
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 334

Generation of test cases from software requirements
using combination trees

Ravi Prakash Verma1, Bal Gopal2 and Md. Rizwan Beg3

 1 Department of Computer Science and Engineering, Integral University
Lucknow, Utter Pradesh, 226026 India

2 Department of Computer Applications, Integral University
Lucknow, Utter Pradesh, 226026 India

3 Department of Computer Science and Engineering, Integral University
Lucknow, Utter Pradesh, 226026 India

Abstract
Requirements play an important role in conformance of
software quality, which is verified and validated through
software testing. Usually the software requirements are
expressed natural language such as English. In this paper we
present an approach to generate test case from requirements.
Our approach takes requirements expressed in natural language
and generates test cases using combination trees. However until
now we have the tabular representations for combination pairs
or simply the charts for them. In this paper we propose the use
of combination trees which are far easier to visualize and
handle in testing process. This also gives the benefits of
remembering the combination of input parameters which we
have tested and which are left, giving further confidence on the
quality of the product which is to be released.
Keywords: Software testing, combination trees, Data
structures, algorithm, Software Requirements, test cases

1. Introduction

The software testing is one the most important activity in
the SDLC [4]. It authenticate whether the software being
developed solves the intended purpose or not [2].
“Software systems continuously grow in scale and
functionality” [1]. Software testing confirms that
software being developed as per requirements [5]. At
present it is mostly done manually and the test cases are
written by the tester, it is the Ad-hoc activity [3] [6]. This
is most error prone area as important path or case may be
missed out by the tester [3]. The testers develop test
cases on the basis of the combinations of value of input
parameters taken one at a time, these test cases are

represented in the tabular form. It becomes difficult to
remember that all the combination have been listed out
or not. Further it difficult to visualize that whether we
have covered all input parameters decisions that can be
taken by the user. The trees can show the decision or
action in a sequence which is very important for the
software developer and tester to prove the robustness of
the software system being developed. Testing done on
the bases of combination trees [7] ensures that we are
covering every possible action that can be taken by the
user or at least can ensure that software system performs
correctly if valid condition & action are chosen. In this
paper we have proposed the algorithm to generate the
test cases from by the use of combination trees and then
we combine these trees to generate a single tree. The
path traced from root to the node and finally to the leave
nodes give the test case.

2. Proposed work

For the sake of understanding we take one example of
the requirement and demonstrate the how the test cases
are to be generated from software requirements using
combination trees. As we know there are lots of software
systems being developed which are GUI based. We pick
one of common software requirement which is part of in
fact every software system which is GUI based, which is
“the user should be able to log in to the system”. From
here onwards we formalize our approach which is as
follows.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 335

2.1 Identification of classes of input

As we see that there are six controls on the Login Form
namely two Textboxes, two Labels and two buttons. This
login form is shown in the figure below (figure 1)

Figure 1. Sample login form

Let us establish which control receives which type of
input from the user the “UserID” & “Password” texboxes
receive user ID & password respectively, while the labels
have fixed caption for the same. The buttons “Submit
and Cancel receive the click Events. On the basis of the
classes of input controls used in the form we can separate
the distinct classes, over here in his case we have
“textbox” and “Buttons”.

The “Text” input to the control textbox can be any value
from the superset as the set
AN = {alpha-numeric characters like a-z, A-Z}
SC = {Special characters like '$','#','!','~','*', ...)}
NC = {(numeric characters like 0-9)}

Text = {AN, SC, NC}

Any input can be classified into valid & invalid class and
the in case of text it is constraint by length possibly c1 ≤
k ≤ c2, where c1 and c2 are finite and c1 ≠ c2. Now we
define the input into valid, invalid and show the desired
length. Now lets us give each cell a number so that it
could be differentiated with each other and handling
becomes easy, from now onwards we will use these
numbers and to understand what they are indicating to
we have to refer the following tables.

Table 1. classification of inputs of Textboxes

SN Input Length Valid Invalid

1

TextUID

>6 (1)

alpha-

numeric
characters
{a-z, A-
Z} (2)

Special characters
like{'$','#','!','~','*',...}

numeric characters
like{0-9} i.e. Text -

AN(3)

2

TextP

> 6 (4)

Text (5)

-

Table 2. classification of inputs of buttons

The condition or statement represented by any number
can be complimented as, For example we see that (1) in
table 1 represents that the textbox which accepts the user
id of the user should allow a user id greater than the
length six, so notation (1') means that user id is less than
length six. We that the input that is accepted by this form
under the above requirement should have (1)·(2) and
another statement can be generated by taking the
compliment of (1)·(2) which is (1')·(2) which mean the
input is any combination from the set AN but length is
less than six. “·”implies that both the statements are to be
imposed simultaneously. Now we individually take one
row from the table and put it into arrays. For table 1, row
1 the arrays elements are 1.2 & 1.3 and it compliment is
1'·2 & 1'·3. For table 1, row 2 the arrays elements are 4.5
and it compliment is 4'·5. Similarly for table 2, row 1 the
array elements are 6.7, 8, 9 and for table 2, row 2 the
array elements are 10.11 & 10.12. For the array we are
generating a combination tree with the following
algorithm and creating an orchid with trees representing
each array. We will need a following data stricture:

struct node { char [] value ;
 structure node *Parent;
 structure node *Child [Max];
 }

Roots is an array of node which are used to store the
different roots of the tree and is defined as follows

struct Roots {

 struct node * N;
 struct node * next;

 } Roots[MaxNumberOfArrays];

SN Object/
Control

Event Embedded
procedure/funct

ion

Action

1 Submit
Button

Event
ClickS

B

 (6)

Calls Match:
which
matches user
name
& password (7)

If Match
successful:
Go to
Home
Page (8)
If Match
unsuccessf
ul:
Display
Message
(9)

2 Cancel
Button

Event
ClickC

B

(10)

Calls Clear All
Textboxes (11)

All text
boxes are
cleared
(12)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 336

struct Roots * RootsHead = NULL;
struct Roots * RootsTail = NULL;

void addRoot(struct * node)
 { if (RootsHead = = NULL && RootsTail = = NULL)
 { RootsHead = (struct *Roots) malloc(sizeof(struct
Roots));
 RootsTail = (struct *Roots) malloc(sizeof(struct
Roots));
 RootsHead→N = node;
 RootsHead→next = NULL;
 RootsTail = RootsHead;
 }
 else
 { struct Roots * temp = (struct *Roots)
malloc(sizeof(struct Roots));
 temp = RootsTail;
 temp →N = node;
 temp→next = NULL;
 RootsTail→next = temp;
 RootsTail = temp;
 Free(temp);
 }
}

void removeNodeFromHead()
 { if (RootsHead ≠ NULL)
 { struct Roots * temp = (struct *Roots)
malloc(sizeof(struct Roots));
 temp = RootsHead;
 temp = temp→next;
 RootsHead = temp;
 }
 }

int countRoots(struct Roots * RootsHead)
 { if (RootsHead ≠ NULL)
 { int i = 1;
 struct Roots * temp = (struct *Roots)
malloc(sizeof(struct Roots));
 temp = RootsHead;
 while (temp ≠ RootsTail)
 { temp = temp→next;
 i = i +1;
 }
 return (i);
 }
 else
 { return (0); }

}

struct node * makeRootNode(char [] NameOfArray)
 { struct node * temp = (struct * Roots)
malloc(sizeof(struct Roots));

 temp→value = NameOfArrary;
 temp→ Parent = NULL;
 for (int i = 0; i < MAX + 1; ++i)
 { temp→ Child[i] = NULL }
 retrun (temp);
}

bool match(char [] NameOfArray)
{ struct node * temp = (struct * Roots)
malloc(sizeof(struct Roots));
 temp = RootsHead;
 while (temp ≠ RootsTail)
 { if (temp→value = NameOfArrary)
 { return (True) ;
 temp = RootsTail;
 }
 temp = temp→next
 }
 return (False);
 }

The linked list representation of pointers to nodes is used
to store intermediate result. One of the advantages
provided by this storage is that it avoids back tacking and
traversal. The size of this pointer array first increases
then it starts to reduce and finally reduces to zero size in

length. This happens because of 




ni

i 1

nci , which is 2(n-1) -1.

struct ParentPointerNode { struct node * N;

 struct node * next;
 };

struct ParentPointerNode * ParentPointerHead = NULL;
struct ParentPointerNode * ParentPointerTail = NULL;

void addParentPointer(struct * node)
 { if (ParentPointerHead = = NULL &&
ParentPointerTail = = NULL)
 { ParentPointerHead = (struct *ParentPointerNode)
malloc(sizeof(struct ParentPointerNode));
 ParentPointerTail = (struct *ParentPointerNode)
malloc(sizeof(struct ParentPointerNode));

 ParentPointerHead→N = node;
 ParentpointerHead→next = NULL;
 ParentPointerTail = ParentPointerHead;
 }
 else
 { ParentPointerTail →next = node;
 ParentPointerTail = node;
 }
}

void removeNodeFromHead()

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 337

 { if (ParentPointerHead ≠ NULL)
 { struct ParentPointerNode * temp = (struct
*ParentPointerNode) malloc(sizeof(struct
ParentPointerNode));
 temp = ParentPointerHead;
 temp = temp→next;
 ParentPointerHead = temp;
 }
 }

struct node * makeNode(char [] data)
 { struct node * temp = (struct *ParentPointerNode)
malloc(sizeof(struct ParentPointerNode));
 temp→value = data;
 temp→ Parent = NULL;
 for (int i = 0; i < MAX + 1; ++i)
 { temp→ Child[i] = NULL }
 retrun (temp);
}

2.2 Algorithm to create combination tree

void createCombinationTree(Element [] Array, int
MaxElementInArray) //, int CountRoot)
 { if (ParentPointerHead = = NULL)
 { for (i = 0; i < MaxElementInArray; ++i)
 { struct node * NewNode = makeNode(Array[i]);
 if (match(Array) = = False)
 { struct node * NewRootNode =
makeRootNode();
 addRoot(NewRootNode);
 }
 NewNode→Parent = NewRootNode;
 NewRootNode→Child[i] = NewNode;
 addParentPointer(NewNode);
 }
 }
 else
 {
 struct node * temp = (struct *ParentPointerNode)
malloc(sizeof(struct ParentPointerNode));
 temp = ParentPointerHead;

 while (temp ≠ ParentPointerTail)
 { struct node * N = (struct *ParentPointerNode)
malloc(sizeof(struct ParentPointerNode));
 Node = ParentPointerHead;
 k= 0;
 char [] tempValue = N→value;
 for (j = 0; j < MaxElementInArray; ++j)
 { if (N→value < Array[i])
 { struct node * NewNode =
makeNode(Array[i]);

 NewNode→Parent = N;
 N→Child[k] = NewNode;
 addParentPointer(NewNode);
 k = k + 1;
 }
 }
 }
 temp→next = node;
 removeNodeFromHead();
 }
 }
}

This will create an orchid of as many trees equal to
number of arrays, since we have one array for every
single row. The orchid is as shown the black dots
represent the roots of trees (see figure 2).

Figure 2. Orchid of combination trees

2.3 Elimination of combination

As in any combination tree there could be absurd
combinations which are impossible to reach in practical
situations, till now these are not eliminated in our
approach. Out of this enormous sample space the
reduction is only possible if we fix certain criteria of how
the things will happen in the system. This could be easily
done by simple control flow graph or establish a simple
procedure of how to login into our system (see figure 3).
The procedure is as follows
1. enter user ID
2. enter password
3. if you press submit button go to step 5
4. if you press cancel button go to step 6
5. matches user ID and password if matched go to step

7 else go to step 6
6. all textboxes are cleared
7. system takes to the home page

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 338

8. system shows home page
With the help of this procedure we can connect the
orchid into a single tree

Figure 3. Control flow graph of the procedure to login to the system
using login form

2.4 Elimination of child

Combination tree shows all possible combination, it does
not considers where they are meaning full or not, certain
combinations generated by the above algorithm are
impossible to realize for example in the above case we
can see that if by pressing “Submit” button the use may
go with situation 8 or 9 (see table) but not the both one
after the other or if “Click” event of the button is not
fired then either 8 nor 9 can be possible. Therefore there
could be many such cases present in the combination tree
which are infeasible, absurd or not possible altogether.
To eliminate such cases we have to parse the entire
collection of tree under certain rules which eliminate
these combinations. This rule should be developed only
for the trusted & standard components, whose behaviors
is known and has been thoroughly tested. For example in
our case it’s the “Button”. Following rules can be
defined using a rule set.

Definition: Rule set is the set of edges or set of possible
productions. Let S be set of rules and L be the set of
symbols denoted by L = {L1, L2, L3, … , Ln}, with which
we express the rules or productions. For example in our
case the set of symbols is L = {6.7, 8, 9} and the rule set
S is defined as follows:

9|8|7.6 SSSS 

Now we can produce all applicable rules with the
production system these are as follows

Rule 1

SS 7.6

78.6S

Rule 2

SS 7.6

79.6S

We define the production set P = {6.78, 6.79} and apply
it over the orchid then we eliminate edges from root to 8,
root to 9, and 8 to 9. Similarly for others and the
resulting orchid is given in figure below (figure 4).

Figure 4. After elimination of children

2.5 Elimination of roots

The elimination of roots is possible by merging the trees
which represent the complimentary conditions
originating from same steps of control flow graph. As
Roots [0] & Roots [1] originate from same step 1 of the
flow control and Roots [2] & Roots [3] also originate
from same step 1 of the flow control. The new orchid is
shown in figure 5.

Figure 5. After elimination of roots

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 339

2.6 Combining trees

We can see that if we do not reduce the combination
tress then we would have huge number of possibility and
number of test case generated will be very large. As we
have developed a control flow graph for the object under
test, if we use that then we could limit the number of
possibilities by which user can interact with the form,
with the help of this we fix the merger of tree as follows
(figure 6)

Figure 6. After combining trees

Now we add two additional nodes an extension node,
expected result pass node and expected result fail node.
The expected result pass node is the node where the
software/module/form should comply with the intended
purpose of the software requirement further its child
fields are set to NULL (see figure 7). The expected result
fail node is not actually indicate the failure of the
software/module/form instead it indicate that it indicate
that software/module/form should raise an error message
or it should not allow users to continue. Here also the
child fields of expected result fail node are set to NULL.
The aforementioned nodes are graphically shown in the
figure below. These nodes are attached as leaflet of the
tree forming external nodes. We can fix these nodes with
help of tables and flow control generated finally we get
the following (see figure 8)

Figure 7. Additional nodes

Figure 8. Final combination tree

3. Result and analysis

To get the test case we have to descend from the root to
its child and where ever we find a terminating leaves we
list the nodes encountered and that becomes the test case
with the expected result motioned in the leaves whether
it passes or fails. In doing so we get 4 test cases at level
2, 22 test case at level 3, 28 test case at level 4 and
finally 9 at level 5. So in total we have 63 test cases.
Among all test cases generated so far we have 3 test
cases where we have the expected results pass. As we
can see that in this simple case can produce enormous
amount of test case, however in practice only some are
created and only few are executed.

4. Conclusion and future work

It has been impossible to think about such number when
we create test cases on ad-hoc bases, however it may not
be possible to execute all of them but at least we discover
the test cases in which the system should pass
successively under given choices of inputs and action by
user. We can deliver the system on the bases of selecting
the test case in which there is expected result pass while
maturing & increasing our confidence on system by
performing more test as system is operational. If we find
any bugs or fault we can fix them later on. The optimal
testing is necessary to establish quality control. Our
future work will be to release a tool to support our claim
as it is not possible to manually generate such amounts

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 340

of test case and we would probabilistically determine the
optimality in execution of test cases over such standard
software components such as login form.

References
[1] Kaschner, K., Lohmann, N., “Automatic Test Case

Generation for Interacting Services”. In Proc. of ICSOC
2008 Workshops. Volume 5472 of Lecture Notes in
Computer Science. (2009)

[2] Tony Hoare, “Towards the Verifying Compiler”, In The
United Nations University / International Institute for
Software Technology 10th Anniversary Colloquium:
Formal Methods at the Crossroads, from Panacea to
Foundational Support, Lisbon, March 18–21, 2002.
Springer Verlag, 2002.

[3] Robert V. Binder, “Testing Object-Oriented Systems:
Models, Patterns, and Tools”, Addison Wesley Longman,
Inc., 2000.

[4] S. S. Riaz Ahamed, " Studying the feasibility and
importance of software testing: An Analysis", International
Journal of Engineering Science and Technology, Vol.1(3),
2009, 119-128.

[5] Glenford J. Myers, “The Art of Software Testing”, Second
Edition, John Wiley & Sons, Inc.

[6] B. Beizer “Software Testing Techniques”, Van Nostrand
Reinhold , 2nd edition, 1990.

[7] Jaroslav Nesetril, “ASPECTS OF STRUCTURAL
COMBINATORICS (Graph Homomorphisms and Their
Use)”, TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 4, pp. 381-423, December 1999

