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Abstract 

 
 

Fault diagnosis and failure prognosis are essential techniques 
in improving the safety of many manufacturing systems. 
Therefore, on-line fault detection and isolation is one of the most 
important tasks in safety-critical and intelligent control systems.  

Computational intelligence techniques are being investigated 
as extension of the traditional fault diagnosis methods. This 
paper discusses the Temporal Neuro-Fuzzy Systems (TNFS) 
fault diagnosis within an application study of a manufacturing 
system. The key issues of finding a suitable structure for 
detecting and isolating ten realistic actuator faults are described. 
Within this framework, data-processing interactive software of 
simulation baptized NEFDIAG (NEuro Fuzzy DIAGnosis) 
version 1.0 is developed.  

 This software devoted primarily to creation, training 
and test of a classification Neuro-Fuzzy system of industrial 
process failures.  NEFDIAG can be represented like a special 
type of fuzzy perceptron, with three layers used to classify 
patterns and failures. The system selected is the workshop of 
SCIMAT clinker, cement factory in Algeria. 
 
 
Keywords:  Diagnosis; artificial neuronal networks; fuzzy 
logic; Neuro-fuzzy systems; pattern recognition; FMEAC 
(Failure Mode, Effects and Criticality Analysis). 
 

1. Introduction 

Several methods have been proposed in order to solve 
the fault detection and fault diagnosis problems. The most 
commonly employed solution approaches for fault 
diagnosis system include (a) model-based, (b) knowledge-
based, and (c) pattern recognition-based approaches. 
Generally, analytical model-based  methods can be 
designed in order to minimize the effect of unknown 
disturbance and perform the consistent sensitivity  analysis. 

Knowledge-based methods are used when there is a lot of 
experience but not enough details to develop accurate 
quantitative models. Pattern recognition methods are 
applicable to a wide variety of systems and exhibit real-
time characteristics. [8]. Therefore the human expert in his 
mission of diagnosing the cause of a failure of a whole 
system, uses quantitative or qualitative information.  On 
another side, in spite of the results largely surprising 
obtained by the ANN in monitoring and precisely in 
diagnosis they remain even enough far from equalizing the 
sensory capacities and of reasoning human being.  Fuzzy 
logic makes another very effective axis in industrial 
diagnosis. 

Also, can we replace the human expert for automating 
the task of diagnosis by using the Neuro-fuzzy approach?  
In addition, how did the human expert gather all relevant 
information and permit him to make their decision?  Our 
objective consists of the following: making an association 
(adaptation) between the techniques of fuzzy logic and the 
temporal neural networks techniques (Neuro-fuzzy 
system), choosing the types of neural networks, 
determining the fuzzy rules, and finally determining the 
structure of the temporal Neuro-Fuzzy system to maximize 
the automation of the diagnosis task.   

In order to achieve this goal we organize this article into 
three parts. The first part presents principal architectures of 
diagnosis an prognosis methods and principles for 
Temporal Neuro-Fuzzy systems operation and their 
applications (sections 2 and 3).The second part is 
dedicated to the workshop of clinker of cement factory 
(Section 4). Lastly, in the third part we propose a Neuro-
Fuzzy system for system of production diagnosis. Machine 
Fault Prognosis 

The literatures of prognosis are much smaller in 
comparison with those of fault diagnosis. The most 
obvious and normally used prognosis is to use the given 
current and past machine condition to predict how much 
time is left before a failure occurs. The time left before 
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observing a failure is usually called remaining useful life 
(RUL). In order to predict the RUL, data of the fault 
propagation process and/or the data of the failure 
mechanism must be available. The fault propagation 
process is usually tracked by a trending or forecasting 
model for certain condition variables. There are two ways 
in describing the failure mechanism. The first one assumes 
that failure only depends on the condition variables, which 
reflect the actual fault level, and the predetermined 
boundary (figure 1) .  

 
 
 
 
 
 
 
 
 

Figure 1. detection ,diagnosis and prognosis- the phenomenological   
aspect 

The definition of failure is simply defined that the 
failure occurs when the fault reaches a predetermined 
level. The second one builds a model for the failure 
mechanism using available historical data.  In this case, 
different definitions of failure can be defined as follows: 
(a) an event that the machine is operating at an 
unsatisfactory level; or (b) it can be a functional failure 
when the machine cannot perform its intended function at 
all; or  (c) it can be just a breakdown when the machine 
stops operating, etc.  

 
The approaches to prognosis fall into three main 

categories: statistical approaches, model-based 
approaches, and data-driven based approaches. 

Data-driven techniques are also known as data mining 
techniques or machine learning techniques. They utilize 
and require large amount of historical failure data to build 
a prognostic model that learns the system behavior. 
Among these techniques, artificial intelligence was 
regularly used because of its flexibility in generating 
appropriate model. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

   

          Figure 2. Prognosis technical approaches 

 
Several of the existing approaches used ANNs to model 

the systems and estimate the RUL. Zhang and Ganesan 
[14] used self-organizing neural networks for 
multivariable trending of the fault development to estimate 
the residual life of bearing system. Wang and  
Vachtsevanos [13] proposed an architecture for prognosis 
applied to industrial  chillers. Their prognostic model 
included dynamic wavelet neural networks, reinforcement 
learning, and genetic algorithms. This model was used to 
predict the failure growth of bearings based on the 
vibration signals. SOM and back propagation neural 
networks (BPNN) methods using vibration signals to 
predict the RUL of ball bearing were applied by Huang et 
al. in [12].  

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

          
 

Figure 3. Prognosis technical approaches 

 
Wang et al. [14] utilized and compared the results of 

two predictors, namely recurrent neural networks and 
ANFIS, to forecast the damage propagation trend of 
rotating machinery. In [15], Yam et al. applied a recurrent 
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neural network for predicting the machine condition trend. 
Dong et al. [16] employed a grey model and a BPNN to 
predict the machine condition. Altogether, the data-driven 
techniques are the promising and effective techniques for 
machine condition prognosis. 

2. Temporal Neuro-Fuzzy Systems 

Fuzzy neural network (FNN) approach has become a 
powerful tool for solving real-world problems in the area 
of forecasting, identification, control, image recognition 
and others that are associated with high level of 
uncertainty  [2,7,10,11,14,23,24,23] 

 
The Neuro-fuzzy model combines, in a single 

framework, both numerical and symbolic knowledge about 
the process. Automatic linguistic rule extraction is a useful 
aspect of NF especially when little or no prior knowledge 
about the process is available [3]. For example, a NF 
model of a non-linear dynamical system can be identified 
from the empirical data. 

This model can give us some insight about the on 
linearity and dynamical properties of the system. 

The most common NF systems are based on two types 
of fuzzy models TSK [5] [7] combined with NN learning 
algorithms. TSK models use local linear models in the 
consequents, which are easier to interpret and can be used 
for control and fault diagnosis [23]. Mamdani models use 
fuzzy sets as consequents and therefore give a more 
qualitative description. Many Neuro-fuzzy structures have 
been successfully applied to a wide range of applications 
from industrial processes to financial systems, because of 
the ease of rule base design, linguistic modeling, and 
application to complex and uncertain systems, inherent 
non-linear nature, learning abilities, parallel processing 
and fault-tolerance abilities. However, successful 
implementation depends heavily on prior knowledge of the 
system and the empirical data [25]. 

Neuro-fuzzy networks by intrinsic nature can handle 
limited number of inputs. When the system to be identified 
is complex and has large number of inputs, the fuzzy rule 
base becomes large. 

NF models usually identified from empirical data are 
not very transparent. Transparency accounts a more 
meaningful description of the process i.e less rules with 
appropriate membership functions. In ANFIS [2] a fixed 
structure with grid partition is used. Antecedent and 
consequent parameters are identified by a combination of 
least squares estimate and gradient based method, called 
hybrid learning rule. This method is fast and easy to 
implement for low dimension input spaces. It is more 
prone to lose the transparency and the local model 
accuracy because of the use of error back propagation that 
is a global and not locally nonlinear optimization 

procedure. One possible method to overcome this problem 
can be to find the antecedents & rules separately e.g. 
clustering and constrain the antecedents, and then apply 
optimization. 

Hierarchical NF networks can be used to overcome the 
dimensionality problem by decomposing the system into a 
series of MISO and/or SISO systems called hierarchical 
systems [14]. The local rules use subsets of input spaces 
and are activated by higher level rules[12]. 

The criteria on which to build a NF model are based on 
the requirements for faults diagnosis and the system 
characteristics. The function of the NF model in the FDI 
scheme is also important i.e. Preprocessing data, 
Identification (Residual generation) or classification 
(Decision Making/Fault Isolation). 

For example a NF model with high approximation 
capability and disturbance rejection is needed for 
identification so that the residuals are more accurate. 

Whereas in the classification stage, a NF network with 
more transparency is required. 

The following characteristics of NF models are 
important: 

Approximation/Generalisation capabilities 
transparency: Reasoning/use of prior knowledge /rules 
Training Speed/ Processing speed 
Complexity 
Transformability: To be able to convert in other forms 

of NF models in order to provide different levels of 
transparency and approximation power. 

Adaptive learning 
Two most important characteristics are the generalising 

and reasoning capabilities. Depending on the application 
requirement, usually a compromise is made between the 
above two. 

  In order to implement this type of Neuro-Fuzzy 
Systems For Fault Diagnosis and Prognosis and exploited 
to diagnose of dedicated production system we have to 
propose data-processing software NEFDIAG (Neuro-
Fuzzy Diagnosis). 

The Takagi-Sugeno type fuzzy rules are discussed in 
detail in Subsection A. In Subsection B, the network 
structure of FENN is presented. 

2.1 Temporal Fuzzy rules 

Recently, more and more attention has paid to the 
Takagi-Sugeno type rules [9] in studies of fuzzy neural 
networks. This significant inference rule provides an 
analytic way of analyzing the stability of fuzzy control 
systems. If we combine the Takagi-Sugeno controllers 
together with the controlled system and use state-space 
equations to describe the whole system [10], we can get 
another type of rules to describe nonlinear systems as 
below: 
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Rule r:   IF Xଵ is   T୶భ
୰   AND … … AND X୬ is   T୶N

୰  AND 

            ଵܷ ݅ݏ   ௨ܶభ
௥ ܦܰܣ   … … ௎ܶಾ   ݏ݅ ெܷ  ܦܰܣ

௥  

ܺ                             ࡺࡱࡴࢀ ൌ ௥  ሶܣ   ܺ ൅  ௥ܷܤ
Where   ࢄ ൌ ሾ࢞૚ ૛࢞ … . . ሿ࢔࢞  is the inner is   ࢀ

the inner state vector of the nonlinear system, 
ࢁ ൌ ሾ࢛૚ ૛࢛ … . . ሿ࢔࢛ ࢀ  is the input vector to 

the system, and N, M are the dimensions; 

௫ܶభ
௥ , ௨ܶభ

௥ are linguistic terms (fuzzy sets) defining the 
conditions for  xi and  uj respectively, according to Rule r;  

௥  ൌܣ  ൫ܽ௜௝
௥ ൯

ேכே
 is a matrix of ܰ ൈ ܰ and 

௥  ൌܤ  ൫ܾ௜௝
௥ ൯

ேכெ
  Of ܰ ൈ   ܯ

When considered in discrete time, such as modeling 
using a digital computer, we often use the discrete state-
space equations instead of the continuous version. 
Concretely, the fuzzy rules become: 

Rule r: 
௫ܶభ   ݏ݅ ሻݐଵܺሺ ࡲࡵ

௥ ܦܰܣ   … …  ௫ܶಿ   ݏሻ݅ݐ௡ሺܺ ܦܰܣ
௥  ܦܰܣ

            ଵܷሺݐሻ ݅ݏ   ௨ܶభ
௥ ܦܰܣ   … … ௎ܶಾ   ݏ݅ ሻݐெሺܷ  ܦܰܣ

௥  

ݐሺܺ                      ࡺࡱࡴࢀ ൅ 1ሻ ൌ ௥  ሶܣ   ܺሺݐሻ ൅  ሻݐ௥ܷሺܤ
 
Where ࢄ ൌ ሾ࢞૚ሺ࢚ሻ ሻ࢚૛ሺ࢞ … . . ሻሿ࢚ሺ࢔࢞  ࢀ
is the discrete sample of state vector at discrete time t. 

In following discussion we shall use the latter form of 
rules.  

In both forms, the output of the system is always 
defined as:   

Y = CX ( or  Y(t)= CX(t))                                      (1). 
 Where C= (cij )Px Xis a matrix of PxN,and  P is the 

dimension of output vector Y. 

The fuzzy inference procedure is specified as below. 
First, we use multiplication as operation AND to get the 
firing strength of Rule r:                                                                           

௥݂ ൌ ∏ μ்ೣ ೔
ೝே

௜ୀଵ ሾݔ௜ሺݐሻሿ · ∏ μ்ೣ ೔
ೝெ

௜ୀଵ ሾݑ௜ሺݐሻሿ       (2) 
 
Where μ࢏࢞ࢀ

࢘  ܽ݊݀     μ࢏࢛ࢀ
࢘  are the membership 

functions of   ࢏࢞ࢀ
࢘ ࢏࢛ࢀ     ݀݊ܽ

࢘    respectively? After 
normalization of the firing strengths, we get (assuming R 
is the total number of rules)  

ܵ ൌ  ∑ ௥݂
ோ
௥ୀଵ,௡       , ݄௥ୀ   

௥݂
ܵൗ                                   ሺ3ሻ   

Where S is the summation of firing strengths of all the 
rules, and hr   is the normalized firing strength of Rule r. 
When the defuzzification is employed, we have 

 ܺ௥ሺݐ ൅ 1ሻ ൌ ሻݐ௥ ܺሺܣ  ൅   ,ሻݐ௥ ܷሺܤ

ܺሺݐ ൅ 1ሻ ൌ  ∑ ݄௥
ோ
௥ୀଵ ܺ௥ ሺݐ ൅ 1ሻ                           ሺ4ሻ  

                  ൌ ∑ ݄௥ሾܣ௥ ܺሺݐሻ ൅ ሻሿோݐ௥ ܷሺܤ
௥ୀଵ   

                  ൌ  ሺ∑ ݄௥ ܣ௥ோ
௥ୀଵ ሻܺሺݐሻ ൅ ሺ∑ ݄௥ ܤ௥ோ

௥ୀଵ ሻܷሺݐሻ  

                 ൌ ሻݐሺܺܣ ൅   ሻݐሺܷܤ 

Where  ܣ ൌ ሺ∑ ݄௥ ܣ௥ோ
௥ୀଵ ሻ,   ܤ ൌ ሺ∑ ݄௥ ܤ௥ோ

௥ୀଵ ሻ 

Using equation (4), the system state transient equation, 
we can calculate the next state of system by current state 
and input. 

 

2.2 The structure of temporal Neuro-Fuzzy System  

 

The main idea of this model is to combine simple feed 
forward fussy systems to arbitrary hierarchical models. 

The structure of recurrent Neuro-fuzzy systems is 
presented in figure 3: 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 

Fig 4. The structure of a simple TNFS 
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In this network, input nodes which accept the 
environment inputs and context nodes which copy the 
value of the state- space vector from layer 3 are all at layer 
1 (the Input Layer). They represent the linguistic variables 
known as uj and xi in the fuzzy rules. Nodes at layer 2 act 
as the membership functions, translating the linguistic 
variables from layer 1 into their membership degrees. 
Since there may exist several terms for one linguistic 
variable, one node in layer 1 may have links to several 
nodes in layer 2, which is accordingly named as the term 
nodes. The number of nodes in the Rule Layer (layer 3) 
and the one of the fuzzy rules are the same - each node 
represents one fuzzy rule and calculates the firing strength 
of the rule using membership degrees from layer 2. The 
connections between layer 2 and layer 3 correspond with 
the antecedent of each fuzzy rule. Layer 4, as the 
Normalization Layer, simply does the normalization of the 
firing strengths. Then with the normalized firing strengths 
hr , rules are combined at layer 5, the Parameter Layer, 
where A and B become available. In the Linear System 
Layer, the 6th layer, current state vector X(t) and input 
vector U(t) are used to get the next state X(t +1), which is 
also fed back to the context nodes for fuzzy inference at 
time (t +1). The last layer is the Output Layer, multiplying 
X(t +1) with C to get Y(t +1) and outputting it. 

Next we shall describe the feed forward procedure of 
TNFS by giving the detailed node functions of each layer, 
taking one node per layer as example. We shall use 
notations like ui

[ k ] to denote the ith input to the node in 
layer k, and o [ k ] the output of the node in layer k. 
Another issue to mention here is the initial values of the 
context nodes. Since TNFS is a recurrent network, the 
initial values are essential to the temporal output of the 
network. Usually they are preset to 0, as zero-state, but 
non-zero initial state is also needed for some particular 
case. 

Layer 1. There is only one input to each node at 

layer 2. The Gaussian function is adopted here as the 

membership function: 
 

ሾଵሿ ൌ݋  ݁
ቀೠሾభሿష೎ೝቁమ

మሺೞೝሻమ
                                           ሺହሻ

  

where cr and sr give the center (mean) and 

width(variation) of the corresponding  u[1] linguistic term 

of input u[ 2 ] in Rule r. 

Layer 2. this layer has several nodes, one for 

figuring matrix A and the other for B. Though we can use 

many nodes to represent the components of A and B 

separately, it is more convenient to use matrices. So with a 

little specialty, its weights of links from layer 4 are 

matrices Ar (to node for A) and Br (to node for B). It is 

also fully connected with the previous layer. The functions 

of nodes for A and B are respectively. 

 

ሾଶሿ ൌ݋   ܣ ݎ݋݂  ෍ ௥ݑ
ሾଶሿ

ோ

௥ୀଵ

, ௥ܣ ሾଶሿ ൌ݋   ܤ ݎ݋݂  ෍ ௥ݑ
ሾଶሿ

ோ

௥ୀଵ

 ௥         ሺ6ሻܤ

Layer 3. the Linear System Layer has only one 

node, which has all the outputs of layer 1 and layer 2 

connected to it as inputs. Using matrix form of inputs and 

output, we have [see (3)] 

ሾଷሿ݋ ൌ ܺܣ ൅ ܷܤ ൌ ௙௢௥ ஺݋ 
ሾଶሿ ௖௢௡௧௘௫௧݋

ሾଵሿ ൅ ௙௢௥ ஻݋
ሾଶሿ ௖௢௡௧௘௫௧݋

ሾଵሿ  

So the output of layer 3 is X(t + 1) in (4). 

This proposed network structure implements the 

dynamic system combined by our discrete fuzzy rules and 

the structure of recurrent networks. With preset human 

knowledge, the network can do some tasks well. But it will 

do much better after learning rules from teaching 

examples. In the next section, a learning algorithm will be 

put forth to adjust the variable parameters in FENN, 

such as cr, sr, Ar, Br, and C. 

3. Proposed Architecture for Fault diagnosis 
and Prognosis 

Faults  are  usually  the  main  cause  of  loss  of  
productivity  in  the  process  industry. This section uses a 
straightforward architecture to detect, isolate and identify 
faults. 

One of the most important types of systems present in 
the process industry is workshop of SCIMAT clinker . A 
fault in a workshop of SCIMAT clinker may lead to a halt 
in production for long periods of time. Apart from these 
economic considerations faults may also have security 
implications. A fault in an actuator may endanger human 
lives, as in the case of a fault in an elevator’s emergency 
brakes or in the stems position control system of a nuclear 
power plant. The design and performance testing of fault 
diagnosis systems for industrial process often requires a 
simulation model since the actual system is not available 
to generate normal and faulty operational data needed for 
design and testing, due to the economic and security 
reasons that they would imply. 
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Figure  5  shows  a  view  and  the  schematics  of  a  
typical  industrial industrial process of manufacture of 
cement.  This installation belongs to cement factory of 
Ain-Touta (SCIMAT) ALGERIA.  This cement factory 
have a capacity of 2.500.000 t/an " Two furnaces " is made 
up of several units which determine the various phases of 
the manufacturing process of cement.  The workshop of 
cooking gathers two furnaces whose flow clinker is of 
1560 t/h.  The cement crushing includes two crushers of 
100t/h each one.  Forwarding of cement is carried out 
starting from two stations, for the trucks and another for 
the coaches. 

 

Fig 5. Workshop of SCIMAT clinker 

 3.1 Faults  

The workshop of SCIMAT clinker may be affected by a 
number of faults. These faults are grouped into four major 
categories: heating tower faults, Kiln Cycling faults, cooler 
balloons faults and gas burner faults. Here only abrupt or 
incipient faults are considered. 

This step has an objective of the identification of the 
dysfunctions which can influence the mission of the 
system. This analysis and recognition are largely 
facilitated using the structural and functional models of the 
installation.  For the analysis of the dysfunctions we 
adopted the method for the analysis of the dysfunctions we 
adopted the method of Failure Modes and Effects Analysis 
and their Criticality (FMEAC). 

While basing itself on the study carried out by [6], on 
the cooking workshop, we worked out an FMEAC by 
considering only the most critical modes of the failures 
(criticality >10), and for reasons of simplicity [46].  
Therefore we have a Neuro-fuzzy system of 27 inputs and 
11 outputs which were used to make a Prognosis of our 
system.  The rules which are created with the system are 
knowledge a priori, a priori the base of rule.  Each variable 

having an initial partition will be modified with the length 
of the phase of training (a number of sets fuzzy for each   
variable).  The reasoning for the diagnosis and prognosis is 
described in the form of fuzzy rules inside our Neuro-
fuzzy system. 

 
 

Table 4.1 faults description  

 
Fault Description Inceptient/

Abrupt 
F1 Chute de la jupe I/A 
F2 bourrage I/A 
F3 No break I/A 
F4 Transporateur à auget I/A 
F5 Presence anneaux I 
F6 Mauvaise homogénéisation I/A 
F7 Chute de croûtage I/A 
F8 Atteinte des briques réfractaires I 
F9 bourrage I/A 

F10 Moteur  ventilateur tirage I/A 
F11 Courroies ventilateur tirage I/A 

 
Our TNFS must have a number of inputs equal to the 

number of variables sensor signals providing the ability to 
extend the timing window used for this problem have 27 
inputs nodes comprised of 11 sensors signals at 4 
successive time points at steps of 10 minutes, resulting in a 
temporal window of 40 minutes for each sensor . 

The TNFS provides 14 outputs representing the 14 
possible classes (faults): 11 process faults, 3 sensor faults 
and normal state. 

 

 3.2 Training TNFS  

To train the  TNFS ,we used scenario for each of the 11 
possible faults. The process was simulated for 120 
minutes, with the faults starting to appear after 40 minutes 
of normal operation. So, we had 9 different positions of 
the temporal window (0-40 mins,10-50 mins, etc..), 
providing 342 input/output vector pairs for training. 

 
NEFDIAG(Neuro-Fuzzy Diagonsis) is a data 

processing program for interactive simulation. The 
NEFDIAG development was carried out within LAP 
(University of Batna), was primarily dedicated to the 
creation, the training, and the test of a Neuro-Fuzzy system 
for the classification of the breakdowns of a dedicated 
industrial process.  NEFDIAG models a fuzzy classifier Fr 
with a whole of classes C = {c1, c2...... cm}[45]. 
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NEFDIAG makes it’s training by a set of forms and 
each form will be affected (classified) using one of the 
preset classes.  Next NEFDIAG generates the fuzzy rules 
by: evaluating of the data, optimizing the rules via training 
and using the fuzzy subset parameters, and partitioned the 
data into forms «characteristic» and classified with 
parameters of the data.  NEFDIAG can be used to classify 
a new observation. The system can be represented in the 
form of fuzzy rules 

 
 

If    symptom1(t) is A1           Symptom2(t-2) is A2 
       Symptom3(t) is A3          Symptom N (t-1) is An  
Then the form (x1, x2, x3..., xn) belongs to class «fault i».   
 
For example A1 A2 A3 An are linguistic terms represented 
by fuzzy sets.  This characteristic will make it possible to 
complete the analyses on our data, and to use this 
knowledge to classify them.  The training phase of the 
networks of artificial Neuro-Fuzzy systems makes it 
possible to determine or modify the parameters of the 
network in order to adopt a desired behavior.  The stage of 
training is based on the decrease in the gradient of the 
average quadratic error made by network RNF[44]. 
 
 
 Figure 5. The diagnosis by NEFDIAG. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  The diagnosis by NEFDIAG. 
 

The NEFDIAG system typically starts with a knowledge 
base comprised of a collection partial of the forms, and can 
refine it during the training. Alternatively NEFDIAG can 
start with an empty base of knowledge.  The user must 
define the initial number of the functions of membership 
for partitioning the data input fields.  And it is also 
necessary to specify the number K, which represents the 
maximum number of the neurons for the rules which will 
be created in the hidden layer.  The principal steps of the 
training algorithm.  

 
The data set used in this experiment contained 200 

samples.  Each data sample   consisted   of   27   features   
comprising   the   temperature   and   pressure 
measurements at various inlet and outlet points of the 
rotary kiln, as well as other important parameters as shown 
in Table 4.2.  The  heat  transfer  conditions  were 
classified  into  two  categories,  i.e.,  the  process  of  heat  
transfer  was  accomplished either efficiently or 
inefficiently.   

From the database, there were 101 data samples  
(50.18%)  that  showed  inefficient  heat  transfer  

condition,  whereas  99  data samples  (49.82%)  showed  
efficient  heat  transfer  condition  in  the  rotary kiln.    
The data  samples  were  equally  divided  into  three  
subsets  for  training,  prediction  and test. 

 

Table 4.2 input and output variables for the rule compiling 

 

 
Usually, the structure of TNFS is determined by trial-

and-error in advance for the reason that  it  is  difficult  to  
consider  the  balance  between  the  number  of  rules  and  
desired performance  [20].  In  this  study,  to  determine  
the  structure  of  TNFS,  first  we  convert numeric data 
into information granules by fuzzy clustering. The number 

Input 
var 

Description 

CO CO in the first combustion chamber 
Temp Temp in  the first combustion chamber 

O2 O2 in the second  combustion chamber 
RPM Rotary kiln rotating RPM 
Press Pressure in the  first combustion chamber 

output 
var 

Description 

ݎ݁݊ݎݑܤ∆  Chang in burner heating power. i.e.  
burner(t)=burner(t-1)+ ∆ݎ݁݊ݎݑܤ(t) 

 .Change in input air quantity ;  i.e ݎ݅ܣ∆
Air(t)=air(t-1)+∆ݎ݅ܣ(t) 

 Change in induced fan inducing power ݊ܽܨܦܫ∆
i.e. IDFan(t)=IDFan(t-1)+∆݊ܽܨܦܫ(t) 

Criterion of 
classification 

System 
Reorganizat

ion  

 Tempral Neuro-Fuzzy System 

C1 C2 C3 …      Cd    C r 

FMEAC 

Analysis phase 

Sensor Data  
(Entry Victor) 

 
Decision 
method 

 

 
exploitation 
Phase 

 
degradation faults reject 

breakdown 
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of clusters defines the number of fuzzy rules. By applying 
the fuzzy C-means clustering method [13,40] on the 
training data and checking the validity measure suggested 
in [13] it was identified that an adequate number of 
clusters is 4. Therefore 4 fuzzy rules were used for the 
basis for training and further refining. The clustering 
algorithm identified the following cluster centers for the 
presented data.  

IF y(t-2) is A1 AND y(t-1) is B1 AND y(t) is C1 THEN y(t+1) is D1  

IF y(t-2) is A2 AND y(t-1) is B2 AND y(t) is C2 THEN y(t+1) is D2  

IF y(t-2) is A3 AND y(t-1) is B3 AND y(t) is C3 THEN y(t+1) is D3  

IF y(t-2) is A4 AND y(t-1) is B4 AND y(t) is C4 THEN y(t+1) is D4  

Initial  fuzzy  terms  A1,  A2,  A3,  A4  were  created  
from  the  component  y(t-2)  of  the  cluster vectors 1, 2, 
3, and 4, respectively. Similarly, terms B1, B2, B3, B4 – 
from y(t-1), C1, C2, C3,  C4 – from y(t), and D1, D2, D3, 
D4 – from y(t+1). The terms A1, A2, ...,B1, B2, ..., C1, 
C2,...D1,  D2, ... are described linguistically.  

 Figure 7 and 8 show the response of the normal model 
output and  the  real  output  from  five  to  fifteen  minutes  
prediction horizon  and  figure 9  to  10  show  the  
response  of  the  fault  model  output  and  the  real  output  
from  three  to  seven minutes prediction horizon for test 
data.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Normal model with 5 min prediction horizon 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.  Normal model with 10 min prediction horizon 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Normal model with 15 min prediction horizon 

 
 

 
 
 
 
 
 
 
 
 
Fig.10 . Failure model with 10 or 15 min prediction  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.  Effect of incipient fault  F10 on the Rotary kiln rotating RPM  

 
 
 

4. Conclusion  

 
 The intelligent process operation aid system was 

developed to prevent the faults or errors in the  process of 
manufacture of cement.  This installation belongs to 
cement factory of Ain-Touta (SCIMAT) ALGERIA.   

In order to do this work, the rule based and temporal 
Neuro-fuzzy system was implemented. 
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This TNFS was used for identification, prediction and 
detection of the fault process in the cement rotary kiln, 
back end temperature was used as the process monitor of 
the various conditions. The special character of this 
variable is that it can show the normal and abnormal 
conditions inside the kiln. 

In spite of great importance of fuzzy neural networks 
for solving wide range of real-world problems, 
unfortunately, little progress has been made in their 
development. 

We have discussed recurrent neural networks with 
fuzzy weights and biases as adjustable parameters and 
internal feedback loops, which allows capturing dynamic 
response of a system without using external feedback 
through delays. In this case all the nodes are able to 
process linguistic information. 

As the main problem regarding fuzzy and recurrent 
fuzzy neural networks that limits their application range is 
the difficulty of proper adjustment of fuzzy weights and 
biases, we put an emphasize on the TNFS training 
algorithm. 
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