
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 98

Program Optimization Based Pointer Analysis and Live Stack-
Heap Analysis

Mohamed A. El-Zawawy

 Department of Mathematics, Faculty of Science, Cairo University
Giza, 12316, Egypt

Abstract

In this paper, we present type systems for flow-sensitive pointer
analysis, live stack-heap (variables) analysis, and program
optimization. The type system for live stack-heap analysis is an
enrichment of that for pointer analysis; the enrichment has the
form of a second component being added to types of the latter
system. Results of pointer analysis are proved useful via their use
in the type system for live stack-heap analysis. The type system
for program optimization is also an augmentation of that for live
stack-heap analysis, but the augmentation takes the form of a
transformation component being added to inference rules of the
latter system. The form of program optimization being achieved
is that of dead-code elimination. A form of program correction
may result indirectly from eliminating faulty code (causing the
program to abort) that is dead. Therefore program optimization
can result in program correction. Our type systems have the
advantage of being compositional and relatively-simply
structured.
The novelty of our work comes from the fact that our type
system for program optimization associates the optimized version
of a program with a justification (in the form of a type
derivation) for the optimization. This justification is pretty much
appreciated in many research areas like certified code (proof-
carrying code) which is the motivation of this work.
Keywords: Pointer analysis, Live variables analysis, Live stack-
heap analysis, Program optimization, Type systems, Certified
code.

1. Introduction

Rather than dynamic code analysis concerned with
analyzing programs during execution time, static code
analysis (statics analysis) [14] is a concept describing
analyzing programs without actually executing them.
Static analysis can result in improving the quality of the
code in different ways (including correcting and
optimizing the code) or in verifying industrial standards
of the code. Data-flow analysis, one of the techniques
used in static analysis, is useful for collecting information
for each program point. An analysis whose results do not
change due to permuting a statement sequence S1;S2 into
S2;S1 is described as flow-insensitive; otherwise it is

described as flow-sensitive. For a flow-sensitive analysis,
if the program is traversed forwardly (backwardly) to
collect information, the technique is called a forward
(backward) analysis. If the collected information may
(must) be true, the technique is described as may (must).
Examples of forward-may and backward-may analyses
are pointer and live variables analyses [14], respectively.
Pointer analysis calculates for each store (a variable or a
memory location) at every program point the set of
addresses that have a chance of being contained in that
store at that program point. Roughly speaking, live
variables analysis calculates for every program point the
set of variables used later in the program. In case of
pointer programs, we call this analysis live stack-heap
analysis and it calculates the set of variables and memory
locations that are used later in the program. Results of live
variables analysis can be used to eliminate unnecessary
code in a technique called dead-code elimination.
Although static analysis is usually treated in an
algorithmic style [14], there are other frameworks that can
be used to successfully achieve static analysis. One of
such frameworks is type systems [9, 20, 2, 15] that has
proved so far to be a very convenient tool for this job. In
the algorithmic fashion, the work is done on an annotated
form of the program control- flow graph. However in the
type-systems manner the work is done on the program
using its phrase structure. This fact is advantageous to the
use of the type-systems framework when it comes to
optimizing programs. This is so because the algorithmic
style usually produces only the optimized version of the
program. However the type-systems style is conveniently-
capable of producing the optimized version together with
a justification (in the form of a type derivation) for the
optimization. This justification is necessary in
applications like certified code. Also the relative
simplicity of inference rules of type systems makes their
framework auspicious.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 99

Motivation
The program on the left-hand side of Figure 1 is a
motivating example of our work. Suppose that y is the
only variable whose value concerns us at the end of the
program. Then the last statement is unnecessary (dead
code). Also the assignment statement in line 6 is a dead
code and it causes the program to aborts because the value
of i is not in the domain of the heap. Therefore removing
theses statements optimizes the program and in the same
time removes a cause for abortion.

The objective of this paper is to develop a technique that
transforms a program like this one into an optimized
version like that in the right-hand side of Figure 1 and
also produces a proof or justification for the
transformation process.
All in all this paper tackles the problem of transforming
pointer programs into optimized and possibly corrected
versions and producing justifications for the
transformation process. The importance of producing the
justification comes from the area of certified code which
is the motivation of our work and which provides good
applications for the work as well. The program
optimization, meant here, is dead-code elimination. The
optimized version of a program is possibly a corrected
version as well; this is the case if reasons for abortions in
the program are included in dead code and hence gets
removed with the dead code. In other words, program
optimization can result in program correction. Our tool
for solving this problem is type systems. Up to our
knowledge, our paper is the first to tackle this problem
(using type systems) for pointer programs.
Contributions

1. An original type system for flow-sensitive
pointer analysis.

2. A novel type system for live stack-heap
(variables) analysis for pointer programs. This
type system utilizes results of our type system for
pointer analysis and is an enrichment of it.

33.. The third contribution is a new type system for
optimizing and possibly correcting pointer
programs. This type system serves also as a tool
for obtaining a justification (in the form of a type
derivation) for every individual transformation
and is an augmentation of our type system for
live stack-heap analysis.

Organization
The rest of the paper is organized as follows. The language
whilep (the while language enriched with pointer
commands) and an operational semantics for its constructs
are presented in Section 2. Our proposed type systems for
flow-sensitive pointer analysis and live stack-heap analysis
are presented in Sections 3 and 4, respectively. The type
system carrying program optimization is introduced in
Section 5. A brief survey of related work is presented in
Section 6..

2. The Programming Language

The programming language that we are using is usually
used to introduce separation logic like in [19] and its
operational semantics is a slightly-modified version of that
in [19]. The language is an imperative one that is enriched
with commands dealing with pointers. We call this
language whilep. This section presents the language whilep
with an operational semantics to its constructs. The
grammar of the whilep language is shown in Figure 2,
where Var is a finite set of program variables.

For any m א N+, we assume that the memory has an
infinite number of arrays of length m with addresses {a1

m,1,
a1

m,2, . . . , a
1
m,1, a

2
m,1, a

2
m,2, . . . , a

2
m,m,…} Therefore the

set of address, Addrs, has the form presented in Figure 3.
This memory model, rather than letting addresses to be a
subset of integers, has the advantage of reducing the
chance of messing with the memory. This is so because a
number which is intended to be used as a numerical value
(not as an address) can be an address as well and therefore
it can be accidently used to access un-allowed or
unintended memory cells. In order to facilitate evaluating
inequalities we assume that Values is equipped with an
order.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 100

Definition 1.
A stack (heap) is a map (finite partial map) from Var
(Addrs) to Values. A state is an abort or a pair of a stack
and a heap.
Arithmetic and Boolean expressions have the same
semantics as in the case of the while language except for
the operation ْ. The semantics of this operation on
Values is defined as usual if both of its operands are
integers and otherwise as in Figure 4.
The semantics of whilep statements is given by an
operational semantics whose transition relation is denoted
by → and whose configurations (nonterminal and
terminal) are defined in Definition 1. In the inference rules
of the semantics (Figure 4), st denotes a state.
The cons allocates the array au

n,1, . . . , au
n,n with the

minimum dimension, u, of all available arrays of length n.
The allocation takes place by storing the address au

n,1 in x
and semantics of expressions e1, . . . , en in addresses au

n,1, .
. . , au

n,n, respectively. If f is a map and A is a set, f ۀA
denotes the restriction of f on A and [f | x:A] denotes the
function whose domain is dom(f)׫{x} and whose
definition is λy. if y = x then A else f(y).

3. Pointer Analysis

In this section, we introduce a type system for flow-
sensitive pointer analysis which is a forward-may analysis
that assigns to each program point a partial map from
variables and memory locations to the power set of
addresses. Under this map, the image of an element is an
over-approximate set of addresses that the element may
contain (point to) at this program point. The set of points-
to types, PTS, and the sub-typing relation are defined as
follows.

Definition 2.
1. PTS = {pts | pts: Var ׫ d → 2Addrs | d ك Addrs}. The
bottom type is denoted by ٣.
2. pts ≤ pts′ ֞ dom(pts) ك dom(pts′) and ׊t א dom(pts).
pts(t) ك pts′ (t).
3. A state (s, h) has type pts, denoted by (s, h) |= pts, if
 – dom(h) ك dom(pts),
 pts(x), and א Addrs ֜ s(x) א Var. s(x) א x׊ –
 .pts(a) א Addrs ֜ h(a) א dom(h). h(a) א a׊ –

Given a points-to type pts, the pointer analysis is achieved
for a statement S via a post-type derivation for S and pts as
the pre-type. Typically the pre-type pts is the bottom type
٣. The judgment of an arithmetic expression e has the
form e: pts → V. The set V is either a set of addresses or a
singleton of an integer. The intended meaning, which is
formalized in Lemma 1, of this judgment is that V captures
any address that e evaluates to in a state of type pts. In
particular if V is a set of addresses, then e is either an
address from V, any integer, or nil. The judgment of a
statement S has the form S: pts → pts′. The intuition,
which is formalized in Theorem 1, of this judgment is that
if S is executed in a state of type pts, then any state (rather
than abort) where the execution ends is of type pts′. In the
rest of the paper when e: pts → V, we let V' denotes V∩
Addrs. The inference rules of our type system for pointer
analysis are presented in Figure 5.

Lemma 1.
 Suppose that (s, h) |= pts and e: pts → V. Then

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 101

1. V ك Addrs or ׌n א Z. V = {n},
 s = n, andۥZ. V = {n} ֜ ۤe א n׊ .2
3. ۤeۥs א Addrs ֜ ۤeۥs א V.
Proof. By induction on the structure of e. We present the
proof of the last item. If e = n then ۤeۥs = n ב Addrs. If e =
x then ۤxۥs = s(x) א Addrs implies s(x) א pts(x) = V
because (s, h) |= pts. Now suppose e = e1 ْ e2, e1 : pts →
V1, and e2 : pts → V2. If ۤe1 ْ e2 ۥs א Addrs, then we have
one of the following cases:
1. ۤe1ۥs = am

i,j, ۤe2ۥs = n, and 1 ≤ j ْ n ≤ i.
2. ۤe1ۥs = n, ۤe2 ۥs = am

i,j, and 1 ≤ j ْ n ≤ i.
In the first case, by the induction hypothesis am

i,j א V1 and
if V2 = {t}, then, by (2), n = t and ۤe1 ْ e2 ۥs = am

i,jْn א {
am

i,jْn | am
i,j א V1 1 ר ≤ j ْ n ≤ i} = V. If V2 ك Addrs then

ۤe1 ْ e2 ۥs = am
i,jْn א V. The second case is similar to the

first case. ■

The following lemma is needed in the proof of the
following soundness theorem and it is obvious because (s,
h) |= pts implies dom(h) ك dom(pts).

Lemma 2.
Suppose that (s, h) |= pts, u = min{t | {at

n,1 , . . . , a
t
n,n} ∩

dom(h) = ׎}, and v = min{t | { at
n,1 , . . . , at

n,n } ∩
dom(pts) = ׎}. Then 1 ≤ u ≤ v.

The rules (assp) and (disp) are straightforward. For the rule
(conp) and by Lemma 2, executing the cons statement in a
state of type pts results in allocating one of the arrays {aj

n,1
, . . . , aj

n,n }, 1 ≤ j ≤ v. But it is not obvious which of these
arrays will be allocated. Therefore the rule (conp) takes
into account all these possibilities by adding the addresses
of these arrays to pts(x) and adding Vi′ to the image, under
pts, of each location aj

n,i.
In the rule (lokp), V′ contains any address that e evaluates

to in a state of type pts. Therefore the set ׫aאV′ pts(a)
captures any address that goes into x after executing the
look-up statement in a state of type pts. For the rule (mutp),
there are two cases for V1, namely either |V1| = 1 or |V1 | ≠
1. In the first case, the rule (mutp) cuts down to a form that
is pretty much similar to the rule (assp). In the second case,
it is not obvious to which address the assignment will
happen. Hence the post-type is calculated from the pre-
type by including the set V2′ in the image of every element
of V1′. The rules (seqp), (ifp), and (csqp) are clear.
As it is evident from the (whlp) rule, an invariant type is
necessary to type a while statement. The required invariant
type is calculated as a fix-point of an order-preserving map
over the complete lattice pts using a given pre-type. The
consequence rule can be used to show that the fix-point is
indeed the required invariant type.

Theorem 1. (Soundness)
1. pts ≤ pts′ iff (For every state (s, h), (s, h) |= pts ֜ (s, h)
|= pts′).
2. Suppose that S: pts → pts′ and S: (s, h) → (s′, h′). Then
(s, h) |= pts implies (s′, h′) |= pts′.
Proof. 1. The left-to-right direction is obvious. The other
direction is proved as follows. Suppose x א Var, a, b א
Addrs, and a א pts(x). Then the state (s, h) = ({(x, a), (y,
0) | x≠y א Var}, ׎) is of type pts and therefore is of type
pts′. So a א pts′(x) and hence pts(x) ك pts′(x). Similarly,
we can show that b א dom(pts) implies b א dom(pts′) and
pts(b) ك pts′(b).
2. The proof is by induction on the structure of type
derivation as follows:
(a) The type derivation has the form (assp). In this case,
pts′ = [pts | x:V′] and (s′, h′) = ([s | x : ۤeۥs], h). If ۤeۥs א
Addrs, then ۤeۥs א V′ by Lemma 1. Therefore s′(x) א
Addrs implies s′(x) א pts′(x). We also have that dom(h′) =
dom(h) ك dom(pts) ك dom(pts′) because (s, h) |= pts. It is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 102

obvious that for any x ≠ y א Var and a א dom(h′), s′(y) א
Addrs implies s'(y) א pts'(y) and h'(a) א Addrs implies
h′(a) א pts′ (a). Hence (s′, h′) |= pts′.
(b)The type derivation has the form (lokp). In this case, pts′
= [pts | x : ׫aאV′ pts(a)] and (s′, h′) = ([s | x : h(ۤeۥs)], h).
Also we have ۤeۥs א Addrs ∩ dom(h) and hence ۤeۥs א V′
by Lemma 1. If h(ۤeۥs) א Addrs, then h(ۤeۥs) א pts(ۤeۥs)
because (s, h) |= pts. Therefore s′(x) = h(ۤeۥs) א Addrs
implies s′(x) = h(ۤeۥs) ׫ אaאV′ pts(a) = pts′ (x). We also
have that dom(h′) = dom(h) ك dom(pts) ك dom(pts′)
because (s, h) |= pts. It is obvious that for any x≠ y א Var
and a א dom(h′), s′(y) א Addrs implies s′(y) א pts′(y) and
h;(a) א Addrs implies h′(a) א pts′(a). Hence (s′, h′) |= pts′
(c) The type derivation has the form (conp). In this case,
pts′ = 1׫≤i≤v [pts |x : {ai

n,1} | ai
n,1: V′1 | . . . | a

i
n,n: V'n] and

(s′, h′) = ([s | x : au
n,1], [h | au

n,1:ۤe1 ۥs | . . . | au
n,n: ۤen ۥs]).

By Lemma 2, 1 ≤ u ≤ v. For every 1 ≤ i ≤ n, if ۤeiۥs א
Addrs then ۤeiۥs א Vi′ by Lemma 1. We have s′(x) = au

1,n
a1}א

1,n, . . . , a
v
1,n } ك pts′(x). We also have that dom(h′) ك

dom(pts′) because dom(h) ك dom(pts) ((s, h) |= pts) and 1
≤ u ≤ v. It is obvious that for any x ≠ y א Var and a א
dom(h′) \ {au

n,1, . . . , a
u

n,n }, s′(y) א Addrs implies s' (y) א
pts′(y) and h′(a) א Addrs implies h′(a) = h(a) א pts(a) ك
pts′(a). For every 1 ≤ i ≤ n, if h(au

n,i) א Addrs, then h(au
n,i)

= ۤei ۥs א Vi′ ك pts′ (au
n,i). Hence (s′, h′) |= pts′.

(d) The type derivation has the form (mutp). In this case,
pts′ = ׫aאV1′ [pts | a:V'2] and (s′,h′) = (s, [h | ۤe1ۥs : ۤe2ۥs]).
We have ۤe1ۥs א dom(h) ∩ V1 and if ۤe2ۥs א Addrs then
ۤe2ۥs א V′2 by Lemma 1. If h′(ۤe1ۥs) א Addrs, then
h′(ۤe1ۥs) = ۤe2 ۥs א V′2 ك pts′ (ۤe1 ۥs) because ۤe1 ۥs א V′1.
We also have that dom(h′) = dom(h) ك dom(pts) ك
dom(pts′) because (s, h) |= pts. It is obvious that for any y
 = Addrs implies s′ (y) א dom(h′) \ V′1 , s′(y) א Var and a א
s(y) א pts(y) = pts′(y) and h′(a) � Addrs implies h′(a) =
h(a) א pts(a) � pts′ (a). Hence (s′, h′) |= pts′.
The remaining cases are straightforward to check. ■

4. Live stack-heap analysis

In this section, we show how the type system for pointer
analysis, presented in the previous section, can be enriched
to produce a type system for live stack-heap analysis. In
other words, the type system presented in this section is a
strict extension of the system presented in the previous
section. This reflects the fact that pointer information
obtained by previous system are used to improve the
precision of the live stack-heap analysis.
The live stack-heap analysis associates with each program
point the set of variables and memory locations live
(according to Definition 3) at that point. The resulting type
system is a generalized one of that presented in [20] for
live variables analysis for the while language.
Therefore the goal in this section is to utilize results of our
type system for pointer analysis and to build o
n it a type system that carries live stack-heap analysis.
Towards this objective, we augment points-to types to get
live stack-heap types defined below (Definition 4).

Definition 3.
 A variable (memory location) is live at a program

point if there is a computational path from that
program point during which the variable (the memory
location’s content) gets usefully used before being
modified.

 A variable (the content of a memory location) is
usefully used
1- if it is used in an assignment to a variable or a

memory location that is live at the end of the
assignment,

2- the guard of an if-statement or a while-statement,
3- an arithmetic expression of a dispose statement,

or
4- the left expression of a mutation statement.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 103

Definition 4.
The set of live stack-heap types (live types in short) is
denoted by lsh and equal to pts × 2Var׫Addrs. The second
component of a live type is termed a live-component. The
subtyping relation ≤ is defined as:

(pts, lsh) ≤ (pts′, lsh′) iff (pts ≤ pts′ and lsh ل lsh′) .

The judgment of an expression has the form e : lsh → lsh′
and the intuition is that lsh is lsh′ plus variables occurring
free in e. The judgment of a statement S has the form S :
(pts, lsh) → (pts′, lsh′) and it is meant to guarantee that if
lsh′ contains variables and memory locations live at the
post-state of an execution of S, then lsh contains variables
and memory locations live at the pre-state of this
execution. This is formalized in Theorem 2 and consents
with the fact that live stack-heap analysis is a backward
analysis. This also gives an insight into the definition of (s,
h) |= lsh in Definition 6.
Suppose that we have a live-component lsh′ and the result
of a pointer analysis for a statement S (in the form S : pts
→ pts′). The live stack-heap analysis is achieved for S via
a pre-type derivation that calculates a set lsh such that S:
(pts, lsh) → (pts′, lsh′). It is natural to let lsh′ be the set of
variables that we have interest in their values at the end of
executing S.
The inference rules for our type system for live stack-heap
analysis are presented in Figure 5. The inference rules for
Boolean expressions other than e1 = e2 are similar to the
inference rule for e1 = e2. In rules for allocation, we
suppose that x:=cons(e1 , . . . , en) : pts → pts′, v = min{t |
{at

n,1 , . . . , a
t
n,n} ∩ dom(pts) = ׎}, and I = {x, ai

n,1, . . . ,
ai

n,n | 1 ≤ i ≤ v} ∩ lsh′ . In rules for look-up, we assume
that x:= [e] : pts → pts′ . For the mutation statement, we

suppose that [e1] := e2 : pts → pts' and e1 : pts → V.
The set of variables and memory locations modified by the
statement x:= cons(e1 , . . . , en) is contained in {x, a1

n,1, . .
. , a1

n,n , a
2
n,1 , . . . , a

2
n,n, . . . , a

v
n,1 , . . . , a

v
n,n}. We have

three cases concerning which elements of this set are in
lsh′ (possibly live after executing the statement); none,
only x, or at least one address. For the first case when all
modified elements are necessary dead after executing the
statement, the rule (consl

1) equalizes live-components of
the pre and post types. For the second case, the rule
(consl

2) lets lsh′\{x} (as the assignment to x kills it) be the
live-component of the pre-type. For the third case treated
by the rule (consl

3) the live-component of the pre-type is
constructed via augmenting lsh′\{x} with variables
occurring free in every expression assigned to a location
possibly live after execution.
For the look-up statement, the rule (lokl

2) deals with the
case that x is possibly live after executing the statement. In
this case, the pointer information is used to calculate the
set of addresses V′. Then, to form the live-component of
the pre-type, the set lsh′\{x} is augmented to include V′
and variables occurring free in e.
For the mutation statement, the pointer information is used
to find the set V′ containing any address that the expression
e1 evaluates to in a state of type pts. The type system has
two rules dealing with the two possible cases; whether or
not V′ has an empty intersection with lsh′. The rule (mutl

2)
takes care of the case of nonempty intersection. In this rule
the live-component of the pre-type is constructed by
adding variables occurring free in e1 and e2 to lsh′. We
note that in this case it is not obvious which location will
be modified (and hence gets killed) but it is clear that this
location is possibly live at the end of mutation. Therefore
nothing is removed from lsh′; instead variables occurring

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 104

free in e1 and e2 are added.
Now we introduce necessary definitions and results
towards proving the soundness of our type system for live
stack-heap analysis.

Definition 5. 1. (s, h) |=lsh pts ֞ dom(h) ك dom(pts), ׊x א
Var ∩ lsh (s(x) א Addrs ֜ s(x) א pts(x)), and ׊a א dom(h)
∩ lsh (h(a) א Addrs ֜ h(a) א pts(a)).
2. (s, h) ׽lsh (s′, h′) ֞ ׊x א lsh ∩ Var. s(x) = s′(x), and ׊a
 .lsh ∩ dom(h) ∩ dom(h′). h(a) = h′(a) א
3. (s, h) ׽(pts,lsh) (s′, h′) ֞ dom(h) = dom(h′), (s, h) |=lsh pts,
(s′ , h′) |=lsh pts, and (s, h) ׽lsh (s′ , h′).

Definition 6. The expression (s, h) |= lsh denotes the case
when there is a variable or a memory location that is live
at that state (computational point) and is not included in
lsh. A state (s,h) has type (pts,lsh), denoted by (s,h) |= (pts,
lsh), if (s, h) |=lsh pts and (s, h) |= lsh.

The following lemma is proved by structure induction on e
and b.

Lemma 3. Suppose that (s,h) and (s′,h′) are states and lsh
and lsh′ 2 אVar ׫ Addrs. Then
1. If lsh ل lsh′ and (s,h) ׽lsh (s′,h′), then (s,h) ׽lsh′ (s′,h′).
2. If e : lsh → lsh′ and (s, h) ׽lsh (s′,h′), then ۤeۥs = ۤeۥs′
and (s, h) ׽lsh′ (s′, h′).
3. If b : lsh → lsh′ and (s,h) ׽lsh (s′,h′), then ۤbۥs = ۤbۥs′
and (s,h) ׽lsh′ (s′, h′).

The following lemma follows from Lemma 1.

Lemma 4. Suppose that (s, h) |=lsh pts, FV(e) ك lsh, and e :
pts → V. Then ۤeۥs א Addrs ֜ ۤeۥs א V.
Proof. Consider the state (s′,h′), where s′ = λx. if x א FV(e)
then s(x) else 0 and h′ = ׎. It is not hard to see that ۤeۥs =
ۤeۥs′ and (s′,h′) |= pts. Now by Lemma 1, ۤeۥs′ א Addrs
implies ۤeۥs′ א V which completes the proof. ■

Theorem 2. 1. (pts, lsh) ≤ (pts′ , lsh′) ֜ (׊(s, h). (s,h) |=lsh
pts ֜ (s, h) |=lsh′ pts′).
2. Suppose that S: (pts, lsh) → (pts′ , lsh′) and S : (s, h) →
(s′ , h′). Then (s, h) |=lsh pts implies (s′, h′) |=lsh′ pts′.
3. Suppose S: (s,h) → (s′,h′) and S : (pts,lsh) → (pts′, lsh′).
Then (s,h) |= lsh implies (s′,h′) |= lsh′ . This guarantees
that if the set of variables and memory locations live at the
state (s′,h′) is included in lsh′, then the set of variables and
memory locations live at the state (s, h) is included in lsh.
Proof. 1. Suppose (s, h) |=lsh pts. This implies (s,h) |=lsh′ pts
because lsh′ ك lsh. The last fact implies (s, h) |=lsh′ pts′

because pts ≤ pts′.
2. The proof is by induction on the structure of type
derivation as follows:
(a) The type derivation has the form (disl). In this case, lsh
= lsh′ ׫ FV(e) and (s′, h′) = (s, hۀ(dom(h) \ {ۤeۥs})).
Therefore (s,h) |=lsh pts implies (s′,h) |=lsh pts′ which
implies (s′, h′) |=lsh′ pts′ because h′ ≤ h and lsh′ ك lsh.
(b) The type derivation has the form (ass1

l). In this case,
pts′ = [pts | x : V′] and (s′, h′) = ([s | x : ۤeۥs], h). Therefore
(s, h) |=lsh pts implies (s′, h) |=lsh pts′ because x ב lsh.
Clearly (s′, h) |=lsh pts′ implies (s′, h′) |=lsh' pts′.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 105

(c) The type derivation has the form (ass2
l). In this case,

pts′ = [pts | x:V′], (s′, h′) = ([s | x : ۤeۥs], h), and lsh = (lsh′
\ {x}) ׫ FV(e). Therefore by Lemma 4 and similarly to
Theorem 1 (2.a), we can conclude (s′, h′) |=lsh′ pts′.
(d) The type derivation has the form (conl

1). In this case,
– pts′ = 1׫≤i≤v [pts | x: {ai

n,1} | ai
n,1 : V′1 | . . . | a

i
n,n : V′n],

– (s′, h′) = ([s | x: au
n,1], [h | au

n,1: ۤe1ۥs | . . . | au
n,n:ۤen ۥs]),

– v = min{t | {at
n,1, . . . , a

t
n,n } ∩ dom(pts) = ׎}, and

– u = min{t | {at
n,1, . . . , a

t
n,n } ∩ dom(h) = ׎}.

By Lemma 2, 1 ≤ u ≤ v. Because I = ׎, (s, h) |=lsh′ pts
implies (s′, h′) |=lsh′ pts′.
(e) The type derivation has the form (con2

l). In this case,
(s′, h′), pts′, u, and v have the same definitions as in the
previous case (d). Moreover, lsh = lsh′ \ {x}. Because I =
{x} and 1 ≤ u ≤ v, (s, h) |=lsh′ \{x} pts implies (s′, h′) |=lsh′ pts′.
(f) The type derivation has the form (con3

l). In this case,
(s′, h′), pts′, u, and v have the same definitions as in the
case (d). Moreover lsh = ׫ajn,i אI lshi . Therefore by Lemma
4 and similarly to Theorem 1 (2.c), we can conclude (s′, h′)
|=lsh′ pts′.
(g) The type derivation has the form (lok1

l). In this case,
pts′ = [pts | x : ׫aאV′ pts(a)], (s′, h′) = ([s | x : h(ۤeۥs)], h)),
and lsh = lsh′. Therefore (s, h) |=lsh pts implies (s′, h) |=lsh
pts′ because x ב lsh. Clearly (s′, h) |=lsh pts′ implies (s′, h′)
|=lsh′ pts′.
(h) The type derivation has the form (lok2

l). In this case,
pts′ = [pts | x : ׫aאV′ pts(a)], (s′, h′) = ([s | x : h(ۤeۥs)], h),
and lsh = (lsh′ \ {x}) ׫ FV(e) ׫ V′. Therefore by Lemma 4
and similarly to Theorem 1 (2.b), we can conclude (s′, h′)
|=lsh′ pts′.
(i) The type derivation has the form (mut1

l). In this case,
pts′ = ׫aאV′1 [pts | a: V2′], (s′, h′) = (s, [h | ۤe1ۥs: ۤe2ۥs]),
and lsh = lsh′ ׫ FV(e1). Clearly, (s, h) |=lsh pts implies (s,
h) |=lsh′ pts. Because V ∩ lsh′ = ׎, (s, h) |=lsh′ pts implies (s′,
h′) |=lsh′ pts′.
(j) The type derivation has the form (mut2

l). In this case,
pts′ = ׫aאV1′ [pts | a: V′2], (s′, h′) = (s, [h | ۤe1ۥs: ۤe2ۥs]),
and lsh = lsh′ ׫ FV(e1) ׫ FV(e2). Therefore by Lemma 4
and similarly to Theorem 1 (2.d), we can conclude (s′, h′)
|=lsh′ pts′.
The remaining cases are straightforward to check.
3. The proof again is by induction on the structure of type
derivation and it is straightforward. ■

Corollary 1. Suppose S: (s, h) → (s′, h′) and S : (pts, lsh)
→ (pts′ , lsh′). Then (s, h) |= (pts, lsh) implies (s′, h′) |=
(pts′, lsh′).
Proof. The proof follows from Theorem 2.

Theorem 3. Suppose that S : (pts, lsh) → (pts′, lsh′), S: (s,
h) → (s′, h′), and (s, h) ׽(pts,lsh) (sכ, hכ). Then there exists a
state (s′כ, h′כ) such that S: (sכ, hכ) → (s′כ, h′כ) and (s′, h′)
 .(כ′h ,כ′s) (′pts′,lsh)׽
Proof. The proof is by induction on structure of type
derivation as follows:

1. The type derivation has the form (disl). In this case, lsh
= lsh′ ׫ FV(e) and (s′, h′) = (s, hۀ(dom(h) \ {ۤeۥs})). Take
(s′כ, h′כ) = (sכ, hۀכ(dom(hכ) \ {ۤeۥsכ})).
2. The type derivation has one of the forms (ass1

l) and
(ass2

l). In this case, pts′ = [pts | x : V′] and (s′, h′) = ([s | x :
ۤeۥs], h). Take (s′כ, h′כ) = ([sכ | x : ۤeۥsכ], hכ).
3. The type derivation has one of the forms (con1

l), (con2
l),

and (con3
l). In this case,

– pts′ = 1׫≤i≤v[pts | x : {ai
n,1} | ai

n,1 : V′1 | . . . | a
i
n,n : V'n],

– (s′, h′) = ([s | x : au
n,1], [h | au

n,1: ۤe1ۥs | . . . | au
n,n : ۤenۥs]),

– v = min{t | {at
n,1 , . . . , a

t
n,n} ∩ dom(pts) = ׎}, and

– u = min{t | {at
n,1, . . . , a

t
n,n } ∩ dom(h) = ׎}.

By Lemma 2, 1 ≤ u ≤ v. Take (s′כ, h′כ) = ([sכ | x: au
n,1], [hכ |

au
n,1: ۤe1 ۥsכ | . . . | au

n,n : ۤen ۥsכ]).
4. The type derivation has the form (lok2

l) or (lok1
l). In this

case, pts′ = [pts | x: ׫aאV′ pts(a)] and (s′, h′) = ([s | x :
h(ۤeۥs)], h)). Take (s′כ, h′כ) = ([sכ | x: hכ(ۤeۥsכ)], h)).
5. The type derivation has one of the forms (mut1

l) and
(mut2

l). In this case, pts′ = ׫aאV1′ [pts | a: V′2] and (s′, h′) =
(s, [h | ۤe1ۥs: ۤe2ۥs]). Take (s′כ, h′כ) = (sכ, [hכ | ۤe1ۥsכ:
ۤe2ۥsכ])
The remaining cases are straightforward. ■

5. Dead-code elimination

A type system for dead-code elimination is presented in
this section. In a program, statements that have no effect
on the content of variables and memory locations live at
the end of the program are considered to be dead code. It is
the task of the type system presented here to optimize
programs via eliminating dead code. If the dead code is
faulty (causing the program to abort), then removing it
may result in correcting the program.
A typical judgment of our type system takes the form S:
(pts, lsh) → (pts′, lsh') մ S′. And it implies that S′
optimizes S towards dead-code elimination (and may be
program correction). The derivation of a judgment
provides a justification for the optimization process. It is
clear from the form of the judgment that the optimization
process is built on the type information gathered by our
type system for live stack-heap analysis.

Algorithm: optimize
- Input: a statement S of the language whilep and a set of variables
lsh′ that we like to consider live (have interest in their values) at the
end of executing S;
- Output: an optimized and may be corrected version S′ of S such
that the relation between S and S′ is as stated in Theorem 4.
- Method:
1. Find pts such that S: ٣ → pts in our type system for pointer
analysis.
2. Find lsh such that S: (٣, lsh) → (pts, lsh′) in our type system for
live stack-heap analysis.
3. Find S′ such that S: (٣, lsh) → (pts, lsh′) մ S′ in our type system
for dead code elimination.

Fig.7. the algorithm optimize

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 106

The optimization process can be summarized in the
algorithm optimize out-lined in Figure 7. The first step of
the algorithm optimize annotates the program points of S
with pointer information. This is done via a post type
derivation of S for the bottom points-to-type ٣ as the pre
type. The second step of the algorithm refines the
information obtained in the first step via annotating the
program points with information about live variables and
memory locations. This is done via a pre type derivation of
S for the set lsh′, the set of variables whose values
concerns us at the end of execution, as the post type.
Finally the information calculated in the second step is
used in the third step to find S' using our type system for
dead code elimination.
The inference rules of our type system for dead-code
elimination are presented in Figure 6. In the following
rules for allocation, the set I has the same definition as in
the previous type system and we suppose that x:=cons(e1, .
. . , en) : (pts, lsh) → (pts′, lsh′). In rules for mutation, we
suppose that [e1]:= e2: (pts, lsh) → (pts′, lsh′) and e1 : pts
→ V. In rules for dispose, we suppose that dispose(e) :
(pts, lsh) → (pts, lsh′) and e : pts → V.
We note that the rule (cond

1) transforms the allocation
statement to x:=cons(0, . . . , 0), with n arguments, rather
than to skip. This is so because the optimization to skip
would led to the possibility that sequent allocations
allocates different arrays in the original and optimized
version of the program. And this in turn would complicate
the definition of similarity between states (Definition 5)
used in proving the equivalence of the original and
optimized version of the program. This complication does
not worth introducing the skip statement. However a
simple extra forward traverse of the program can remove
all such allocations (cons(0, . . . , 0)) if necessary.
The following theorem guarantees that if the original and
optimized programs are executed in similar states and the
original one does not abort then:
1. the optimized program does not abort as well, and
2. the optimized program reaches a state similar to that
reached by the original program.

Theorem 4. (Soundness)
Suppose that S:(pts, lsh) → (pts′, lsh′) մ S′ and (s, h)
 Then .(כh ,כs) (lsh,pts)׽
1. If S: (s, h) → (s′, h′), then there exists a state (s′כ, h′כ)
such that S′: (sכ, hכ) → (s′כ, h′כ) and (s′, h′) ׽(pts′,lsh′) (s′כ,
h′כ).
2. If S′: (sכ, hכ) → (s′כ, h′כ) and S does not abort at (s, h),
then there exists a state (s′, h′) such that S: (s, h) → (s′, h′)
and (s′, h′) ׽(pts′,lsh′) (s′כ, h′כ).
Proof. 1. The proof is by induction on structure of type
derivation as follows:
(a) The type derivation has the form (ass1

d). In this case, S′
= skip. Take (s′כ, h′כ) = (sכ, hכ).

(b) The type derivation has the form (ass2
d). In this case, S′

= S. This case follows from Theorem 3.
(c) The type derivation has the form (con1

d). In this case, S′
= cons(01, . . . , 0n). Take (s′כ, h′כ) = ([sכ | x: au

n,1], [hכ | au
n,1

: 0 | . . . | au
n,n : 0]).

(d) The type derivation has the form (con2
d). In this case,

S′ = S. This case follows from Theorem 3.
(e) The type derivation has the form (lok1

d). In this case, S′
= skip. Take (s′כ, h′כ) = (sכ, hכ).
(f) The type derivation has the form (lok2

d). In this case, S′
= S. This case follows from Theorem 3.
(g) The type derivation has form (mut1

d). In this case, S′ =
skip. Take (s′כ, h′כ) = (sכ, hכ).
(h) The type derivation has the form (mut2

d). In this case,
S′ = S. This case follows from Theorem 3.
The remaining cases are straightforward.
2. Similar to 1. ■

6. Related work

There are two fields of related work; the first is type
systems for data-flow analysis and the second is pointer
analysis for sequential languages.
In [9] it is shown that a good deal of static analysis can be
done in the type-systems fashion. More precisely, for
every analysis in a certain class of data-flow analyses, it is
proved in [9] that there exists a type system such that a
program checks with a type if and only if the type is a
super-type for the set resulting from running the analysis
on the program. Later on [20], based on [9], established
compositional type systems to carry program and proof
optimization based on dead-code and common sub-
expression elimination for the while language. These type
systems are equipped with a transformation component
that does the actual optimization. Our paper builds on and
extends results presented in [20] to pointer languages.
The type system in [11] and the flow-logic work in [15]
(used in [12, 13] to study security of the coordinated
systems) are very similar to [9]. [2] presents constant
folding and dead-code elimination via type systems and
also introduces relational Hoare logic used to prove
correctness of optimizations. Type systems for
bidirectional data-flow analyses and their program
optimizations are presented in [6]. Earlier, related work
(with type systems that are structurally-complex) is [16,
17]. However none of these papers consider pointer
programs.
Pointer analysis for C−like programs has been actively
studied for decades [10, 23, 22, 7, 1, 4, 5, 8, 21, 3].
However none of these papers utilize results of their
pointer analyses in data-flow analyses resulting in program
optimization and/or correction associated with a
justification for the transformation. The objective of
pointer analysis has been to obtain a sound analysis only

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org 107

for the sake of program transformation and/or
understanding. In [21], the bi-similarity is used to find
pointer equivalences in a technique optimizing the
performance of inclusion-based pointer analysis. But this
does not go farther by showing how the task of optimizing
programs is affected. In [3], a conditionally-sound pointer
analysis is presented. The results of this analysis are
utilized towards checking memory safety, but again the
result of the verification is not associated with a
justification. [10] studies the existence of an equivalent to
shape analysis for purely functional programs, and
the”shapes” it discovers. The argument in [10] is that by
treating binding environments as dynamically allocated
structures, by treating bindings as addresses, and by
treating value environments as heaps, the ”shape” of
higher-order functions can be analyzed.

Acknowledgments

This work was started during the author’s sabbatical at
Institute of Cybernetics, Estonia in the year 2009. The
author is grateful to T. Uustalu for fruitful discussions.
This work was partially supported by the EU FP6 IST
project MOBIUS.

References

[1] L. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994.

[2] N. Benton. Simple relational correctness proofs for static
analyses and program transformations. In POPL, pages 14–25.
ACM Press, 2004.

[3] C. Conway, D. Dams, K. Namjoshi, and C. Barrett. Pointer
analysis, conditional soundness, and proving the absence of
errors. In SAS ’08: Proceedings of the 15th international
symposium on Static Analysis, pages 62–77, Berlin,
Heidelberg, 2008. Springer-Verlag.

[4] M. Das. Unification-based pointer analysis with directional
assignments. In PLDI, pages 35–46, 2000.

[5] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In PLDI, pages 242–256, 1994.

[6] M. Frade, A. Saabas, and T. Uustalu. Bidirectional data-flow
analyses, type-systematically. In G. Puebla and G. Vidal,
editors, PEPM, pages 141–150. ACM, 2009.

[7] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer
analysis. In Z. Shao and B. Pierce, editors, POPL, pages 226–
238. ACM, 2009.

[8] N. Heintze and O. Tardieu. Demand-driven pointer analysis.
In PLDI, pages 24–34, 2001.

[9] P. Laud, T. Uustalu, and V. Vene. Type systems equivalent to
data-flow analyses for imperative languages. Theoretical
Computer Science, 364(3):292 – 310, 2006. Applied
Semantics.

[10] M. Might. Shape analysis in the absence of pointers and
structure. In G. Barthe and M. Hermenegildo, editors, VMCAI,
volume 5944 of Lecture Notes in Computer Science, pages
263–278. Springer, 2010.

[11] M. Naik and J. Palsberg. A type system equivalent to a model
checker. ACM Trans. Program. Lang. Syst., 30(5):1–24, 2008.

[12] R. De Nicola, D. Gorla, R. Hansen, F. Nielson, H. Nielson, C.

Probst, and R. Pugliese. From flow logic to static type systems
for coordination languages. Sci. Comput. Program., 75(6):376
– 397, 2010.

[13] F. Nielson, H. Nielson, and C. Hankin. Principles of Program
Analysis. Springer, 1999. Second printing, 2005.

[14] H. Riis Nielson and F. Nielson. Flow Logic: a multi-
paradigmatic approach to static analysis. In T. Mogensen, D.
Schmidt, and I. Sudburough, editors, The Essence of
Computation: Complexity, Analysis, Transformation. Essays
dedicated to Neil D. Jones, volume 2566 of Lecture Notes in
Computer Science, pages 223–244. Springer, 2002.

[15] J. Palsberg and P. O’Keefe. A type system equivalent to flow
analysis. ACM Trans. Program. Lang. Syst., 17(4):576–599,
1995.

[16] J. Palsberg and C. Pavlopoulou. From polyvariant flow
information to intersection and union types. J. Funct.
Program., 11(3):263–317, 2001.

[17] J. Palsberg and Z. Su, editors. Static Analysis, 16th
International Symposium, SAS 2009, Los Angeles, CA, USA,
August 9-11, 2009. Proceedings, volume 5673 of Lecture
Notes in Computer Science. Springer, 2009.

[18] J. Reynolds. Separation logic: A logic for shared mutable data
structures. Logic in Computer Science, Symposium on, 0:55,
2002.

[19] A. Saabas and T. Uustalu. Program and proof optimizations
with type systems. Journal of Logic and Algebraic
Programming, 77(1-2):131 – 154, 2008. The 16th Nordic
Workshop on the Prgramming Theory (NWPT 2006).

[20] L. Simon. Optimizing pointer analysis using bisimilarity. In
Palsberg and Su [18], pages 222–237.

[21] M. Sridharan and S. Fink. The complexity of andersen’s
analysis in practice. In Palsberg and Su [18], pages 205–221.

[22] H. Yu, J. Xue, Wei Huo, X. Feng, and Z. Zhang. Level by
level: making flow- and context-sensitive pointer analysis
scalable for millions of lines of code. In A. Moshovos, J.
Steffan, K. Hazelwood, and D. Kaeli, editors, CGO, pages
218–229. ACM, 2010.

Mohamed A. El-Zawawy received: PhD in Computer Science
from the University of Birmingham in 2007, M.Sc. in Computational
Sciences in 2002 from Cairo University, and a BSc. in Computer
Science in 1999 from Cairo University. Dr El-Zawawy is an
assistant professor of Computer Science at Faculty of Science,
Cairo University Since 2007. During the year 2009, Dr. El-Zawawy
held the position of an extra-ordinary senior research at the
Institute of Cybernetics, Tallinn University of Technology, Estonia.
Dr. El-Zawawy worked as a teaching assistant at Cairo University
from 1999 to 2003 and latter at Birmingham University from 2003
to 2007. Dr. El-Zawawy is interested in static analysis, shape
analysis, type systems, and semantics of programming languages.

