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Abstract 
Knowledge mining is the process of deriving new and useful 
knowledge from vast volumes of data and background 
knowledge. Modern healthcare organizations regularly generate 
huge amount of electronic data stored in the databases. These 
data are a valuable resource for mining useful knowledge to help 
medical practitioners making appropriate and accurate decision 
on the diagnosis and treatment of diseases. In this paper, we 
propose the design of a novel medical expert system based on a 
logic-programming framework. The proposed system includes a 
knowledge-mining component as a repertoire of tools for 
discovering useful knowledge. The implementation of 
classification and association mining tools based on the higher 
order and meta-level programming schemes using Prolog has 
been presented to express the power of logic-based language. 
Such language also provides a pattern matching facility, which is 
an essential function for the development of knowledge-intensive 
tasks. Besides the major goal of medical decision support, the 
knowledge discovered by our logic-based knowledge-mining 
component can also be deployed as background knowledge to 
pre-treatment data from other sources as well as to guard the data 
repositories against constraint violation. A framework for 
knowledge deployment is also presented. 
 
Keywords: Knowledge Mining, Association Mining, Decision-
tree Induction, Higher-order Logic Programming, Medical 
Expert System. 

1. Introduction 

Knowledge is a valuable asset to most organizations as a 
substantial source to support better decisions and thus to 
enhance organizational competency. Researchers and 
practitioners in the area of knowledge management view 
knowledge in a broad sense as a state of mind, an object, a 
process, an access to information, or a capability [2, 13]. 
The term knowledge asset [24, 26] is used to refer to any 
organizational intangible property related to knowledge 
such as know-how, expertise, intellectual property. In 
clinical companies and computerized healthcare 
organizations knowledge assets include order sets, drug-

drug interaction rules, guidelines for practitioners, and 
clinical protocols [12]. 
 
Knowledge assets can be stored in data repositories either 
in implicit or explicit form. Explicit knowledge can be 
managed through the existing tools available in the current 
database technology. Implicit knowledge, on the contrary, 
is harder to achieve and retrieve. Specific tools and 
suitable environments are needed to extract such 
knowledge. 
 
Implicit knowledge acquisition can be achieved through 
the availability of the knowledge-mining system. 
Knowledge mining is the discovery of hidden knowledge 
stored possibly in various forms and places in large data 
repositories. In health and medical domains, knowledge 
has been discovered in different forms such as association 
rules, classification trees, clustering means, trend or 
temporal patterns [27]. The discovered knowledge 
facilitates expert decision support, diagnosis and 
prediction. It is the current trend in the design and 
development of decision support systems [3, 16, 20, 31] to 
incorporate knowledge discovery as a tool to extract 
implicit information. 
 
In this paper we present the design of a medical expert 
system and the implementation of knowledge mining 
component. Medical data mining is an emerging area of 
computational intelligence applied to automatically 
analyze electronic medical records and health databases. 
The non-hypothesis driven analysis approach of data 
mining technology can induce knowledge from clinical 
data repositories and health databases. Induced knowledge 
such as breast cancer recurrence conditions or diabetes 
implication is important not only to increase accurate 
diagnosis and successful treatment, but also to enhance 
safety and reduce medication-related errors. 
 
A rapid prototyping of the proposed system is 
demonstrated in the paper to highlight the fact that higher 
order and meta-level programming are suitable schemes to 
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implement a complex knowledge-intensive system. For 
such a complicated system program coding should be done 
declaratively at a high abstraction level to alleviate the 
burden of programmers and to ease reasoning about 
program semantics. 
 
The rest of this paper is organized as follows. Section 2 
provides some preliminaries on two major knowledge-
mining tasks, i.e. classification and association mining. 
Section 3 proposes the medical expert system design 
framework with the knowledge-mining component. 
Running examples on medical data set and the illustration 
on knowledge deployment are presented in Section 4. 
Section 5 discusses related work and then conclusions are 
drawn in Section 6. The implementation of knowledge-
mining component is presented in the Appendix. 

2. Preliminaries on Tree-based Classification 
and Association Mining 

Decision tree induction [21] is a popular method for 
mining knowledge from medical data and representing the 
result as a classifier tree. Popularity is due to the fact that 
mining result in a form of decision tree is interpretability, 
which is more concern among medical practitioners than a 
sophisticated method but lack of understandability. A 
decision tree is a hierarchical structure with each node 
contains decision attribute and node branches 
corresponding to different attribute values of the decision 
node. The goal of building decision tree is to partition data 
with mixing classes down the tree until each leaf node 
contains data with pure class. 
 
In order to build a decision tree, we need to choose the 
best attribute that contributes the most towards 
partitioning data to the purity groups. The metric to 
measure attribute’s ability to partition data into pure class 
is Info, which is the number of bits required to encode a 
data mixture. The metric Info of positive (p) and negative 
(n) data mixture can be calculates as:  

Info(P(p), P(n)) = P(p)log2P(p) P(n)log2P(n). 

The symbols P(p) and P(n) are probabilities of positive 
and negative data instances, respectively. The symbol p 
represents number of positive data instances, and n is the 
negative cases. To choose the best attribute we have to 
calculate information gain, which is the yield we obtained 
from choosing that attribute. The information gain 
calculation of data with two classes (positive and negative) 
is given as:  

Gain(Attribute) = Info{p/(p+n), n/(p+n)}   
i=1 to v {(pi+ni)/(p+n)} Info{ pi /( pi+ni), ni /( pi+ni) }.  

The information gain calculates yield on Info of data set 
before splitting and Info after choosing attribute with v 
splits. The gain value of each candidate attribute is 
calculated, and then the maximum one has been chosen to 
be the decision node. The process of data partitioning 
continues until the data subset has the same class label. 
 
Classification task based on decision-tree induction 
predicts the value of a target attribute or class, whereas 
association-mining task is a generalization of classification 
in that any attribute in the data set can be a target attribute. 
Association mining is the discovery of frequently occurred 
relationships or correlations between attributes (or items) 
in a database. Association mining problem can be 
decomposed as (1) find all sets of items that are frequent 
patterns, (2) use the frequent patterns to generate rules. Let 
I = {i1, i2, i3, ... , i m} be a set of m items and DB = { C1, C2, 
C3, ..., C n} be a database of n cases and each case contains 
items in I. 
 
A pattern is a set of items that occur in a case. The number 
of items in a pattern is called the length of the pattern. To 
search for all valid patterns of length 1 up to m in large 
database is computational expensive. For a set I of m 
different items, the search space of all distinct patterns can 
be as huge as 2m-1. To reduce the size of the search space, 
the support measurement has been introduced [1]. The 
function support(P) of a pattern P is defined as a number 
of cases in DB containing P. Thus,  

support(P) = |{T | T  DB,  P  T }|. 
 
A pattern P is called frequent pattern if the support value 
of P is not less than a predefined minimum support 
threshold minS. It is the minS constraint that helps 
reducing the computational complexity of frequent pattern 
generation. The minS metric has an anti-monotone 
property such that if the pattern contains an item that is not 
frequent, then none of the pattern’s supersets are frequent. 
This property helps reducing the search space of mining 
frequent patterns in algorithm Apriori [1]. In this paper we 
adopt this algorithm as a basis for our implementation of 
association mining engine. 

3. Medical Expert System Framework and the 
Knowledge Mining Engines 

3.1 System Architecture 

Health information is normally distributive and 
heterogeneous. Hence, we design the medical expert 
system (Figure 1) to include data integration component at 
the top level to collect data from distributed databases and 
also from documents in text format.  
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Fig. 1 Knowledge-mining component and a medical expert system 

framework. Double line arrows are process flow, whereas the dash line 
arrows are data flow. 

 
The data integration component has been designed to input 
and select data with natural language processing. Data at 
this stage are to be stored in a warehouse to support direct 
querying (through OLAP tools) as well as to perform 
analyzing with knowledge mining engine. 
 
Knowledge base in our design stores both induced 
knowledge in which its significance has to be evaluated by 
the domain expert, and background knowledge encoded 
from human experts. Knowledge inferring and reasoning 
is the module interfacing with medical practitioners and 
physicians at the front-end and accessing knowledge base 
at the back-end. The focus of this paper is on the 
implementation of knowledge-mining component, which 
currently contains classification and association mining 
engine. 

3.2 Classification Mining Tool 

Our classification mining engine is the implementation of 
decision-tree induction (ID3) algorithm [21]. The steps in 
our implementation are presented as follows: 
 

Algorithm 1 Classification mining engine 
     Input: a data set formatted as Prolog clauses 
     Output: a decision tree with node and edge structures 
(1)   Initialization 
       (1.1) Clear temporary knowledge base (KB) by 

removing all information regarding the 
predicates node, edge and current_node 

        (1.2) Set node counter = 0 
        (1.3) Scan data set to get information about data 

attributes, positive instances, negative instances, 
total data instances 

(2)   Building tree 
        (2.1) Increment node counter 
        (2.2) Repeat steps 2.2.1-2.2.4 until there is no more 

attributes left for creating decision attributes 
          (2.2.1)   Compute the Info value of each 

candidate attribute 
          (2.2.2)   Choose the attribute that yields minimum 

Info to be decision node  
          (2.2.3)   Assert edge and node information into 

the knowledge base 
          (2.2.4)   Split data instances along node branches 

        (2.3) Repeat steps 2.1 and 2.2 until the lists of 
positive and negative instances are empty 

        (2.4)  Output a tree structure that contains node and 
edge predicates 

 
The program source code is based on the syntax of SWI 
prolog (www.swi-prolog.org). 
main :-   

   init(AllAttr, EdgeList), % initialize node  

                            % and edge structures 
   getNode(N),       % get node sequence number 
   create_edge(N, AllAttr, EdgeList),  
                       % recursively create tree 
   print_model.        % print tree model 

 
Classification mining engine is composed of two files 
main and id3. The main module (main.pl) calls 
initialization procedure (init) and starts creating edges and 
nodes of the decision tree. The data (data.pl) to be used by 
main module to create decision tree is also in a format of 
Prolog file. The mining engine induces data model of two 
classes: positive (class = yes) and negative (class = no). 
Binary classification is a typical task in medical domain. 
The code can be easily modified to classify data with more 
than two classes. 

3.3 Association Mining Tool 

The implementation of association mining engine is based 
primarily on the concept of higher-order Horn clauses. 
Such concept has been utilized through the predicates 
maplist, include, and setof.  
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The extensive use of these predicates contributes 
significantly to program conciseness and the ease of 
program verification. The program produces frequent 
patterns as a set of co-occurring items. To generate a nice 
representation of association rule such as X => Y, the list 
L in the predicate association_mining has to be further 
processed. 
association_mining :-  
  min_support(V), % set minimum support 
  makeC1(C),      % create candidate 1-itemset 
  makeL(C,L),     % compute large itemset 
apriori_loop(L,1).  % recursively run apriori 
 

makeC1(Ans):- 
input(D),  % input data as a list 
allComb(1, ItemList, Ans2),  
            % make combination of itemset 
maplist(countSS(D),Ans2,Ans).  
            % scan database and pass countSS 
            % to maplist  
                          

makeC(N, ItemSet, Ans) :-  
input(D), allComb(2, ItemSet, Ans1), 
maplist(flatten, Ans1, Ans2), 
maplist(list_to_ord_set, Ans2, Ans3), 
list_to_set(Ans3, Ans4), 
include(len(N), Ans4, Ans5),  % include is  
            % also a higher-order predicate 
maplist(countSS(D), Ans5, Ans). 
            % scan database to find: List+N 

 

4. Running Examples and Knowledge 
Deployment 

To show the running examples of our program coding, we 
use the following simple medical data represented as a 
Prolog file.  
%% Data set: Allergy diagnosis 
    % Symptoms of disease and their possible values 
attribute( soreThroat,  [yes, no]). 
attribute( fever, [yes, no]). 
attribute( swollenGlands, [yes, no]). 
attribute( congestion, [yes, no]). 
attribute( headache, [yes, no]). 
attribute( class, [yes, no]). 
     % Data instances 
instance(1, class=no,   [soreThroat=yes, fever=yes, 

swollenGlands=yes, congestion=yes, 
headache=yes]). 

instance(2, class=yes, [soreThroat=no,   fever=no,   
swollenGlands=no,   congestion=yes, 
headache=yes]). 

instance(3, class=no,   [soreThroat=yes, fever=yes, 
swollenGlands=no,   congestion=yes, 
headache=no]). 

… 
 

Data as shown are patient records suffering from allergy 
(class=yes). There are ten patient records in this simple 
data set: patient IDs 2, 6, and 8 are those who are suffering 
from allergy, whereas patient IDs 1, 3, 4, 5, 7, 9, 10 are 
suffering from other diseases but has shown some basic 
symptoms similar to allergy patients. To induce 
classification model for allergy patients from this data, we 
have to save this data set as a Prolog file (data.pl) and 
include this file name at the header declaration of the main 
program. By calling predicate main, the system should 
respond as true. At this moment we can view the tree 
model by calling listing(node), then listing(edge) and get 
the following results. 

1 ?- main. 
true.  
2 ?- listing(node). 
:- dynamic user:node/2. 
user:node(1, [2, 6, 8]-[1, 3, 4, 5, 7, 9, 10]). 
user:node(2, []-[1, 3, 5, 9, 10]). 
user:node(3, [2, 6, 8]-[4, 7]). 
user:node(4, []-[4, 7]). 
user:node(5, [2, 6, 8]-[]). 
true. 
3 ?- listing(edge). 
:- dynamic user:edge/3. 
user:edge(0, root-nil, 1). 
user:edge(1, fever-yes, 2). 
user:edge(1, fever-no, 3). 
user:edge(3, swollenGlands-yes, 4). 
user:edge(3, swollenGlands-no, 5). 

           true. 
 
The node and edge structures have the following formats: 
      node(nodeID, [Positive_Cases]-[Negative_Cases]) 
      edge(ParentNode, EdgeLabel, ChildNode) 
 
The node structure is a tuple of nodeID and a mixture of 
positive and negative cases represented as a list pattern: 
[Positive_Cases]-[Negative_Cases]. Node 0 is a special 
node, representing root node of the tree. Node 1 contains a 
mixture of ten patients, whereas node 5 is a pure group of 
allergy patients. The edges leading from node 1 to node 5 
capture the model of allergy patients. Therefore, the 
classification result represents the following data model: 
      class(allergy) :- fever=no, swollenGlands=no. 
 
This model is represented as a Horn clause, thus, it 
provide flexibility of including this clause as a rule to 
select data in other group of patients who are suffering 
from throat infection. This kind of infection shows the 
same basic symptoms as allergy; therefore, screening data 
with the above rule can help focusing only on throat 
infection cases. 
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Applying the same data set with association mining and 
setting minimum support value = 50%, we got the 
following frequent patterns: 
    {fever=yes & class=no} 
    {fever=yes & congestion=yes}  
    {swollenGlands=no & congestion=yes} 
    {congestion=yes & headache=yes} 
    {congestion=yes & class=no} 
    {fever=yes & congestion=yes & class=no} 
 
The first pattern can be interpreted as association rule as 
“if patient has fever, that the patient does not suffer from 
allergy.” This kind of rule can help accurately diagnosing 
patients with symptoms very close to allergy.  
 
Knowledge Deployment: Example 1. 
We suggest that such discovered rules, after confirming 
their correctness by human experts, can be added into the 
database system as trigger rules (Figure 2). The triggers 
guard database content against any updates that violates 
the rules. Any attempt to insert violating data will raise an 
error message to draw attention from the database 
administrator. Such trigger rules are thus deployed as a 
tool to enforce database integrity checking. 
 
                                              induced rules 
   Trigger Generation                                          Mining  
       Component                                              Component 
 
  
                                                                          aggregated data 
 
  
        Trigger rules               Knowledge              Data 
 
 
Fig. 2 The framework of knowledge deployment as triggers in a medical 

database. 
 

 
Fig. 3 The content of automatically induced knowledge base. 

 
 

 
Fig. 4 Structure of a simple expert system shell with the induced 

knowledge base. 
 

 
Fig. 5 A snapshot of medical expert system inductively created from the 

allergy data set. 
 

Knowledge Deployment: Example 2. 
The induced knowledge once confirmed by the domain 
expert can be added to the knowledge base of the expert 
system shell. We illustrate the knowledge base that 
automatically created from the induced tree in Figure 3. 
This expert system shell has simple structure as 
diagrammatically shown in Figure 4. User can interact 
with the system through a line command as shown in 
Figure 5, in which the user can ask for further explanation 
by typing the ‘why’ command. 

5. Related Work 

In recent years we have witnessed increasing number of 
applications devising database technology and machine 
learning techniques to mine knowledge from biomedicine, 
clinical and health data. Roddick et al [22] discussed the 
two categories of mining techniques applied over medical 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     69 

 

data: explanatory and exploratory. Explanatory mining 
refers to techniques that are used for the purpose of 
confirmation or making decisions. Exploratory mining is 
data investigation normally done at an early stage of data 
analysis in which an exact mining objective has not yet 
been set. 
 
Explanatory mining in medical data has been extensively 
studied in the past decade employing various learning 
techniques. Bojarczuk et al [4] applied genetic 
programming method with constrained syntax to discover 
classification rules from medical data sets. Thongkam et al 
[28] studied breast cancer survivability using AdaBoost 
algorithm. Ghazavi and Liao [9] proposed the idea of 
fuzzy modeling on selected features of medical data. 
Huang et al [11] introduced a system to apply mining 
techniques to discover rules from health examination data. 
Then they employed a case-based reasoning to support the 
chronic disease diagnosis and treatments. The recent work 
of Zhuang et al [31] also combined mining with case-
based reasoning, but applied a different mining method. 
They performed data clustering based on self-organizing 
maps in order to facilitate decision support on solving new 
cases of pathology test ordering problem. Biomedical 
discovery support systems are recently proposed by a 
number of researchers [5, 6, 10, 29, 30]. Some work [20, 
25] extended medical databases to the level of data 
warehouses. 
 
Exploratory, as oppose to explanatory, is rarely applied to 
medical domains. Among the rare cases, Nguyen et al [19] 
introduced knowledge visualization in the study of 
hepatitis patients. Palaniappan and Ling [20] applied the 
functionality of OLAP tools to improve visualization in 
data analysis. 
 
It can be seen from the literature that most medical 
knowledge discovery systems have applied only some 
mining techniques to discover hidden knowledge with the 
main purpose to support medical diagnosis [4, 14, 17]. 
Some researchers [3, 8, 15, 16] have extended the 
knowledge discovery aspect to the large scale of a medical 
decision support system. 
 
Our work is also in the main stream of medical decision 
support system development, but our methodology is 
different from those appeared in the literature. The system 
proposed in this paper is based on a logic-programming 
paradigm. The justification of our logic-based system is 
that the closed form of Horn clauses that treats program in 
the same way as data facilitates fusion of knowledge 
learned from different sources, which is a normal setting 
in medical domain. Knowledge reuse can easily practice in 
this framework.  

The declarative style of our implementation also eases the 
future extension of the proposed medical support system 
to cover the concepts of higher-order mining [23], i.e. 
mining from the discovered knowledge, and constraint 
mining [7], i.e. mining with some specified constraints to 
obtain relevant knowledge. 

6. Conclusions and Discussion 

Modern healthcare organizations generate huge amount of 
electronic data stored in heterogeneous databases. Data 
collected by hospitals and clinics are not yet turned into 
useful knowledge due to the lack of efficient analysis 
tools. We thus propose a rapid prototyping of automatic 
mining tools to induce knowledge from medical data. The 
induced knowledge is to be evaluated and integrated into 
the knowledge base of a medical expert system. 
Discovered knowledge facilitates the reuse of knowledge 
base among decision-support applications within 
organizations that own heterogeneous clinical and health 
databases. Direct application of the proposed system is for 
medical related decision-making. Other indirect but 
obvious application of such knowledge is to pre-process 
other data sets by grouping it into focused subset 
containing only relevant data instances. 
 
The main contribution of this work is our implementation 
of knowledge mining engines based on the concept of 
higher-order Horn clauses using Prolog language. Higher-
order programming has been originally appeared in 
functional languages in which functions can be passed as 
arguments to other functions and can also be returned 
from other functions. This style of programming has soon 
been ubiquitous in several modern programming 
languages such as Perl, PHP, and JavaScript. Higher order 
style of programming has shown the outstanding benefits 
of code reuse and high level of abstraction. This paper 
illustrates higher order programming techniques in SWI-
Prolog. The powerful feature of meta-level programming 
in Prolog facilitates the reuse of mining results represented 
as rules to be flexibly applied as conditional clauses in 
other applications.  
 
The plausible extensions of our current work are to add 
constraints into the knowledge mining method in order to 
limit the search space and therefore yield the most relevant 
and timely knowledge, and due to the uniform 
representation of Prolog’s statements as a clausal form, 
mining from the previously mined knowledge should be 
implemented naturally. We also plan to extend our system 
to work with stream data that normally occur in modern 
medical organizations. 
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Appendix 

The implementation of knowledge-mining component is 
based on the concept of higher-order and meta-
programming styles. Higher-order programming in Prolog 
refers to Horn clauses that can quantify over other 
predicate symbols [18]. Meta-level programming is also 
another powerful feature of Prolog. Data and program in 
Prolog take the same representational format; that is 
clausal form. Higher-order and meta-level clauses in the 
following source code are typed in bold face. 
 
/* Classification mining engine */ 
:- include('data.pl'). 
:- dynamic current_node/1, node/2, edge/3. 
 
main :-   
   init(AllAttr, EdgeList), 
   getNode(N),        % get node sequence number 
   create_edge(N, AllAttr, EdgeList),  
   print_model. 
     
init(AllAttr, [root-nil/PB-NB]) :-    
   retractall(node(_, _)), 
   retractall(current_node(_)),  
   retractall(edge(_, _, _)), 
   assert(current_node(0)),  
   findall(X, attribute(X, _), AllAttr1), 
   delete(AllAttr1, class, AllAttr), 
   findall(X2, instance(X2, class=yes, _), PB),                         
   findall(X3, instance(X3, class=no, _), NB). 
 
getNode(X) :-  
   current_node(X), X1 is X+1, 
   retractall(current_node(_)),    
   assert(current_node(X1)). 
 
create_edge(_, _, []) :- !. 
 
create_edge(_, [], _) :- !.  
 
create_edge(N, AllAttr, EdgeList) :-   
   create_nodes(N, AllAttr, EdgeList). 
 
create_nodes(_, _, []) :- !. 
 
create_nodes(_, [], _) :- !. 
 
create_nodes(N, AllAttr, [H1-H2/PB-NB|T]) :- 
   getNode(N1),    % get node sequence number N1 
   assert(edge(N, H1-H2, N1)), % H1-H2 is  
                               % a pattern 
   assert(node(N1, PB-NB)),   % PB-NB is  
                              % a pattern 
   append(PB, NB, AllInst),   
   ((PB \== [], NB \== []) ->  % if-condition 
                           % then clauses 
        (cand_node(AllAttr, AllInst, AllSplit),  
        best_attribute(AllSplit, [V, MinAttr, 
                                    Split]),  
 delete(AllAttr, MinAttr, Attr2), 
 create_edge( N1, Attr2, Split))   
       ;                  % else clause 
        true ), 
   create_nodes(N, AllAttr, T). 
% 

% select best attribute to be a decision node 
% 
best_attribute([], Min, Min). 
 
best_attribute([H|T], Min) :-   
   best_attribute(T, H, Min). 
 
best_attribute([H|T], Min0, Min) :-  
   H = [V, _, _ ],  
   Min0 = [V0, _, _ ], 
   ( V < V0 -> Min1 = H ; Min1 = Min0), 
   best_attribute(T, Min1, Min). 
 
% 
% generate candidate decision node 
% 
cand_node([], _, []) :- !. 
 
cand_node(_, [], []). 
 
cand_node([H|T], CurInstL, [[Val,H,SplitL]  
                              |OtherAttr]) :-   
   info(H, CurInstL, Val, SplitL),   
   cand_node(T, CurInstL, OtherAttr). 
 
% 
% compute Info of each candidate node 
% 
info(A, CurInstL, R, Split) :-  
   attribute(A,L), 
   maplist(concat3(A,=), L, L1),      
   suminfo(L1, CurInstL, R, Split).  
 
concat3(A,B,C,R) :-  
   atom_concat(A,B,R1),  
   atom_concat(R1,C,R). 
 
suminfo([],_,0,[]).  
 
suminfo([H|T], CurInstL, R, [Split | ST]) :- 
   AllBag = CurInstL, term_to_atom(H1, H), 
   findall(X1, (instance(X1, _, L1), 
                member(X1, CurInstL),     
                member(H1, L1)), BagGro), 
   findall(X2,(instance(X2, class=yes, L2),  
                member(X2, CurInstL),  
                member(H1, L2)), BagPos), 
   findall(X3,(instance(X3, class=no, L3),      
                member(X3, CurInstL), 
                member(H1, L3)), BagNeg),  
   (H11= H22) = H1,  
   length(AllBag, Nall),  
   length(BagGro, NGro),   
   length(BagPos, NPos),  
   length(BagNeg, NNeg),                    
   Split = H11-H22/BagPos-BagNeg, 
   suminfo(T, CurInstL, R1,ST),       
   ( NPos is 0 *-> L1 = 0;  
                  L1 is (log(NPos/NGro)/log(2)) ), 
   ( 0 is NNeg *-> L2 = 0;  
                  L2 is (log(NNeg/NGro)/log(2)) ), 
   ( NGro is 0 -> R= 999;  
                  R is (NGro/Nall)* 
                       (-(NPos/NGro)* 
                       L1- (NNeg/NGro)*L2)+R1).    
 
 
/* ========================= */ 
/* Association mining engine */ 
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/* ========================= */ 
association_mining:- 
  min_support(V),   % set minimum support 
  makeC1(C),  % create candidate 1-itemset 
makeL(C,L), % compute large itemset 
apriori_loop(L,1).  % recursively run apriori 
 

apriori_loop(L, N) :- % base case of recursion 
   length(L) is 1,!.   
 
apriori_loop(L, N) :- % inductive step 
  N1 is N+1,         
makeC(N1, L, C),  
makeL(C, Res), 

   apriori_loop(Res, N1). 
 
makeC1(Ans):- 

input(D), % input data as a list,  
          %  e.g. [[a], [a,b]] 
          % then make combination of itemset 
allComb(1, ItemList, Ans2),    
  % scan database and pass countSS to maplist 
maplist(countSS(D),Ans2,Ans).   

 
makeC(N, ItemSet, Ans) :- input(D), 

 allComb(2, ItemSet, Ans1), 
 maplist(flatten, Ans1, Ans2), 
 maplist(list_to_ord_set, Ans2, Ans3), 
 list_to_set(Ans3, Ans4), 
 include(len(N), Ans4, Ans5),    
                 % include is also a  
                 % higher-order predicate 
 maplist(countSS(D), Ans5, Ans).  
         % scan database to find: List+N 
 

makeL(C, Res):-   % for all large itemset creation 
                  % call higher-order predicates 
                  % include and maplist    

 include(filter, C, Ans),    
 maplist(head, Ans, Res).         
      

% 
% filter and head are for pattern matching of  
%   data format 
% 
filter(_+N):-  
   input(D),  
   length(D,I),  
   min_support(V),  
   N>=(V/100)*I. 
 
head(H+_, H).        
 
% 
% an arbitrary subset of the set containing  
% given number of elements 
% 
comb(0, _, []). 
 
comb(N, [X|T], [X|Comb]) :-  
   N>0, N1 is N-1,  
   comb(N1, T, Comb). 
 
comb(N, [_|T], Comb) :-  
   N>0,  
   comb(N, T, Comb). 
allComb(N, I, Ans) :-   
   setof(L, comb(N, I, L), Ans).   
 

countSubset(A, [], 0). 
 
countSubset(A, [B|X], N) :-  
   not(subset(A, B)),  
 
countSubset(A, X, N). 
 
countSubset(A, [B|X], N) :-  
   subset(A, B),  
   countSubset(A, X, N1),  
   N is N1+1. 
 
countSS(SL, S, S+N) :-  
   countSubset(S, SL, N). 
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