
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

552

Problems in Aspect Oriented Design: Facts and
Thoughts

 Md. Asraful Haque

Department of Computer Engineering, Aligarh Muslim University
Aligarh,U.P.-202002,India

Abstract:
The classic challenge in writing object-oriented programs
(OOP) is finding the right decomposition into classes and
objects. This problem arises whenever programmers need
to deal with crosscutting concerns. Aspect Oriented
Programming (AOP) is a well known methodology to
overcome this issue by modularizing crosscutting concerns
using aspects. Programmers are slowly realizing the
importance of AOP since it creates cleaner code. But AOP
breaks encapsulation in joint points and modifies flow
control, making the source code hard to understand.AOP is
not very well tested and documented and there is a lack of
specific development tools. That’s why it is mainly used
only for maintaining the system, rather than being a good
choice for developing the initial version of the system. The
main goal of this paper is to increase the acceptability of
AOP by offering some tips against its drawbacks.

Keywords: Aspect-oriented Paradigm, OOP, Software
Design, Crosscutting Concerns, Aspects.

1. Introduction

AOP has been first introduced by Gregor Kickzales
in 1996. Aspect-oriented programming is not the
replacement of OOP rather than it is the enhancement
of OOP [1][2]. It entails breaking down the system
into distinct parts. Each part is called concern. All
concerns are divided into two categories. The
concerns which are related with the main business
logic are called “core concerns”. And the other
concerns which capture the peripheral requirements
are known as “crosscutting concerns”. “Separations
of concerns” (SoC) are very necessary to manage the
complexity of any large system. The evolution of a
software development paradigm is driven by the need
to achieve a better SoC. Dijkstra suggested that the
best way to achieve SoC is through modularization
[3]. OOP can easily decompose core concerns into
separate, independent classes by providing
abstractions. But the crosscutting concerns which
play a supporting role cannot be modularized into
classes by OOP. AOP solves this problem. The AOP

allows crosscutting concerns to be implemented
separately from core concerns into aspects. An aspect
is an additional unit of modularity. It encapsulates
behaviors that affect multiple classes into reusable
modules. AOP is a concept, so it is not bound to a
specific programming language. In AOP, a project is
implemented using OO language and then
crosscutting concerns are dealt separately by
implementing aspects. Finally, both the code and
aspects are combined into a final executable form
using an aspect weaver. As a result, a single aspect
can contribute to the implementation of a number of
methods, modules, or objects, increasing both
reusability and maintainability of the code [2][4].
Fig.1 explains the weaving process. One should note
that the original code doesn't need to know about any
functionality the aspect has added; it needs only to be
recompiled without the aspect to regain the original
functionality.

Fig. 1 Weaving process

2. Illustrative Examples

Aspect-based languages are really just aspect
enhancements to current object oriented languages
such as Java and C++. The main constructs added to
OOP are: join points, pointcut, advive, introductions
and aspects [5]. For a better understanding of these
new terms, let's consider the simple example of Fig.2.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

553

Fig. 2 TestClass.java

Now suppose, we would like to print a message
before and after any call to the TestClass.sayHello()
method and we need to test that the argument of the
TestClass.sayAnyThing() method is at least three
characters. Fig.3 is the AspectJ implementation.

Fig. 3 MyAspect.aj

Line 1 defines an aspect in the same way we define a
Java class. Like any Java class, an aspect may have

member variables and methods. In addition, it may
include pointcuts, advices, and introductions.

In Lines 2 and 3, we specify where in the TestClass
code our modification will take place. In AspectJ
terms, we define two pointcuts. To explain what a
pointcut means, we first need to define join points.
Join points represent well-defined points in a
program's execution flow where aspects will apply
[1]. Typical join points include method calls, method
execution, field get and set, exception handler
execution, and static and dynamic initialization. Here,
we have two join points: the call to
TestClass.sayHello and TestClass.sayAnyThing
methods. Pointcut is a description of a set of join
points based on defined criteria [1]. In our example,
we define two pointcuts, named sayMethodCall and
sayMethodCallArg.

An advice in AspectJ is used to define additional
code to be executed before, after, or around join
points. In our example, Lines 4–6 and 7–9 define two
advices that will be executed before and after the first
pointcut. Finally, Lines 10–15 implement an advice
associated with the second pointcut and are used to
set a precondition before the execution of the
TestClass.sayAnyThing method. Whereas pointcuts
and advice let us affect the dynamic execution of a
program, introduction allows aspects to modify the
static structure of a program. By using introduction,
aspects can add new methods and variables to a class,
declare that a class implements.

3. Problems in Aspect Oriented Design

3.1 AOP is complex.

The main challenge of software today is to manage
the complexity and adaptability to the changes.
Although very promising, AOP shows weakness in
many dimensions, which is the consequence of lack
of proper understanding and tools support. One of the
main ideas of AOP is that Aspects are hidden from
most developers. A problem with this is that it
separates the aspects from the developers which can
lead to problems. What if the developer doesn’t
know, or forgets, there is an aspect that will apply
thread safety checking, or serialization tags? Also,
what about aspect priorities when multiple aspects
are applied to the same methods? Who is executed
first? Are there any considerations? As a result,
people use it in places where it doesn't make sense
and will not use it where it does.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

554

3.2 Debugging is hard.

The interaction of aspects with a system introduces
new fault types and complicates fault resolution.
Programmers rely on debugging to diagnose these
faults and perform post-mortem analyses. Debugging
provides a way to manually detect, diagnose, and fix
anomalies and to better understand program
behaviour. But debugging with aspects is tedious and
painful. Aspect functionality can drastically change
the behaviour and control flow of the base program,
leading to unexpected result. Commercial software
developers are hesitating to implement AOP-enabled
products that are difficult to debug and service. The
fact is debugging requires the right tools. Aspect-
oriented programming is still an emerging field with
many different techniques for aspect specification,
composition and integration. Procedural
programming feels sweet because we can understand
the program flow, which maps directly to program
elements. With AOP, a section of source code does
not map linearly to a section of compiled code but
instead maps to all instances in which a particular
aspect appears. Changing a line of AOP code thus
has widespread effects on compiled code. Aspect-
oriented programs require extra work to map out the
flow. With aop, we suddenly have code that is being
run at a given point (method entry, exit, whatever)
but in just looking at the code, we have no clue that it
is even getting called. It happens especially when the
aop configuration is in another file, like xml config.
At the time of debugging an application if the advice
causes some changes, things may look strange with
no explanation.

3.3 Unit testing is hard.

Unit testing is a methodology for testing small parts
of an application independently of whatever
application uses them. Most developers today have
come to agree that unit testing is good, so it's natural
to want to apply unit testing to aspects [6]. But, there
is no formal unit test engineering discipline
established in the AOP community that provides a
guide to the programmer and works to ensure some
level of unit test quality. It is difficult to unit test
with aspects, especially if we do the weaving at
runtime. Because aspects crosscut many parts of the
system, it isn't immediately clear how they can be
unit tested, which has led some developers to believe
they cannot be [6]. One of the hard things about
testing a widespread crosscutting concern is that it
can advise so many join points. Executing and
checking all the matches can be a real pain. And
testing for the reverse, the accidental inclusion of an

unintended join point is even harder. Unit testing is a
fundamental practice in Extreme Programming but
most non-trivial code is difficult to test in isolation
[7]. As AOP methodology is new to the programmers
and it is complex, most of the times they write code
which is incomplete and hard to interpret. The
problem of unit testing them effectively gets harder.
After all, the unit test is supposed to test the code that
the programmer writes. If the programmer writes bad
code to begin with, how can we expect anything of
better quality in the tests?

4. Possible Solutions

4.1 Design Approach:

AOP must address both what the programmer can say
and how the computer system will realize the
program. The number one argument from the AOP
critics is: “You cannot see what is actually going on
by looking at the code”. Programmers need to be able
to read code and understand what is happening in
order to prevent errors. Even with proper education,
understanding crosscutting concerns can be difficult
without proper support for visualizing both static
structure and the dynamic flow of a program [8]. So
the languages which implement AOP must have the
facility to support the visualizing of crosscutting
concerns, as well as aspect code assist and
refactoring. A good programming style and
documentation also plays a vital role to make AOP
simple. Few points should be kept in mind before
writing the code. Joint points should be clearly
exposed, aspect interface should be properly
managed and the structure of the aspects should be
suitable. In this context, some issues to be
investigated are: (a) what are the main elements an
aspect model should incorporate? (b) How can the
interaction between aspect and base code be
described? (c) What are the problems, conflicts,
anomalies, etc. that can arise when aspect and base
code are weaved? [9].

4.2 Debugging Approach:

Debugging is a critical skill that comes with common
sense. AOP raises the level of abstraction [6]. Most
developers have come to understand that this
abstraction is ultimately for the good. Creating a
layer of abstraction provides clarity and improves our
understanding of what is important in a given
context. And this is where a debugger comes into
picture. The debugger, which understands the exact
type of an object and the exact control flow, gives

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

555

linear flow to the navigation between different
entities. With the right debugger, we can then
examine the precise interaction between classes and
aspects. Object-oriented purists also tend to overlook
the clarity that aspects can bring to debugging.
Debugging tools tend to fall short when certain
crosscutting functionality doesn't behave as expected
and it requires a tremendous amount of effort to spot
all the failure points for a scattered implementation
and fix them. But with recent improvements to the
Eclipse AJDT plug-in, debugging aspect-oriented
programs is almost as easy as debugging object-
oriented ones. It uses visual tools to help us to
understand and gain confidence in application’s
crosscutting concern. Using AJDT's cross-references
view to inspect crosscutting specifications has three
major advantages. First, the cross-references view
gives us instant feedback as we develop our aspects.
Second, it lets us easily detect consequences that
would be difficult to test for. Third, the automatically
generated view can verify positive cases that would
be tedious to verify in code. We have to use the
crosscutting comparison feature of AJDT to save a
crosscutting map of our project before a refactoring
or another code change. Then we will save another
map after we complete the change. Finally we will
compare the maps in the crosscutting comparison tool
to detect any unwanted changes to the join points
affected by our aspects. Note that this is an example
and only AJDT provides a crosscutting comparison
tool. Thinking this way, it isn't an overstatement to
say that AOP actually simplifies debugging
crosscutting functionality.

4.3 Unit Testing Approach:

In fact, aspects can be unit tested just as easily as
classes. . In both cases, we need to break the behavior
into components that we can test independently. A
key concept to grasp is that crosscutting concerns
divide into two different areas. First, there is the
crosscutting specification, where we should ask
ourselves what parts of the program the concern
affects. Second, there is the functionality, where we
should ask what happens at those points. With
aspects, we can target one or both of these areas in
isolation. Using Mock Objects for unit testing
improves both base code and aspects [10]. Mock
objects are objects that implement no logic of their
own and are used to replace the parts of the system
with which the unit test interacts. They allow unit
tests to be written for everything, simplify test
structure, and avoid polluting base code with testing
infrastructure [7]. We can create the mock system by
implementing a small subset of the classes and

methods of the real application. The mock system
implements just enough functionality to test the
aspects. The aspect is created and tested within the
mock system. To perform unit testing, we weave the
aspect with the mock system, and test until we satisfy
joinpoint coverage [11]. In order to properly use
mock objects, a factory pattern must be used to
establish a pointcut. All interactions with the service
can be managed using virtual methods. Fig.4 explains
the basic model.

 Instantiates one of

Fig. 4 Factory pattern

To achieve this construct, a certain amount of
foresight and discipline is needed in the coding
process. Classes need to be abstracted, objects must
be constructed in factories rather than directly
instantiated in code, facades and bridges need to be
used to support abstraction, and data transactions
need to be extracted from the presentation and
business layers. These are good programming
practices to begin with and result in a more flexible
and modular implementation. The flexibility to
simulate and test complicated transactions and failure
conditions gains a further advantage to the
programmer when mock objects are used. Mock
systems enable aspect developers to quickly
experiment with different pointcuts and advice, and
iteratively develop and test aspects [11].

5. Conclusion

The current research so far in aspect-oriented
software development is focused on problem
analysis, software design, and implementation
techniques. AOP is just too complex but still simpler
than the alternatives. The advantage of using an

 Abstract Methods

Mock Object

Implementation

Access Layer

Implementation

Factory Mode

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

556

aspect is that code changes can be localized to the
aspect even if their effects aren’t. AOP complexity
comes from the new mechanisms and tools used in
the implementation. Developers are still confused
about the technology. Some misunderstandings make
it harder for developers to assess accurately whether
or not to adopt AOP. Mainly the thorough
knowledge and experience is the key to use this
technology optimally. In this paper I have highlighted
the weakness of AOP and tried to give a general idea
about the solution.

Acknowledgments

First and foremost I thank to the almighty God whose
blessings help me to complete this paper. I would like
to thank Mr. M.R Warsi, Reader of Aligarh Muslim
University and Dr. T.S. Sinha, Professor of Disha
Institute, Raipur for their proper guidance and
inspiration regarding the research publication. I am
also grateful to Disha Institute for its support towards
my higher study.

References:
[1] Pressemier N. et al., “A Safe Aspect-Oriented

Programming Support for Component-Oriented
Programming”, ECOOP(2006)- 11th international
workshop on component-oriented programming,
Nantes, France.

[2] Despi I.,Luca L., “Aspect Oriented Programming
Challenges”, In Annals. Computer Science Series, Vol-
II, fasc.-I (2008).

[3] Przybylek Adam, “Post object oriented paradigms in
software development: a comparative analysis”,
Proceedings of the International Multiconference on
Computer Science and Information Technology, pp.
1009 – 1020 (2007).

[4] Takashi Ishio, Shinji Kusumoto, Katsuro Inoue.,
“Debugging Support for Aspect-Oriented Program
Based on Program Slicing and Call Graph”,
Proceedings of the 20th IEEE International Conference
on Software Mai1ntenance (ICSM’2004).

[5] Qamar M.N.,Nadeem A., Aziz R., “An Approach to
Test Aspect-oriennted Programs”, Proceedings of the
World Congress on Engineering 2007, London.

[6] Ramnivas Laddad, “AOP@Work: AOP myths and
realities”,
http://www.ibm.com/developerworks/java/library/j_aop
work15.

[7] Mackinnon T., Freeman S., Craig P., “ Endo-Testing :
Unit Testing with Mock Objects”, In Conference
“eXtreme Programming and Flexible Processes in
Software Engineering – XP2000” (Addison Wesley-
2000).

[8] http://en.wikipedia.org/wiki/Aspect-oriented_software_
development

[9] Chavez C.,Lucena C., “Design Level Support for
Aspect-oriented Software Development”, In
OOPSLA’01, Work on advanced separation of
concerns, 2001.

 [10] Xiaofei Li Xusheng Xie, “Research of Software
Testing Based on AOP”, Third international
Symposium on Intelligent Information Technology
Application (2009).

[11] Mortensen M., Ghosh S., Bieman J., “Testing During
Refactoring: Adding Aspects to Legasy Systems”,
Published in proc. Int. Symp. Software Reliability
Engineering (ISSRE 06), pp. 221-230, 2006.

Md. Asraful Haque received his B.Tech degree in
Information Technology from West Bengal University of
Technology in 2007. He is presently pursuing his Master
degree in Software Engineering from Aligarh Muslim
University. He is a lecturer in Disha Institute of Management
and Technology, Raipur, India. He has three years of
teaching experience. His area of interests includes Software
engineering, Operating Systems, Data Mining and Computer
Networks.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

557

