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                           Abstract 
 In this paper we propose to   produce   an   extractive   
 summary for given  set of     documents     based   on 
 word  sequence   models   by  extracting     Maximal 
 frequent  sequences from  the given text.   The main 
 problem for  generating an   extractive automatic text 
 summary is to detect the most relevant information in 
 the source   document. To overcome this problem we 
 have   successfully   employed    the   word sequence  
 information    from the self-text   for     detecting  the 
 candidate text fragments for composing the summary. 
 To  compose  the  effective  summarization  we have 
 used   mfs     technique to extract the detect the most 
 important   terms in   the  source    document      and 
 Normalized Google   dissimilarity    distance       for 
 sentence clustering . This simple  representation  not  
 only diminishes   domain   and language dependency 
 but  also  enhances  the  summarization performance. 
 
Keywords: Multidocument summarization ,Extractive  
 summarization, maximal  frequent sequence, sentence 
 clustering,    normalized      Google         dissimilarity. 

 
 1.Introduction 
 
Typical information retrieval (IR) systems have 
two steps[2]: the first is to find documents based 
on the user’s query, and the second is to rank 
relevant documents and present them to users 
based on their relevance to the query. Then the 
users have to read all of these documents. The 
problem is that these docs are much relevant and 
reading them all is time-consuming and 
unnecessary.  
 
Multi-document summarization aims at 
extracting major information from multiple 
documents and has become a hot topic in NLP. 

A summary can be loosely defined as a text that 
is produced from one or more texts that conveys 
important information in the original text(s), and 
that is no longer than half of the original text(s) 
and usually significantly less than that. 
 
The text summarization tasks can be classified 
into single-document and multi document 
summarization .In single-document 
summarization, the summary of only one 
document is to be built, while multi document  
summarization the summary of a whole 
collection of documents . 
 
An extractive summary, is composed with a 
selection of sentences (or phrases, paragraphs, 
etc.) from the original text, usually presented to 
the user in the same order—i.e., a copy of the 
source text with most sentences omitted. An 
extractive summarization method only decides, 
for each sentence, whether or not it will be 
included in the summary. 
  
The Maximal Frequent Sequences(MFS)[2] are 
attractive for extractive text summarization since 
it is not necessary to define the gram size (n), it 
means, the length of each MFS is determined by 
the self text. Moreover, the set of all extracted 
MFS s is a compact representation all frequent 
word sequences, reducing in this way the 
dimensionality in a vector space model.  
 
Multi document summarization can be classified 
into three categories according to the way that 
summaries are created: term extraction, sentence 
clustering and sentence extraction.  
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We will assume that the units of selection are 
sentences (these could be, say, phrases or 
paragraphs). Thus final goal of the extractive 
summarization process is sentence selection. One 
of the ways to select the appropriate sentences is 
to assign some numerical measure of usefulness 
of a sentence for the summary and then select the 
best ones; the process of assigning these 
usefulness weights is called   sentence weighting.  
 
2.Requirements for multi document                
summarization 
 
There are two types of situations in which multi 
document summarization would be useful: (1) 
the user is faced with a collection of dis-similar 
documents and wishes to assess the information 
landscape contained in the collection, or (2) there 
is a collection of topically related documents, 
extracted from a larger more diverse collection 
as the result of a query, or a topically-cohesive 
cluster.  
Following is a list of requirements for multi-
document summarization: 
 
2.1 clustering:  
The ability to cluster similar documents and 
passages to find related information. 
 
2.2 coverage:  
The ability to find and extract the main points 
across documents. 
 
2.3 anti-redundancy:  
The ability to minimize redundancy between 
passages in the summary  
 
2.4 summary cohesion criteria:  
The ability to combine text passages in a useful 
manner for the reader. This may include: 
2.4.1document ordering: All text segments of 
highest ranking document, then all segments  
from the next highest ranking document, etc. 
 
2.4.2 rank ordering: present the most relevant 
and diverse information first. So that the reader 
gets the maximal information content even if 
they stop reading the summary. 
 
2.4.3topic-cohesion: Group together the passages 
by topic clustering using passage similarity 
criteria and present the information by the cluster 
centroid passage rank. 
 
2.4.4 time line ordering: Text passages ordered 

based on the occurrence of events in time. 
 
2.4.5 coherence: Summaries generated should be 
readable and relevant to the user. 
 
2.4.6 context: Include sufficient context so that 
the summary is understandable to the reader. 
 
2.4.7 Identification of source inconsistencies: 
Articles often have errors (such as billion 
reported as million, etc.); multi-document 
summarization must be able to recognize and 
report source inconsistencies. 
 
2.4.8 summary updates: A new multi-document 
summary must take into account previous 
summaries in generating new summaries. In such 
cases, the system needs to be able to track and 
categorize events. 
 
2.5 effective user interfaces: 
 
2.5.1 Attributability: The user needs to be able to 
easily access the source of a given passage. This 
could be the single document summary. 
 
2.5.2 Relationship: The user needs to view 
related passages to the text passage shown, 
which can highlight source inconsistencies. 
 
2.5.3 Source Selection: The user needs to be able 
to, select or eliminate various sources. For 
example, the user may want to eliminate 
information from some less reliable foreign news 
reporting sources. 
 
 2.5.4 Context: The user needs to be able to 
zoom in on the context surrounding the chosen 
passages. 
 
2.5.5 Redirection: The user should be able to 
highlight certain parts of the synthetic summary 
and give a command to the system indicating 
that these parts are to be weighted heavily and 
that other parts are to be given a lesser weight. 
    
 
3. Proposed work 
 
Commonly, an extractive summarization 
approach achieves the term selection, term 
weighting, sentence weighting and sentence 
selection steps. However, the strategy of 
sentence selection step is reduced to  simply     to 
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take the weightiest sentences. Although, this 
strategy could work well for the first ranked 
sentence, the strategy could convey that similar  
 
sentences to the first one tend to be ranked after 
the first one; producing redundant sentences for 
the summary. This problem affects negatively in 
recall measure. For avoiding this problem, we 
employ the unsupervised learning algorithm of  
for automatically detecting the groups of similar 
sentences from which is selected the most 
representative sentence; reducing in this way the 
redundancy in the summary.  
 
In this section, we describe the general steps of 
the proposed approach[2]. 
 
3.1 Preprocessing  
 
3.1.1 Removal of stop words: 
Stop words are frequently occurring, 
insignificant words that appear in a database 
record, article or web page. Stop words are an 
application dependent. They apply to the 
particular database or application (e.g.: 
searching, summarization). It is commonly 
assumed that words, which are not members of 
the noun-verb adjective classes, should be on 
stop words lists. When a document is 
summarized by sentence extraction method we 
assign weights to all the keywords or tokens in 
the input document. The process of doing such 
stop word elimination results in better summary 
generation. Since we eliminate these stop words 
unwanted sentences would never climb higher up 
the order . Single characters, common two-
character and three-character words, frequently 
repeated words are typically included in the stop 
word list to maximize performance of  
summarization process. 
 
3.1.2 Applying porter stemming algorithm: 
Truncation, also called stemming, is a technique 
that allows us to search for various word endings 
and spellings simultaneously. Stemming 
algorithms are used in many types of language 
processing and text analysis systems, and are 
also widely used in summarization, information 
retrieval and database search systems. A 
stemmer is a program determines a stem form of 
a given word. In other words, generates the 
morphological root of the word. Terms with a 
common stem will usually have similar 
meanings. For the example shown below the 
common root word is ‘IMPROV’. IMPROVE, 
IMPROVED, IMPROVEMENTS. 

 
The suffix stripping process will reduce the total 
number of terms in the IR system, and hence 
reduce the size and complexity of the data in the 
system, which is advantageous. 
 
 
3.2 Term selection: 
 
A maximal frequent word sequences is a gram 
(the size is not restricted) that it is frequent in 
text, but it is not contained (as subsequence) in 
other frequent gram. In this case, for considering 
a gram as frequent it is necessary to establish a 
frequency threshold. 
 
 3.2.1 Proposed Algorithm 
Our algorithm to extract the maximal frequent 
sequences from a given text belongs to pattern-
growth methods class[5]; because it uses a 
bottom-up strategy without candidate generation. 
The main idea consists in to generate only all the 
distinct pairs of items from the text, i.e. the 2-
sequences, and do not lose the relation between 
them, in order to allow the growth of the 
sequences. The input data of the algorithm are a 
text (T) and a β threshold. The proposed 
algorithm has three phases[5]. 
 
These phases are as follows: 
 
Phase 1: Get the alphabet from the text. The 
algorithm gets an id for each different item 
(chars or words) from the text. 
 
 
Phase 2: Construct an array structure for text 
representation (fig. 1). The algorithm constructs 
an array structure from the text T. Each element 
of the array contains two id’s corresponding to a 
distinct pair (ti,ti+1), the frequency of this pair 
and a list of the positions where this pair appears 
in the text . Each position node of the positions 
list contains the position where the pair appears, 
together with the next-index of the following 
pair in each position. The phase 2 works as 
follows: for each item ti get the index of the pair 
(ti,ti+1) in the array and in this position add a 
Position node at the end of the list of positions. 
Increase the frequency (Freq) of this pair and 
link this position node with the previously added 
position node in order to build the NextPos list, 
which stores the text representation.  
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Phase 3 : Find all MFS (fig. 2). For each element 
i of the NextPos list, check if it has a frequency ≥ 
β, in order to determine if this pair can become a 
possible maximal sequence PMS. If frequency ≥ 
β then grow forward all the elements in the 
NextPos list w.r.t i. If after this growth there is 
(in the NextPost list) a number of elements ≥ β, 
then the PMS can grow. When the PMS cannot 
grow it is added to the MFS list if only if the 
PMS is not a subsequence of any previously 

stored MFS, and all the MFS that are 
subsequence of the PMS are deleted from the 
MFS list. For our algorithm each PMS can be 
classified as a PMS with and without cycles. A 
cycle is detected when the first pair is repeated if 
it happens, the cycle function is used to get the 
PMS. The cycle function guarantees the 
mutually excluded property. If the PMS obtained 
from cycle function can grow, then it is treated 
as a PMS without cycles, because it could grow. 

 
Phase 2:Algorithm to construct the array structure 
Input: A text T  Output:The array structure 
For all the pairs[ti,ti+1] € T do 
          PositionNode.Pos ←index←array[ti,ti+1];                 //if [ti,ti+1] it is not in array,add it 
          array[index].Positions←New PositionNode               //new node 
          array[index].Freq ← array[index].Freq+1;                 //increase the frequency 
          array[LastIndex].Positions.NextIndex←index;          //keep the index of the pair 
          array[LastIndex].Positions.NextPos←PositionNode //link the new node 
          LastIndex←index;                                                       //keep the last index 
End-for 
                              Fig.1.Algorithm to construct the array structure(phase 2) 

 
Phase 3:Algorithm to find all MFS 
Input: Array from phase 2, β support  Output:MFS list 
Actual ←1  //index of the array where it is the first element of  NextPos List 
   While Actual ≠0 do 
        If Array[Actual].Frequency≥ β, then                                    //if the pair has frequency ≥β 
                    temporal← Copy_list(array[Actual].Postions)       //create a similar list 
                    PMS←Array[Actual].Id1 +Array[Actual].Id2         //initial elements of the PMS 
                    Pos←Array[Actual].NextIndex                              //The first time Pos←1 
                   While Pos ≠ 0 do 
                           temporal ← Get common nodes((temporal.Pos+1),(Array[Pos].Positions.Pos)) 
                           if |temporal|≥β ,then                                        //if temporal has a number of nodes ≥ than β 
                               if Pos=Array,then there is a cycle, 
                              PMS← Cycle(β,temporal,array,Actual,Pos)   //call to Cycle function 
                              if the PMS cannot grow then exit from the while 
                         else PMS←PMS+Array[Pos].Id2                    //expand the PMS 

                  Pos←Array[Actual].NextIndex 
                 end-while       
delete all the MFS € PMS 
if (PMS€ MFS) then MFS ←Add(PMS) 
Actual←array[Actual].NextIndex 
End-while 
                                               Fig. 2. Algorithm to find all MFS (phase 3) 
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Cycle function : Algorithm to find the PMS with cycles 
Input:β support,temporal,array,Actual,aux;   Output:A PMS 
 
CycleSize←Array[aux].Pos-Array[Actual].Pos;  //size of the cycles 
Intervals← From temporal find the intervals of groups of cycles 
ActualGrpSize← Size of the interval where[Array[Actual].Pos-Array[aux].Pos] € Intervals 
while ActualGrpSize ≥ 2 do 
For each Interval get the frequency w.r.t ActualGrpSize 
             If ∑ frequencies ≥β then PMS ←T[Array[Actual].Pos]+..+T[Array[Actual].Pos+ActualGrpSize] 
                 If ActualGrpSize was not decremented then the PMS can grow 
                          Temporal ←Rebuild temporal with(end of Intervals-1) in which the frequency=1 
                 Return(PMS,temporal); 
   end-for 
end-while 
 
The frequency is calculated as follows: 
    Used-Periods ← Ceiling (ActualGrpSize/cycleSize); 
    Period←GrpSize analyzed/CycleSize 
If  Used-periods.remainder  =Period.remainder and period.remainder>0 then 
Period←Period+1 
Frequency=Period/Used-Periods 
                                        Fig. 3. Algorithm for finding a PMS with cycles 
 
 
         
Cycle function (fig. 3). Using the size of the 
cycle (number of elements between the first and 
the repeated pair) find all the groups of 
occurrences of the cycle in order to build a list of 
intervals with the beginning and end of such 
positions. Using this list of intervals it is possible 
to find the longest PMS. Given the size of the 
interval, this function tests in decreasing way 
(because we search the longest PMS) how many 
PMS are contained in each interval, therefore the 
sum of this local frequency becomes the total 
frequency that must be ≥ β. In such case, the 
PMS has as size the size of the interval that can 
appear β times into the text. If the size of the 
interval was not decremented then it is a PMS 
that can grow. 
 
3.3Term Weighting: 
 
3.3.1.Boolean Weighting (BOOL): It is the 
easiest way to weight a term. It models the 
presence or absence of a term in the document, 
defined as[4]: 
 
 Wi (tj)={1 if the term tj appears in document i. 
                                                                                  
              {0  other case        ………(1) 
 

3.3.2Term Frequency (TF) : This weighting 
takes into account that a term that occurs in a 
document can better reflect the contents of 
document than a term that occurs less frequent. 
Therefore, the weighting TF assigns a greater 
relevance to terms with greater frequency and 
consists in evaluating the number of times the 
term appears in the document.  
      Wi(tj)=fij ,where f  ij is the frequency of the 
term j in document i. ………. (2) 
 
3.3.3.Inverse Document Frequency (IDF): 
 The problem of TF weighting in IR is that, when 
a term appears in almost all the documents in the 
collection; this term is useless for discriminating 
relevant documents. For example, the stop-word 
and could have a high TF, but it is useless for 
discriminating the relevant documents since 
tends to appear in most of the documents. IDF is 
defined as[4]: 
              Wi(tj)=log(N/nj) ….(3)                                    
where N is the number of documents in the 
collection and n j is the number of documents 
where the term j appears. 
 
3.3.4.TF-IDF:  
The problem of IDF weighting in IR is that it is 
not possible distinguish between two documents 
with the same vocabulary (list of different 
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words), even thought if the term is more frequent 
in a document. TF-IDF weighting gives more 
relevance to the terms that are less frequent in 
the collection but more frequent into the 
document. 
 
Wi (tj)= fij  x log(N/nj)             …(4) 
 
 
3.4Sentence clustering 
 
Data clustering is the process of identifying 
natural groupings or clusters within 
multidimensional data based on some similarity 
measure. Clustering is a fundamental process in 
many different disciplines such as text mining, 
pattern recognition, IR etc. In our method[1], a 
sentence Si is represented as sequence of words, 
Si=(t1,t2, . . . ,tmi ), instead of the bag of words, 
where mi is the number of words in a sentence 
Si. 
 
In this section we present a method to measure 
dissimilarity between sentences using the 
normalized google distance (NGD). NGD takes 
advantage of the number of hits returned by 
Google to compute the semantic distance 
between concepts. The concepts are represented 
with their labels which are fed to the Google 
search engine as search terms. First, using the 
NGD we define the global and local dissimilarity 
measure between terms [6] the NGD is 
nonnegative and does not satisfy the triangle 
inequality, i.e. hence isn’t distance and 
consequently in the further it we shall name 
dissimilarity measure). According to definition 
NGD the global dissimilarity measure between 
terms tk and tl also is defined by the formula: 
 

( =

     …(5) 

 
where is the number of web pages 

containing the search term  and  
denotes the number of web pages containing 
both terms  and  is the number of 
web pages indexed by Google. 
 
The following are the main properties of the 
NGD [6]: 
 

(1) The range of the NGD is in 0 and 1;If  
or if If  but frequency 

 

(2)   

then ( =0.That is, the semantics 
of  and in the Google sense is the same. If 
frequency  =0 ,then for every term , we 

have =0, and the ( = , 
which we take to be 1 by definition. If frequency  

 and   ,we take 
( =1. 

 
 (3) ( =0.for every . For every 
pair  and  , we have 

( = (  
It is symmetric. 
 
 
Using the formula Eq(5) we define a global 
dissimilarity measure   between sentences Si and 
S j as follows: 

 ….(6) 

 
From the properties of NGD follows, that:  
(1) the range of the  
is in 0 and 1;  
(2) If    or if  but frequency 

then then  

=0 and 
 
(3) =0 for every Si. 
Dissimilarity measure between sentences is 
exchangeable in that  

=  for 
every pair Si and Sj. 
 
Similarly, we define the local dissimilarity 
measure between sentences Si and Sj: 

 ….(7) 

 
Where 

=

 …(8)      

is the local dissimilarity measure between terms 
and which  denotes the number of 

sentences in a document D, containing 
the term , and  denotes the number of 
sentences containing both terms   and  If the 
number of sentences  n =1, then we have      
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 and the 

 , which we take to be 0 

by definition. Thus, the overall sentence 
dissimilarity is defined as a product of global and 
local dissimilarity measures: 
 

..(9) 
 
 
3.5Sentence Extraction: 
 
Extractive summarization works by choosing a 
subset of the sentences in the original document. 
This process can be viewed as identifying the 
most salient sentences in a cluster that give the 
necessary and sufficient amount of information 
related to main content of the cluster. In a cluster 
of related sentences, many of the sentences are 
expected to be somewhat similar to each other 
since they are all about the same topic. The 
approach, proposed in papers [7], is to assess the 
centrality of each sentence in a cluster and 
extract the most important ones to include in the 
summary. In centroid-based summarization, the 
sentences that contain more words from the 
centroid of the cluster are considered as central. 
Centrality of a sentence is often defined in terms 
of the centrality of the words that it contains. In 
this section we use other criterion to assess 
sentence salience, proposed in paper (Pavan & 
Pelillo, 2007). Let Cp be nonempty cluster and 
SiC p. Then the average weighted degree of S i 
with respect to cluster Cp is defined as 

                                                                        

…..(10)                             

Observe that  =0 for any . 

Moreover, if  € , we define: 
 

=  

                                                           ….(11) 
From =0 follows  that  

= for all , 

with i ≠ j. Intuitively, measures the 

relative measure between sentences and with 
respect to the average measure between  and 
its neighbors in cluster . Note that   
can be either positive or negative.Thus the 
weight of sentence with respect to cluster   
will be defined by the following recursive 
formula as 

=  

                                                 
{ otherwise  

                                                …(12)                    
 
Note that 
 

 
 
for all (i≠j).Intuitively,  gives 

us a measure of the overall (relative) 
dissimilarity measure between sentence  and 
the sentences of   with respect to the 
overall measure among the sentences in . 
Finally, as to selection of sentences to generate a 
summary, in each cluster sentences are ranked in 
reversed order of their score and the top ranked 
sentences are selected for in the extractive 
summary. 
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4. Conclusion 
          
In this paper an efficient extractive summary 
generating  algorithm is proposed for multiple 
documents. And also this algorithm improves 
accuracy of the summary when comparing with 
previous works done on this topic. MFS 
technique is used to extract the sentences from 
the documents that need  to  be  in the summary.  
NGD technique is used for clustering the 
sentences from given multiple documents. And 
finally the most representative sentences are 
extracted from the clusters to compose the 
summary. Applications of multi document 
summarization include automatic construction of 
summaries of news articles or email messages 
for sending them to mobile devices as SMS;  
summarization of web pages to be shown on the 
screen of a mobile device, among many others.  
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