 1{( , , ),..., ( , , )}b b b d b d b d bx y z x y z       domain nodes. 

The unknown solution of the problem at each time t can be 
determined under the form 

1

( , , ),
d b

j j
j

C x y z 




                                               (3.1) 

where 1{ }N
j  are unknown coefficients to be determined 

and ( , , )j x y z  is the selected radial basis 

function. The most commonly used mesh-free radial basis 
functions are given in Table [1] for global radial basis 
function, Table [2] for local radial basis function and 
indicated in Figures (1, 2, 3). 

Table 1: Some commonly used Global (Kansa) RBFs 

( )( 0)r r   Type of basis function 

2 2r   
Multiquadric (MQ) 

         
2 2 1/2( )r   

Inverse Multiquadric (IMQ)

2( / )re 
 

Gaussian (GA) 

2 logr r       Thin Plate Spline (TPS) 

r   Linear 

3r   Cubic 
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Table 2: Some commonly used Local (Wendland) RBFs [13] 

Dimenso l  CSRBFs Smoothness 

 

      1l   

 

1 , 0 ( ) ( 1 )r r    

3
1 ,1 ( ) (1 ) (3 1)r r r    

       5 2
1 , 2 ( ) (1 ) ( 8 5 1 )r r r r     

0C  

2C  

4C  

3l   

         2
3 ,0 ( ) (1 )r r    

4
3 ,1 ( ) (1 ) (4 1)r r r    

6 2
3,2 ( ) (1 ) (35 18 3)r r r r     

8 2 2
3,3( ) (1 ) (32 25 8 1)r r r r r    

 

0C

2C  

4C  

6C  

 

5l   

3
5 ,0 ( ) (1 )r r    

5
5 ,1 ( ) (1 ) (5 1)r r r    

7 2
5 ,2 ( ) (1 ) (16 7 1)r r r r     

 
0C  

2C  

4C  

 

 

Fig. 1 The most commonly used radial functions. 
 
 

Fig. 2  The most commonly used Kansa’s radial functions 3D. 

 

Fig. 3 The most commonly used Wendland’s Compact supported radial                               

functions 3D. 

    To solve the three-dimensional time-dependent 
differential equations given by equation (2.1), we start the 
time integration scheme with implicit scheme using   
weighted; therefore equation (2.1) will be of the form: 
 

1 2 1 2 1 2 1 2 1

2 2 2 2

n n n n n n

x y z x y

C C C C C C
D D D V V

t t x y z x

        
          

    

2 1 2 1
1

2 2

n n
n

z

C C
V C

y z


 
  

    

2

2
(1 )

n

x

C
D

x

 
   

        

2 2 2 2 2

2 2 2 2 2

n n n n n

zy z x x

C C C C C
D D V V V C

y z x x z


                ,     (3.2)    

 
where t  is the time step, 1C n

i
 is the solution vector at 

points (x ,y ,z ) i i i in time (n + 1 ) t . The values of the 

interpolant 
nC are given by collocating equation (3.2) at 

the interior points 
1(x ,y ,z )  b d

i i i i b

   and by the boundary 

conditions at 1 1 1{(x ,y ,z ),...,(x ,y ,z )}b b b . 

This yields the system of N linear equations which can be 

expressed in matrix form A .Q
 

  where (x ,y ,z )j i i iA       

is a  N N coefficient matrix  [ ]n
j 



 and    [ ]n
jQ Q



  

are 1N  matrices.  The  numerical values of the 
corresponding spatial derivatives of  (x ,y ,z )n

i i iC can be 

determined using equation (3.1) and the solution of the 
variable C computed by substituting the partial derivatives 
into the equation (3.2) with its given boundary conditions. 
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Two different type of radial basic functions are used, the 
multiquadric function MQ  given as:   2 2

j

M Q
jr     

and
 
 Wendland’s functions (CSRBF) 

CS  given as:   
 

6 2

( , , ) 1 35 18 3
j

j j jCS r r r
x y z

  


    
            

, 

where 2 2 2( ) ( ) ( )j j j jr x x y y z z      ,   is 

the shape parameter,  is the support of the 

function and 1 sup 0, 1 .j jr r

 


           
     

 

A free shape parameter _ in global RBFs or _ in local 
RBFs plays an important role for the accuracy of the 
method and that can be tuned by the user. To the best of 
our knowledge, the optimal choice of the constant shape 
parameter is still an open question, and it is most often 
selected by trial and error. In order to overcome these 
shortcomings, many efforts have been made to find a new 
computational method that is capable of circumventing the 
ill-conditioning problems using linear solvers. The effort 
reported in the literature to reduce the ill-conditioning 
problems include: (1) Using variable shape parameters. (2) 
Pre-conditioning the coefficient matrix. (3) Using domain 
decomposition methods in over lapping or non 
overlapping schemes that decompose a very large ill-
conditioned problem in to many subproblems with better 
conditioning. (4) Optimizing the center locations by the 
Greedy algorithm. (5) Using an improved numerical solver 
based on affine space decomposition, for more (see [9, 14, 
15] and references therein and references therein). 

4. Numerical results 

We present here the simulation numerics by two RBF 
methods MQRBF and CSRBF and compare between these 
types of RBFs see Figures 4, 5. Using 11 11  uniformly 
distributed collocation points, Figures 6-10 plots the 
contours, surface and the errors of the numerical results of 
2D concentration contaminant equation by both MQRBFs 
and CSRBFs, with the error between analytical and 
numerical simulation. While the Figures 11-12 given the 
solution of 3D using 11 11 11   uniformly distributed 
collocation points. We presented the simulation at the time 
steps 100nt  for 2D and at 200nt  for 3D, with

1  , 100  , 0.01t s  , MQ and CS  for both 

2D and 3D. The optimal maximum norm error is 0.0194 
by MQRBF and 0.0053 by CSRBF 
 
 

 

Fig. 4  Pollutant Concentration in 1-D, nt=20, 
0.01t s  , ɛ=1, 1000   . 

 

 
Fig. 5 Error by MQRBF and CSRBF in 1-D. 

 
 
 

 

Fig. 6 Pollutant Concentration in 2-D, 20,nt 
0.01t s  , ɛ=1, 1  . 
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Fig. 7 Error of 2-D by MQRBF at 20,nt   

0.01t s  , ɛ=1, 1  . 

 

Fig. 8  Pollutant Concentration in 2-D, 20,nt 
0.01t s  , 100,   1  . 

 

 

 

Fig. 9 Error of 2-D by CSRBF at 20,nt  0.01t s  , 

100,  1  . 

 

Fig. 10 Error of 2‐D by MQRBF and CSRBF at  20,nt 
0.01t s  , 1  . 

 

 

Fig. 11 Contours of 3‐D on plane 1 / 2z  , 20,nt 
0.01t s  , 0.5  . 

 

Fig. 12 Analytical and numerical solution of 3-D on

1/ 2y  , 1 / 2z  , 20,nt  0.01t s  , 0.5  . 
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5. Conclusions  

Our experiments have shown that CSRBFs with a suitable 
choice of scaling factor    would perform better than 
global MQRBFs. We have shown that the condition 
number of MQs scheme increased rapidly with the 
increase in the number of data points. Using CSRBF 
technique which enable one to work with sparse banded 
matrices the problem of ill-condition was reduced and 
improve the conditioning of the matrices. A meshfree 
method does not require a mesh to discretise the domain of 
the problem under consideration, and the approximate 
solution is constructed entirely based on a set of scattered 
nodes. Without using meshferr radial basis functions it 
would be difficult to solve 3-D problems by traditional 
method as FDM, FEM and FVM. Since it is a meshless 
method implementation is simple contrary to the others 
methods. 
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