
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

510

 Multi Document Extractive Summarization

 Based On Word Sequences
 R.KOWSALYA , R.PRIYA and P.NITHIYA

 UG Scholar , Sri Venkateswara College Of Engineering,
 Sriperumbudur ,Tamil Nadu,India

 UG Scholar, Sri Venkateswara College Of Engineering,
 Sriperumbudur,Tamil Nadu,India

 Asst.Prof , Sri Venkateswara College Of Engineering,
 Sriperumbudur,Tamil Nadu,India

 Abstract
 In this paper we propose to produce an extractive
 summary for given set of documents based on
 word sequence models by extracting Maximal
 frequent sequences from the given text. The main
 problem for generating an extractive automatic text
 summary is to detect the most relevant information in
 the source document. To overcome this problem we
 have successfully employed the word sequence
 information from the self-text for detecting the
 candidate text fragments for composing the summary.
 To compose the effective summarization we have
 used mfs technique to extract the detect the most
 important terms in the source document and
 Normalized Google dissimilarity distance for
 sentence clustering . This simple representation not
 only diminishes domain and language dependency
 but also enhances the summarization performance.

Keywords: Multidocument summarization ,Extractive
 summarization, maximal frequent sequence, sentence
 clustering, normalized Google dissimilarity.

 1.Introduction

Typical information retrieval (IR) systems have
two steps[2]: the first is to find documents based
on the user’s query, and the second is to rank
relevant documents and present them to users
based on their relevance to the query. Then the
users have to read all of these documents. The
problem is that these docs are much relevant and
reading them all is time-consuming and
unnecessary.

Multi-document summarization aims at
extracting major information from multiple
documents and has become a hot topic in NLP.

A summary can be loosely defined as a text that
is produced from one or more texts that conveys
important information in the original text(s), and
that is no longer than half of the original text(s)
and usually significantly less than that.

The text summarization tasks can be classified
into single-document and multi document
summarization .In single-document
summarization, the summary of only one
document is to be built, while multi document
summarization the summary of a whole
collection of documents .

An extractive summary, is composed with a
selection of sentences (or phrases, paragraphs,
etc.) from the original text, usually presented to
the user in the same order—i.e., a copy of the
source text with most sentences omitted. An
extractive summarization method only decides,
for each sentence, whether or not it will be
included in the summary.

The Maximal Frequent Sequences(MFS)[2] are
attractive for extractive text summarization since
it is not necessary to define the gram size (n), it
means, the length of each MFS is determined by
the self text. Moreover, the set of all extracted
MFS s is a compact representation all frequent
word sequences, reducing in this way the
dimensionality in a vector space model.

Multi document summarization can be classified
into three categories according to the way that
summaries are created: term extraction, sentence
clustering and sentence extraction.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

511

We will assume that the units of selection are
sentences (these could be, say, phrases or
paragraphs). Thus final goal of the extractive
summarization process is sentence selection. One
of the ways to select the appropriate sentences is
to assign some numerical measure of usefulness
of a sentence for the summary and then select the
best ones; the process of assigning these
usefulness weights is called sentence weighting.

2.Requirements for multi document
summarization

There are two types of situations in which multi
document summarization would be useful: (1)
the user is faced with a collection of dis-similar
documents and wishes to assess the information
landscape contained in the collection, or (2) there
is a collection of topically related documents,
extracted from a larger more diverse collection
as the result of a query, or a topically-cohesive
cluster.
Following is a list of requirements for multi-
document summarization:

2.1 clustering:
The ability to cluster similar documents and
passages to find related information.

2.2 coverage:
The ability to find and extract the main points
across documents.

2.3 anti-redundancy:
The ability to minimize redundancy between
passages in the summary

2.4 summary cohesion criteria:
The ability to combine text passages in a useful
manner for the reader. This may include:
2.4.1document ordering: All text segments of
highest ranking document, then all segments
from the next highest ranking document, etc.

2.4.2 rank ordering: present the most relevant
and diverse information first. So that the reader
gets the maximal information content even if
they stop reading the summary.

2.4.3topic-cohesion: Group together the passages
by topic clustering using passage similarity
criteria and present the information by the cluster
centroid passage rank.

2.4.4 time line ordering: Text passages ordered

based on the occurrence of events in time.

2.4.5 coherence: Summaries generated should be
readable and relevant to the user.

2.4.6 context: Include sufficient context so that
the summary is understandable to the reader.

2.4.7 Identification of source inconsistencies:
Articles often have errors (such as billion
reported as million, etc.); multi-document
summarization must be able to recognize and
report source inconsistencies.

2.4.8 summary updates: A new multi-document
summary must take into account previous
summaries in generating new summaries. In such
cases, the system needs to be able to track and
categorize events.

2.5 effective user interfaces:

2.5.1 Attributability: The user needs to be able to
easily access the source of a given passage. This
could be the single document summary.

2.5.2 Relationship: The user needs to view
related passages to the text passage shown,
which can highlight source inconsistencies.

2.5.3 Source Selection: The user needs to be able
to, select or eliminate various sources. For
example, the user may want to eliminate
information from some less reliable foreign news
reporting sources.

 2.5.4 Context: The user needs to be able to
zoom in on the context surrounding the chosen
passages.

2.5.5 Redirection: The user should be able to
highlight certain parts of the synthetic summary
and give a command to the system indicating
that these parts are to be weighted heavily and
that other parts are to be given a lesser weight.

3. Proposed work

Commonly, an extractive summarization
approach achieves the term selection, term
weighting, sentence weighting and sentence
selection steps. However, the strategy of
sentence selection step is reduced to simply to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

512

take the weightiest sentences. Although, this
strategy could work well for the first ranked
sentence, the strategy could convey that similar

sentences to the first one tend to be ranked after
the first one; producing redundant sentences for
the summary. This problem affects negatively in
recall measure. For avoiding this problem, we
employ the unsupervised learning algorithm of
for automatically detecting the groups of similar
sentences from which is selected the most
representative sentence; reducing in this way the
redundancy in the summary.

In this section, we describe the general steps of
the proposed approach[2].

3.1 Preprocessing

3.1.1 Removal of stop words:
Stop words are frequently occurring,
insignificant words that appear in a database
record, article or web page. Stop words are an
application dependent. They apply to the
particular database or application (e.g.:
searching, summarization). It is commonly
assumed that words, which are not members of
the noun-verb adjective classes, should be on
stop words lists. When a document is
summarized by sentence extraction method we
assign weights to all the keywords or tokens in
the input document. The process of doing such
stop word elimination results in better summary
generation. Since we eliminate these stop words
unwanted sentences would never climb higher up
the order . Single characters, common two-
character and three-character words, frequently
repeated words are typically included in the stop
word list to maximize performance of
summarization process.

3.1.2 Applying porter stemming algorithm:
Truncation, also called stemming, is a technique
that allows us to search for various word endings
and spellings simultaneously. Stemming
algorithms are used in many types of language
processing and text analysis systems, and are
also widely used in summarization, information
retrieval and database search systems. A
stemmer is a program determines a stem form of
a given word. In other words, generates the
morphological root of the word. Terms with a
common stem will usually have similar
meanings. For the example shown below the
common root word is ‘IMPROV’. IMPROVE,
IMPROVED, IMPROVEMENTS.

The suffix stripping process will reduce the total
number of terms in the IR system, and hence
reduce the size and complexity of the data in the
system, which is advantageous.

3.2 Term selection:

A maximal frequent word sequences is a gram
(the size is not restricted) that it is frequent in
text, but it is not contained (as subsequence) in
other frequent gram. In this case, for considering
a gram as frequent it is necessary to establish a
frequency threshold.

 3.2.1 Proposed Algorithm
Our algorithm to extract the maximal frequent
sequences from a given text belongs to pattern-
growth methods class[5]; because it uses a
bottom-up strategy without candidate generation.
The main idea consists in to generate only all the
distinct pairs of items from the text, i.e. the 2-
sequences, and do not lose the relation between
them, in order to allow the growth of the
sequences. The input data of the algorithm are a
text (T) and a β threshold. The proposed
algorithm has three phases[5].

These phases are as follows:

Phase 1: Get the alphabet from the text. The
algorithm gets an id for each different item
(chars or words) from the text.

Phase 2: Construct an array structure for text
representation (fig. 1). The algorithm constructs
an array structure from the text T. Each element
of the array contains two id’s corresponding to a
distinct pair (ti,ti+1), the frequency of this pair
and a list of the positions where this pair appears
in the text . Each position node of the positions
list contains the position where the pair appears,
together with the next-index of the following
pair in each position. The phase 2 works as
follows: for each item ti get the index of the pair
(ti,ti+1) in the array and in this position add a
Position node at the end of the list of positions.
Increase the frequency (Freq) of this pair and
link this position node with the previously added
position node in order to build the NextPos list,
which stores the text representation.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

513

Phase 3 : Find all MFS (fig. 2). For each element
i of the NextPos list, check if it has a frequency ≥
β, in order to determine if this pair can become a
possible maximal sequence PMS. If frequency ≥
β then grow forward all the elements in the
NextPos list w.r.t i. If after this growth there is
(in the NextPost list) a number of elements ≥ β,
then the PMS can grow. When the PMS cannot
grow it is added to the MFS list if only if the
PMS is not a subsequence of any previously

stored MFS, and all the MFS that are
subsequence of the PMS are deleted from the
MFS list. For our algorithm each PMS can be
classified as a PMS with and without cycles. A
cycle is detected when the first pair is repeated if
it happens, the cycle function is used to get the
PMS. The cycle function guarantees the
mutually excluded property. If the PMS obtained
from cycle function can grow, then it is treated
as a PMS without cycles, because it could grow.

Phase 2:Algorithm to construct the array structure
Input: A text T Output:The array structure
For all the pairs[ti,ti+1] € T do
 PositionNode.Pos ←index←array[ti,ti+1]; //if [ti,ti+1] it is not in array,add it
 array[index].Positions←New PositionNode //new node
 array[index].Freq ← array[index].Freq+1; //increase the frequency
 array[LastIndex].Positions.NextIndex←index; //keep the index of the pair
 array[LastIndex].Positions.NextPos←PositionNode //link the new node
 LastIndex←index; //keep the last index
End-for
 Fig.1.Algorithm to construct the array structure(phase 2)

Phase 3:Algorithm to find all MFS
Input: Array from phase 2, β support Output:MFS list
Actual ←1 //index of the array where it is the first element of NextPos List
 While Actual ≠0 do
 If Array[Actual].Frequency≥ β, then //if the pair has frequency ≥β
 temporal← Copy_list(array[Actual].Postions) //create a similar list
 PMS←Array[Actual].Id1 +Array[Actual].Id2 //initial elements of the PMS
 Pos←Array[Actual].NextIndex //The first time Pos←1
 While Pos ≠ 0 do
 temporal ← Get common nodes((temporal.Pos+1),(Array[Pos].Positions.Pos))
 if |temporal|≥β ,then //if temporal has a number of nodes ≥ than β
 if Pos=Array,then there is a cycle,
 PMS← Cycle(β,temporal,array,Actual,Pos) //call to Cycle function
 if the PMS cannot grow then exit from the while
 else PMS←PMS+Array[Pos].Id2 //expand the PMS

 Pos←Array[Actual].NextIndex
 end-while
delete all the MFS € PMS
if (PMS€ MFS) then MFS ←Add(PMS)
Actual←array[Actual].NextIndex
End-while
 Fig. 2. Algorithm to find all MFS (phase 3)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

514

Cycle function : Algorithm to find the PMS with cycles
Input:β support,temporal,array,Actual,aux; Output:A PMS

CycleSize←Array[aux].Pos-Array[Actual].Pos; //size of the cycles
Intervals← From temporal find the intervals of groups of cycles
ActualGrpSize← Size of the interval where[Array[Actual].Pos-Array[aux].Pos] € Intervals
while ActualGrpSize ≥ 2 do
For each Interval get the frequency w.r.t ActualGrpSize
 If ∑ frequencies ≥β then PMS ←T[Array[Actual].Pos]+..+T[Array[Actual].Pos+ActualGrpSize]
 If ActualGrpSize was not decremented then the PMS can grow
 Temporal ←Rebuild temporal with(end of Intervals-1) in which the frequency=1
 Return(PMS,temporal);
 end-for
end-while

The frequency is calculated as follows:
 Used-Periods ← Ceiling (ActualGrpSize/cycleSize);
 Period←GrpSize analyzed/CycleSize
If Used-periods.remainder =Period.remainder and period.remainder>0 then
Period←Period+1
Frequency=Period/Used-Periods
 Fig. 3. Algorithm for finding a PMS with cycles

Cycle function (fig. 3). Using the size of the
cycle (number of elements between the first and
the repeated pair) find all the groups of
occurrences of the cycle in order to build a list of
intervals with the beginning and end of such
positions. Using this list of intervals it is possible
to find the longest PMS. Given the size of the
interval, this function tests in decreasing way
(because we search the longest PMS) how many
PMS are contained in each interval, therefore the
sum of this local frequency becomes the total
frequency that must be ≥ β. In such case, the
PMS has as size the size of the interval that can
appear β times into the text. If the size of the
interval was not decremented then it is a PMS
that can grow.

3.3Term Weighting:

3.3.1.Boolean Weighting (BOOL): It is the
easiest way to weight a term. It models the
presence or absence of a term in the document,
defined as[4]:

 Wi (tj)={1 if the term tj appears in document i.

 {0 other case ………(1)

3.3.2Term Frequency (TF) : This weighting
takes into account that a term that occurs in a
document can better reflect the contents of
document than a term that occurs less frequent.
Therefore, the weighting TF assigns a greater
relevance to terms with greater frequency and
consists in evaluating the number of times the
term appears in the document.
 Wi(tj)=fij ,where f ij is the frequency of the
term j in document i. ………. (2)

3.3.3.Inverse Document Frequency (IDF):
 The problem of TF weighting in IR is that, when
a term appears in almost all the documents in the
collection; this term is useless for discriminating
relevant documents. For example, the stop-word
and could have a high TF, but it is useless for
discriminating the relevant documents since
tends to appear in most of the documents. IDF is
defined as[4]:
 Wi(tj)=log(N/nj) ….(3)
where N is the number of documents in the
collection and n j is the number of documents
where the term j appears.

3.3.4.TF-IDF:
The problem of IDF weighting in IR is that it is
not possible distinguish between two documents
with the same vocabulary (list of different

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

515

words), even thought if the term is more frequent
in a document. TF-IDF weighting gives more
relevance to the terms that are less frequent in
the collection but more frequent into the
document.

Wi (tj)= fij x log(N/nj) …(4)

3.4Sentence clustering

Data clustering is the process of identifying
natural groupings or clusters within
multidimensional data based on some similarity
measure. Clustering is a fundamental process in
many different disciplines such as text mining,
pattern recognition, IR etc. In our method[1], a
sentence Si is represented as sequence of words,
Si=(t1,t2, . . . ,tmi), instead of the bag of words,
where mi is the number of words in a sentence
Si.

In this section we present a method to measure
dissimilarity between sentences using the
normalized google distance (NGD). NGD takes
advantage of the number of hits returned by
Google to compute the semantic distance
between concepts. The concepts are represented
with their labels which are fed to the Google
search engine as search terms. First, using the
NGD we define the global and local dissimilarity
measure between terms [6] the NGD is
nonnegative and does not satisfy the triangle
inequality, i.e. hence isn’t distance and
consequently in the further it we shall name
dissimilarity measure). According to definition
NGD the global dissimilarity measure between
terms tk and tl also is defined by the formula:

(=

 …(5)

where is the number of web pages

containing the search term and
denotes the number of web pages containing
both terms and is the number of
web pages indexed by Google.

The following are the main properties of the
NGD [6]:

(1) The range of the NGD is in 0 and 1;If
or if If but frequency

(2)

then (=0.That is, the semantics
of and in the Google sense is the same. If
frequency =0 ,then for every term , we

have =0, and the (= ,
which we take to be 1 by definition. If frequency

 and ,we take
(=1.

 (3) (=0.for every . For every
pair and , we have

(= (
It is symmetric.

Using the formula Eq(5) we define a global
dissimilarity measure between sentences Si and
S j as follows:

 ….(6)

From the properties of NGD follows, that:
(1) the range of the
is in 0 and 1;
(2) If or if but frequency

then then

=0 and

(3) =0 for every Si.
Dissimilarity measure between sentences is
exchangeable in that

= for
every pair Si and Sj.

Similarly, we define the local dissimilarity
measure between sentences Si and Sj:

 ….(7)

Where

=

 …(8)

is the local dissimilarity measure between terms
and which denotes the number of

sentences in a document D, containing
the term , and denotes the number of
sentences containing both terms and If the
number of sentences n =1, then we have

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

516

 and the

 , which we take to be 0

by definition. Thus, the overall sentence
dissimilarity is defined as a product of global and
local dissimilarity measures:

..(9)

3.5Sentence Extraction:

Extractive summarization works by choosing a
subset of the sentences in the original document.
This process can be viewed as identifying the
most salient sentences in a cluster that give the
necessary and sufficient amount of information
related to main content of the cluster. In a cluster
of related sentences, many of the sentences are
expected to be somewhat similar to each other
since they are all about the same topic. The
approach, proposed in papers [7], is to assess the
centrality of each sentence in a cluster and
extract the most important ones to include in the
summary. In centroid-based summarization, the
sentences that contain more words from the
centroid of the cluster are considered as central.
Centrality of a sentence is often defined in terms
of the centrality of the words that it contains. In
this section we use other criterion to assess
sentence salience, proposed in paper (Pavan &
Pelillo, 2007). Let Cp be nonempty cluster and
SiC p. Then the average weighted degree of S i
with respect to cluster Cp is defined as

…..(10)

Observe that =0 for any .

Moreover, if € , we define:

=

 ….(11)
From =0 follows that

= for all ,

with i ≠ j. Intuitively, measures the

relative measure between sentences and with
respect to the average measure between and
its neighbors in cluster . Note that
can be either positive or negative.Thus the
weight of sentence with respect to cluster
will be defined by the following recursive
formula as

=

{ otherwise

 …(12)

Note that

for all (i≠j).Intuitively, gives

us a measure of the overall (relative)
dissimilarity measure between sentence and
the sentences of with respect to the
overall measure among the sentences in .
Finally, as to selection of sentences to generate a
summary, in each cluster sentences are ranked in
reversed order of their score and the top ranked
sentences are selected for in the extractive
summary.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

517

4. Conclusion

In this paper an efficient extractive summary
generating algorithm is proposed for multiple
documents. And also this algorithm improves
accuracy of the summary when comparing with
previous works done on this topic. MFS
technique is used to extract the sentences from
the documents that need to be in the summary.
NGD technique is used for clustering the
sentences from given multiple documents. And
finally the most representative sentences are
extracted from the clusters to compose the
summary. Applications of multi document
summarization include automatic construction of
summaries of news articles or email messages
for sending them to mobile devices as SMS;
summarization of web pages to be shown on the
screen of a mobile device, among many others.

References:

[1] Ramiz M. Aliguliyev , “A New Sentence
Similarity Measure And Sentence Based Extractive
Technique For Automatic Text Summarization”,
Expert Systems with Applications36 pp.7764–
7772.2009.

[2] René Arnulfo García-Hernández, Yulia Ledeneva
 ,“Word Sequence Models for Single Text
Summarization”, in Second International Conferences
on Advances in Computer-Human Interaction,2009,.

[3] Villatoro-Tello, E., Villaseñor-Pineda, L., Montes-
y-Gómez, M, “Using Word Sequences for Text
Summarization”, TSD, LNAI Springer 2006.

[4] Ledeneva Yulia, Gelbukh Alexander, René
Arnulfo García-Hernández, “Terms Derived from
Frequent Sequences for Extractive Text
Summarization”, CICLing’2008. LNCS vol. 4919
Springer-Verlag, pp. 593-604, 2008.

[5]Rene A.Garcia-Hernandez,Jose Fco.Martinez-
Trinidal and Jesus Airel Carrasco-Ochoa, “A Fast
Algorithm To Find All the Maximal Frequent
Sequences in A Text”, Lecture Notes in Computer
Science,2004,Volume 3287,Progress in Pattern
Recognition,Image Analysis and Applications,Pages
305-320.

[6] R.L. Cilibrasi, P.M.B. Vitanyi, “The Google
Similarity Distance”,IEEE Transaction on Knowledge
and Data Engineering ,March 2007 (vol. 19 no. 3),
pp. 370-383.

[7] Radev,D.R,Jing,H.,Stys,M.,&Tam,D.
(2004), “Centroid Based Summarization of Multiple
documents”.Information Processing and
Management,40,919-938.

[8] Ramiz M. Aliguliyev , “A new sentence similarity
measure and sentence based extractive technique for
automatic text summarization”, in Expert Systems
with Applications ,pp.7764–7772, May 2009.

[9] Aliguliyev, R. M. “Automatic Document
Summarization by Sentence Extraction” in Journal of
Computational Technologies , pp.5–15,2007.

P.Ni Kowsalya R: She is pursuing her B.Tech degree in
Information Technology (Sri Venkateswara College of
Engineering,Tamil Nadu).

Priya R: She is pursuing her B.Tech degree in
Information Technology (Sri Venkateswara College of
Engineering,Tamil Nadu).

Nith Nithiya P: She obtained her M.E degree in Computer
Science Engineering and obtained her B.E degree in
Computer Science .She is presently working in Sri
Venkateswara College of Engineering as Assistant
Professor (Department of Information Technology).She
has presented a paper titled “Development of semantic
based information retrieval using wordnet approach", in
Computer and Network Technology (ICCNT), 2010
Second International Conference .Her area of interest
and research is in the field of Natural Language
Processing.

