
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 64

Higher Order Programming to Mine Knowledge for a Modern
Medical Expert System

Nittaya Kerdprasop and Kittisak Kerdprasop

 Data Engineering and Knowledge Discovery (DEKD) Research Unit,
School of Computer Engineering, Suranaree University of Technology,

Nakhon Ratchasima 30000, Thailand

Abstract
Knowledge mining is the process of deriving new and useful
knowledge from vast volumes of data and background
knowledge. Modern healthcare organizations regularly generate
huge amount of electronic data stored in the databases. These
data are a valuable resource for mining useful knowledge to help
medical practitioners making appropriate and accurate decision
on the diagnosis and treatment of diseases. In this paper, we
propose the design of a novel medical expert system based on a
logic-programming framework. The proposed system includes a
knowledge-mining component as a repertoire of tools for
discovering useful knowledge. The implementation of
classification and association mining tools based on the higher
order and meta-level programming schemes using Prolog has
been presented to express the power of logic-based language.
Such language also provides a pattern matching facility, which is
an essential function for the development of knowledge-intensive
tasks. Besides the major goal of medical decision support, the
knowledge discovered by our logic-based knowledge-mining
component can also be deployed as background knowledge to
pre-treatment data from other sources as well as to guard the data
repositories against constraint violation. A framework for
knowledge deployment is also presented.

Keywords: Knowledge Mining, Association Mining, Decision-
tree Induction, Higher-order Logic Programming, Medical
Expert System.

1. Introduction

Knowledge is a valuable asset to most organizations as a
substantial source to support better decisions and thus to
enhance organizational competency. Researchers and
practitioners in the area of knowledge management view
knowledge in a broad sense as a state of mind, an object, a
process, an access to information, or a capability [2, 13].
The term knowledge asset [24, 26] is used to refer to any
organizational intangible property related to knowledge
such as know-how, expertise, intellectual property. In
clinical companies and computerized healthcare
organizations knowledge assets include order sets, drug-

drug interaction rules, guidelines for practitioners, and
clinical protocols [12].

Knowledge assets can be stored in data repositories either
in implicit or explicit form. Explicit knowledge can be
managed through the existing tools available in the current
database technology. Implicit knowledge, on the contrary,
is harder to achieve and retrieve. Specific tools and
suitable environments are needed to extract such
knowledge.

Implicit knowledge acquisition can be achieved through
the availability of the knowledge-mining system.
Knowledge mining is the discovery of hidden knowledge
stored possibly in various forms and places in large data
repositories. In health and medical domains, knowledge
has been discovered in different forms such as association
rules, classification trees, clustering means, trend or
temporal patterns [27]. The discovered knowledge
facilitates expert decision support, diagnosis and
prediction. It is the current trend in the design and
development of decision support systems [3, 16, 20, 31] to
incorporate knowledge discovery as a tool to extract
implicit information.

In this paper we present the design of a medical expert
system and the implementation of knowledge mining
component. Medical data mining is an emerging area of
computational intelligence applied to automatically
analyze electronic medical records and health databases.
The non-hypothesis driven analysis approach of data
mining technology can induce knowledge from clinical
data repositories and health databases. Induced knowledge
such as breast cancer recurrence conditions or diabetes
implication is important not only to increase accurate
diagnosis and successful treatment, but also to enhance
safety and reduce medication-related errors.

A rapid prototyping of the proposed system is
demonstrated in the paper to highlight the fact that higher
order and meta-level programming are suitable schemes to

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 65

implement a complex knowledge-intensive system. For
such a complicated system program coding should be done
declaratively at a high abstraction level to alleviate the
burden of programmers and to ease reasoning about
program semantics.

The rest of this paper is organized as follows. Section 2
provides some preliminaries on two major knowledge-
mining tasks, i.e. classification and association mining.
Section 3 proposes the medical expert system design
framework with the knowledge-mining component.
Running examples on medical data set and the illustration
on knowledge deployment are presented in Section 4.
Section 5 discusses related work and then conclusions are
drawn in Section 6. The implementation of knowledge-
mining component is presented in the Appendix.

2. Preliminaries on Tree-based Classification
and Association Mining

Decision tree induction [21] is a popular method for
mining knowledge from medical data and representing the
result as a classifier tree. Popularity is due to the fact that
mining result in a form of decision tree is interpretability,
which is more concern among medical practitioners than a
sophisticated method but lack of understandability. A
decision tree is a hierarchical structure with each node
contains decision attribute and node branches
corresponding to different attribute values of the decision
node. The goal of building decision tree is to partition data
with mixing classes down the tree until each leaf node
contains data with pure class.

In order to build a decision tree, we need to choose the
best attribute that contributes the most towards
partitioning data to the purity groups. The metric to
measure attribute’s ability to partition data into pure class
is Info, which is the number of bits required to encode a
data mixture. The metric Info of positive (p) and negative
(n) data mixture can be calculates as:

Info(P(p), P(n)) = P(p)log2P(p) P(n)log2P(n).

The symbols P(p) and P(n) are probabilities of positive
and negative data instances, respectively. The symbol p
represents number of positive data instances, and n is the
negative cases. To choose the best attribute we have to
calculate information gain, which is the yield we obtained
from choosing that attribute. The information gain
calculation of data with two classes (positive and negative)
is given as:

Gain(Attribute) = Info{p/(p+n), n/(p+n)} 
i=1 to v {(pi+ni)/(p+n)} Info{ pi /(pi+ni), ni /(pi+ni) }.

The information gain calculates yield on Info of data set
before splitting and Info after choosing attribute with v
splits. The gain value of each candidate attribute is
calculated, and then the maximum one has been chosen to
be the decision node. The process of data partitioning
continues until the data subset has the same class label.

Classification task based on decision-tree induction
predicts the value of a target attribute or class, whereas
association-mining task is a generalization of classification
in that any attribute in the data set can be a target attribute.
Association mining is the discovery of frequently occurred
relationships or correlations between attributes (or items)
in a database. Association mining problem can be
decomposed as (1) find all sets of items that are frequent
patterns, (2) use the frequent patterns to generate rules. Let
I = {i1, i2, i3, ... , i m} be a set of m items and DB = { C1, C2,
C3, ..., C n} be a database of n cases and each case contains
items in I.

A pattern is a set of items that occur in a case. The number
of items in a pattern is called the length of the pattern. To
search for all valid patterns of length 1 up to m in large
database is computational expensive. For a set I of m
different items, the search space of all distinct patterns can
be as huge as 2m-1. To reduce the size of the search space,
the support measurement has been introduced [1]. The
function support(P) of a pattern P is defined as a number
of cases in DB containing P. Thus,

support(P) = |{T | T  DB, P  T }|.

A pattern P is called frequent pattern if the support value
of P is not less than a predefined minimum support
threshold minS. It is the minS constraint that helps
reducing the computational complexity of frequent pattern
generation. The minS metric has an anti-monotone
property such that if the pattern contains an item that is not
frequent, then none of the pattern’s supersets are frequent.
This property helps reducing the search space of mining
frequent patterns in algorithm Apriori [1]. In this paper we
adopt this algorithm as a basis for our implementation of
association mining engine.

3. Medical Expert System Framework and the
Knowledge Mining Engines

3.1 System Architecture

Health information is normally distributive and
heterogeneous. Hence, we design the medical expert
system (Figure 1) to include data integration component at
the top level to collect data from distributed databases and
also from documents in text format.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 66

 Medical Expert System

 Data
 Integration
Patient records
Clinical data &
Other documents Data warehouse

 Knowledge
 Mining

 Knowledge induced
 Evaluation knowledge
 background
 knowledge

 Knowledge Base

 OLAP Tools

 Request/query Knowledge inferring
 and reasoning
 Response

 Medical
 practitioner

Fig. 1 Knowledge-mining component and a medical expert system

framework. Double line arrows are process flow, whereas the dash line
arrows are data flow.

The data integration component has been designed to input
and select data with natural language processing. Data at
this stage are to be stored in a warehouse to support direct
querying (through OLAP tools) as well as to perform
analyzing with knowledge mining engine.

Knowledge base in our design stores both induced
knowledge in which its significance has to be evaluated by
the domain expert, and background knowledge encoded
from human experts. Knowledge inferring and reasoning
is the module interfacing with medical practitioners and
physicians at the front-end and accessing knowledge base
at the back-end. The focus of this paper is on the
implementation of knowledge-mining component, which
currently contains classification and association mining
engine.

3.2 Classification Mining Tool

Our classification mining engine is the implementation of
decision-tree induction (ID3) algorithm [21]. The steps in
our implementation are presented as follows:

Algorithm 1 Classification mining engine
 Input: a data set formatted as Prolog clauses
 Output: a decision tree with node and edge structures
(1) Initialization
 (1.1) Clear temporary knowledge base (KB) by

removing all information regarding the
predicates node, edge and current_node

 (1.2) Set node counter = 0
 (1.3) Scan data set to get information about data

attributes, positive instances, negative instances,
total data instances

(2) Building tree
 (2.1) Increment node counter
 (2.2) Repeat steps 2.2.1-2.2.4 until there is no more

attributes left for creating decision attributes
 (2.2.1) Compute the Info value of each

candidate attribute
 (2.2.2) Choose the attribute that yields minimum

Info to be decision node
 (2.2.3) Assert edge and node information into

the knowledge base
 (2.2.4) Split data instances along node branches

 (2.3) Repeat steps 2.1 and 2.2 until the lists of
positive and negative instances are empty

 (2.4) Output a tree structure that contains node and
edge predicates

The program source code is based on the syntax of SWI
prolog (www.swi-prolog.org).
main :-

 init(AllAttr, EdgeList), % initialize node

 % and edge structures
 getNode(N), % get node sequence number
 create_edge(N, AllAttr, EdgeList),
 % recursively create tree
 print_model. % print tree model

Classification mining engine is composed of two files
main and id3. The main module (main.pl) calls
initialization procedure (init) and starts creating edges and
nodes of the decision tree. The data (data.pl) to be used by
main module to create decision tree is also in a format of
Prolog file. The mining engine induces data model of two
classes: positive (class = yes) and negative (class = no).
Binary classification is a typical task in medical domain.
The code can be easily modified to classify data with more
than two classes.

3.3 Association Mining Tool

The implementation of association mining engine is based
primarily on the concept of higher-order Horn clauses.
Such concept has been utilized through the predicates
maplist, include, and setof.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 67

The extensive use of these predicates contributes
significantly to program conciseness and the ease of
program verification. The program produces frequent
patterns as a set of co-occurring items. To generate a nice
representation of association rule such as X => Y, the list
L in the predicate association_mining has to be further
processed.
association_mining :-
 min_support(V), % set minimum support
 makeC1(C), % create candidate 1-itemset
 makeL(C,L), % compute large itemset
apriori_loop(L,1). % recursively run apriori

makeC1(Ans):-
input(D), % input data as a list
allComb(1, ItemList, Ans2),
 % make combination of itemset
maplist(countSS(D),Ans2,Ans).
 % scan database and pass countSS
 % to maplist

makeC(N, ItemSet, Ans) :-
input(D), allComb(2, ItemSet, Ans1),
maplist(flatten, Ans1, Ans2),
maplist(list_to_ord_set, Ans2, Ans3),
list_to_set(Ans3, Ans4),
include(len(N), Ans4, Ans5), % include is
 % also a higher-order predicate
maplist(countSS(D), Ans5, Ans).
 % scan database to find: List+N

4. Running Examples and Knowledge
Deployment

To show the running examples of our program coding, we
use the following simple medical data represented as a
Prolog file.
%% Data set: Allergy diagnosis
 % Symptoms of disease and their possible values
attribute(soreThroat, [yes, no]).
attribute(fever, [yes, no]).
attribute(swollenGlands, [yes, no]).
attribute(congestion, [yes, no]).
attribute(headache, [yes, no]).
attribute(class, [yes, no]).
 % Data instances
instance(1, class=no, [soreThroat=yes, fever=yes,

swollenGlands=yes, congestion=yes,
headache=yes]).

instance(2, class=yes, [soreThroat=no, fever=no,
swollenGlands=no, congestion=yes,
headache=yes]).

instance(3, class=no, [soreThroat=yes, fever=yes,
swollenGlands=no, congestion=yes,
headache=no]).

…

Data as shown are patient records suffering from allergy
(class=yes). There are ten patient records in this simple
data set: patient IDs 2, 6, and 8 are those who are suffering
from allergy, whereas patient IDs 1, 3, 4, 5, 7, 9, 10 are
suffering from other diseases but has shown some basic
symptoms similar to allergy patients. To induce
classification model for allergy patients from this data, we
have to save this data set as a Prolog file (data.pl) and
include this file name at the header declaration of the main
program. By calling predicate main, the system should
respond as true. At this moment we can view the tree
model by calling listing(node), then listing(edge) and get
the following results.

1 ?- main.
true.
2 ?- listing(node).
:- dynamic user:node/2.
user:node(1, [2, 6, 8]-[1, 3, 4, 5, 7, 9, 10]).
user:node(2, []-[1, 3, 5, 9, 10]).
user:node(3, [2, 6, 8]-[4, 7]).
user:node(4, []-[4, 7]).
user:node(5, [2, 6, 8]-[]).
true.
3 ?- listing(edge).
:- dynamic user:edge/3.
user:edge(0, root-nil, 1).
user:edge(1, fever-yes, 2).
user:edge(1, fever-no, 3).
user:edge(3, swollenGlands-yes, 4).
user:edge(3, swollenGlands-no, 5).

 true.

The node and edge structures have the following formats:
 node(nodeID, [Positive_Cases]-[Negative_Cases])
 edge(ParentNode, EdgeLabel, ChildNode)

The node structure is a tuple of nodeID and a mixture of
positive and negative cases represented as a list pattern:
[Positive_Cases]-[Negative_Cases]. Node 0 is a special
node, representing root node of the tree. Node 1 contains a
mixture of ten patients, whereas node 5 is a pure group of
allergy patients. The edges leading from node 1 to node 5
capture the model of allergy patients. Therefore, the
classification result represents the following data model:
 class(allergy) :- fever=no, swollenGlands=no.

This model is represented as a Horn clause, thus, it
provide flexibility of including this clause as a rule to
select data in other group of patients who are suffering
from throat infection. This kind of infection shows the
same basic symptoms as allergy; therefore, screening data
with the above rule can help focusing only on throat
infection cases.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 68

Applying the same data set with association mining and
setting minimum support value = 50%, we got the
following frequent patterns:
 {fever=yes & class=no}
 {fever=yes & congestion=yes}
 {swollenGlands=no & congestion=yes}
 {congestion=yes & headache=yes}
 {congestion=yes & class=no}
 {fever=yes & congestion=yes & class=no}

The first pattern can be interpreted as association rule as
“if patient has fever, that the patient does not suffer from
allergy.” This kind of rule can help accurately diagnosing
patients with symptoms very close to allergy.

Knowledge Deployment: Example 1.
We suggest that such discovered rules, after confirming
their correctness by human experts, can be added into the
database system as trigger rules (Figure 2). The triggers
guard database content against any updates that violates
the rules. Any attempt to insert violating data will raise an
error message to draw attention from the database
administrator. Such trigger rules are thus deployed as a
tool to enforce database integrity checking.

 induced rules
 Trigger Generation Mining
 Component Component

 aggregated data

 Trigger rules Knowledge Data

Fig. 2 The framework of knowledge deployment as triggers in a medical

database.

Fig. 3 The content of automatically induced knowledge base.

Fig. 4 Structure of a simple expert system shell with the induced

knowledge base.

Fig. 5 A snapshot of medical expert system inductively created from the

allergy data set.

Knowledge Deployment: Example 2.
The induced knowledge once confirmed by the domain
expert can be added to the knowledge base of the expert
system shell. We illustrate the knowledge base that
automatically created from the induced tree in Figure 3.
This expert system shell has simple structure as
diagrammatically shown in Figure 4. User can interact
with the system through a line command as shown in
Figure 5, in which the user can ask for further explanation
by typing the ‘why’ command.

5. Related Work

In recent years we have witnessed increasing number of
applications devising database technology and machine
learning techniques to mine knowledge from biomedicine,
clinical and health data. Roddick et al [22] discussed the
two categories of mining techniques applied over medical

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 69

data: explanatory and exploratory. Explanatory mining
refers to techniques that are used for the purpose of
confirmation or making decisions. Exploratory mining is
data investigation normally done at an early stage of data
analysis in which an exact mining objective has not yet
been set.

Explanatory mining in medical data has been extensively
studied in the past decade employing various learning
techniques. Bojarczuk et al [4] applied genetic
programming method with constrained syntax to discover
classification rules from medical data sets. Thongkam et al
[28] studied breast cancer survivability using AdaBoost
algorithm. Ghazavi and Liao [9] proposed the idea of
fuzzy modeling on selected features of medical data.
Huang et al [11] introduced a system to apply mining
techniques to discover rules from health examination data.
Then they employed a case-based reasoning to support the
chronic disease diagnosis and treatments. The recent work
of Zhuang et al [31] also combined mining with case-
based reasoning, but applied a different mining method.
They performed data clustering based on self-organizing
maps in order to facilitate decision support on solving new
cases of pathology test ordering problem. Biomedical
discovery support systems are recently proposed by a
number of researchers [5, 6, 10, 29, 30]. Some work [20,
25] extended medical databases to the level of data
warehouses.

Exploratory, as oppose to explanatory, is rarely applied to
medical domains. Among the rare cases, Nguyen et al [19]
introduced knowledge visualization in the study of
hepatitis patients. Palaniappan and Ling [20] applied the
functionality of OLAP tools to improve visualization in
data analysis.

It can be seen from the literature that most medical
knowledge discovery systems have applied only some
mining techniques to discover hidden knowledge with the
main purpose to support medical diagnosis [4, 14, 17].
Some researchers [3, 8, 15, 16] have extended the
knowledge discovery aspect to the large scale of a medical
decision support system.

Our work is also in the main stream of medical decision
support system development, but our methodology is
different from those appeared in the literature. The system
proposed in this paper is based on a logic-programming
paradigm. The justification of our logic-based system is
that the closed form of Horn clauses that treats program in
the same way as data facilitates fusion of knowledge
learned from different sources, which is a normal setting
in medical domain. Knowledge reuse can easily practice in
this framework.

The declarative style of our implementation also eases the
future extension of the proposed medical support system
to cover the concepts of higher-order mining [23], i.e.
mining from the discovered knowledge, and constraint
mining [7], i.e. mining with some specified constraints to
obtain relevant knowledge.

6. Conclusions and Discussion

Modern healthcare organizations generate huge amount of
electronic data stored in heterogeneous databases. Data
collected by hospitals and clinics are not yet turned into
useful knowledge due to the lack of efficient analysis
tools. We thus propose a rapid prototyping of automatic
mining tools to induce knowledge from medical data. The
induced knowledge is to be evaluated and integrated into
the knowledge base of a medical expert system.
Discovered knowledge facilitates the reuse of knowledge
base among decision-support applications within
organizations that own heterogeneous clinical and health
databases. Direct application of the proposed system is for
medical related decision-making. Other indirect but
obvious application of such knowledge is to pre-process
other data sets by grouping it into focused subset
containing only relevant data instances.

The main contribution of this work is our implementation
of knowledge mining engines based on the concept of
higher-order Horn clauses using Prolog language. Higher-
order programming has been originally appeared in
functional languages in which functions can be passed as
arguments to other functions and can also be returned
from other functions. This style of programming has soon
been ubiquitous in several modern programming
languages such as Perl, PHP, and JavaScript. Higher order
style of programming has shown the outstanding benefits
of code reuse and high level of abstraction. This paper
illustrates higher order programming techniques in SWI-
Prolog. The powerful feature of meta-level programming
in Prolog facilitates the reuse of mining results represented
as rules to be flexibly applied as conditional clauses in
other applications.

The plausible extensions of our current work are to add
constraints into the knowledge mining method in order to
limit the search space and therefore yield the most relevant
and timely knowledge, and due to the uniform
representation of Prolog’s statements as a clausal form,
mining from the previously mined knowledge should be
implemented naturally. We also plan to extend our system
to work with stream data that normally occur in modern
medical organizations.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 70

Appendix

The implementation of knowledge-mining component is
based on the concept of higher-order and meta-
programming styles. Higher-order programming in Prolog
refers to Horn clauses that can quantify over other
predicate symbols [18]. Meta-level programming is also
another powerful feature of Prolog. Data and program in
Prolog take the same representational format; that is
clausal form. Higher-order and meta-level clauses in the
following source code are typed in bold face.

/* Classification mining engine */
:- include('data.pl').
:- dynamic current_node/1, node/2, edge/3.

main :-
 init(AllAttr, EdgeList),
 getNode(N), % get node sequence number
 create_edge(N, AllAttr, EdgeList),
 print_model.

init(AllAttr, [root-nil/PB-NB]) :-
 retractall(node(_, _)),
 retractall(current_node(_)),
 retractall(edge(_, _, _)),
 assert(current_node(0)),
 findall(X, attribute(X, _), AllAttr1),
 delete(AllAttr1, class, AllAttr),
 findall(X2, instance(X2, class=yes, _), PB),
 findall(X3, instance(X3, class=no, _), NB).

getNode(X) :-
 current_node(X), X1 is X+1,
 retractall(current_node(_)),
 assert(current_node(X1)).

create_edge(_, _, []) :- !.

create_edge(_, [], _) :- !.

create_edge(N, AllAttr, EdgeList) :-
 create_nodes(N, AllAttr, EdgeList).

create_nodes(_, _, []) :- !.

create_nodes(_, [], _) :- !.

create_nodes(N, AllAttr, [H1-H2/PB-NB|T]) :-
 getNode(N1), % get node sequence number N1
 assert(edge(N, H1-H2, N1)), % H1-H2 is
 % a pattern
 assert(node(N1, PB-NB)), % PB-NB is
 % a pattern
 append(PB, NB, AllInst),
 ((PB \== [], NB \== []) -> % if-condition
 % then clauses
 (cand_node(AllAttr, AllInst, AllSplit),
 best_attribute(AllSplit, [V, MinAttr,
 Split]),
 delete(AllAttr, MinAttr, Attr2),
 create_edge(N1, Attr2, Split))
 ; % else clause
 true),
 create_nodes(N, AllAttr, T).
%

% select best attribute to be a decision node
%
best_attribute([], Min, Min).

best_attribute([H|T], Min) :-
 best_attribute(T, H, Min).

best_attribute([H|T], Min0, Min) :-
 H = [V, _, _],
 Min0 = [V0, _, _],
 (V < V0 -> Min1 = H ; Min1 = Min0),
 best_attribute(T, Min1, Min).

%
% generate candidate decision node
%
cand_node([], _, []) :- !.

cand_node(_, [], []).

cand_node([H|T], CurInstL, [[Val,H,SplitL]
 |OtherAttr]) :-
 info(H, CurInstL, Val, SplitL),
 cand_node(T, CurInstL, OtherAttr).

%
% compute Info of each candidate node
%
info(A, CurInstL, R, Split) :-
 attribute(A,L),
 maplist(concat3(A,=), L, L1),
 suminfo(L1, CurInstL, R, Split).

concat3(A,B,C,R) :-
 atom_concat(A,B,R1),
 atom_concat(R1,C,R).

suminfo([],_,0,[]).

suminfo([H|T], CurInstL, R, [Split | ST]) :-
 AllBag = CurInstL, term_to_atom(H1, H),
 findall(X1, (instance(X1, _, L1),
 member(X1, CurInstL),
 member(H1, L1)), BagGro),
 findall(X2,(instance(X2, class=yes, L2),
 member(X2, CurInstL),
 member(H1, L2)), BagPos),
 findall(X3,(instance(X3, class=no, L3),
 member(X3, CurInstL),
 member(H1, L3)), BagNeg),
 (H11= H22) = H1,
 length(AllBag, Nall),
 length(BagGro, NGro),
 length(BagPos, NPos),
 length(BagNeg, NNeg),
 Split = H11-H22/BagPos-BagNeg,
 suminfo(T, CurInstL, R1,ST),
 (NPos is 0 *-> L1 = 0;
 L1 is (log(NPos/NGro)/log(2))),
 (0 is NNeg *-> L2 = 0;
 L2 is (log(NNeg/NGro)/log(2))),
 (NGro is 0 -> R= 999;
 R is (NGro/Nall)*
 (-(NPos/NGro)*
 L1- (NNeg/NGro)*L2)+R1).

/* ========================= */
/* Association mining engine */

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 71

/* ========================= */
association_mining:-
 min_support(V), % set minimum support
 makeC1(C), % create candidate 1-itemset
makeL(C,L), % compute large itemset
apriori_loop(L,1). % recursively run apriori

apriori_loop(L, N) :- % base case of recursion
 length(L) is 1,!.

apriori_loop(L, N) :- % inductive step
 N1 is N+1,
makeC(N1, L, C),
makeL(C, Res),

 apriori_loop(Res, N1).

makeC1(Ans):-

input(D), % input data as a list,
 % e.g. [[a], [a,b]]
 % then make combination of itemset
allComb(1, ItemList, Ans2),
 % scan database and pass countSS to maplist
maplist(countSS(D),Ans2,Ans).

makeC(N, ItemSet, Ans) :- input(D),

 allComb(2, ItemSet, Ans1),
 maplist(flatten, Ans1, Ans2),
 maplist(list_to_ord_set, Ans2, Ans3),
 list_to_set(Ans3, Ans4),
 include(len(N), Ans4, Ans5),
 % include is also a
 % higher-order predicate
 maplist(countSS(D), Ans5, Ans).
 % scan database to find: List+N

makeL(C, Res):- % for all large itemset creation
 % call higher-order predicates
 % include and maplist

 include(filter, C, Ans),
 maplist(head, Ans, Res).

%
% filter and head are for pattern matching of
% data format
%
filter(_+N):-
 input(D),
 length(D,I),
 min_support(V),
 N>=(V/100)*I.

head(H+_, H).

%
% an arbitrary subset of the set containing
% given number of elements
%
comb(0, _, []).

comb(N, [X|T], [X|Comb]) :-
 N>0, N1 is N-1,
 comb(N1, T, Comb).

comb(N, [_|T], Comb) :-
 N>0,
 comb(N, T, Comb).
allComb(N, I, Ans) :-
 setof(L, comb(N, I, L), Ans).

countSubset(A, [], 0).

countSubset(A, [B|X], N) :-
 not(subset(A, B)),

countSubset(A, X, N).

countSubset(A, [B|X], N) :-
 subset(A, B),
 countSubset(A, X, N1),
 N is N1+1.

countSS(SL, S, S+N) :-
 countSubset(S, SL, N).

Acknowledgments

This work has been fully supported by research fund from
Suranaree University of Technology granted to the Data
Engineering and Knowledge Discovery (DEKD) research
unit. This research is also supported by grants from the
National Research Council of Thailand (NRCT) and the
Thailand Research Fund (TRF).

References
[1] R. Agrawal, and R. Srikant, “Fast algorithm for mining

association rules”, in: Proc. VLDB, 1994, pp.487-499.
[2] M. Alavi, and D.E. Leidner, “Review: Knowledge

management and knowledge management systems:
Conceptual foundations and research issues”, MIS Quarterly,
Vol.25, No.1, 2001, pp.107-136.

[3] Y. Bedard et al., “Integrating GIS components with
knowledge discovery technology for environmental health
decision support”, Int. J Medical Informatics, Vol.70, 2003,
pp.79-94.

[4] C.C. Bojarczuk et al., “A constrained-syntax genetic
programming system for discovering classification rules:
Application to medical data sets”, Artificial Intelligence in
Medicine, Vol.30, 2004, pp.27-48.

[5] C. Bratsas et al., “KnowBaSICS-M: An ontology-based
system for semantic management of medical problems and
computerised algorithmic solutions”, Computer Methods and
Programs in Biomedicine, Vol.83, 2007, pp.39-51.

[6] R. Correia et al., “Borboleta: A mobile telehealth system for
primary homecare”, in: Proc. ACM Symposium on Applied
Computing, 2008, pp.1343-1347.

[7] L. De Raedt et al., “Constraint programming for itemset
mining”, in: Proc. KDD, 2008, pp.204-212.

[8] E. German et al., “An architecture for linking medical
decision-support applications to clinical databases and its
evaluation”, J. Biomedical Informatics, Vol.42, 2009,
pp.203-218.

[9] S. Ghazavi and T.W. Liao, “Medical data mining by fuzzy
modeling with selected features”, Artificial Intelligence in
Medicine, Vol.43, No.3, 2008, pp.195-206.

[10] D. Hristovski et al., “Using literature-based discovery to
identify disease candidate genes”, Int. J Medical Informatics,
Vol.74, 2005, pp.289-298.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 72

[11] M.J. Huang et al., “Integrating data mining with case-based
reasoning for chronic diseases prognosis and diagnosis”,
Expert Systems with Applications, Vol.32, 2007, pp.856-867.

[12] N.C. Hulse et al., “Towards an on-demand peer feedback
system for a clinical knowledge base: A case study with
order sets”, J Biomedical Informatics, Vol.41, 2008, pp.152-
164.

[13] N.K. Kakabadse et al., “From tacit knowledge to knowledge
management: Leveraging invisible assets”, Knowledge and
Process Management, Vol. 8, No. 3, 2001, pp.137-154.

[14] E. Kretschmann et al., “Automatic rule generation for
protein annotation with the C4.5 data mining algorithm
applied on SWISS-PROT”, Bioinformatics, Vol.17, No.10,
2001, pp.920-926.

[15] P.-J. Kwon et al., “A study on the web-based intelligent
self-diagnosis medical system”, Advances in Engineering
Software, Vol.40, 2009, pp.402-406.

[16] C. Lin et al., “A decision support system for improving
doctors’ prescribing behavior”, Expert Systems with
Applications, Vol.36, 2009, pp.7975-7984.

[17] E. Mugambi et al., “Polynomial-fuzzy decision tree
structures for classifying medical data”, Knowledge-Based
System, Vol.17, No.2-4, 2004, pp.81-87.

[18] G. Nadathur, and D. Miller, “Higher-order Horn clauses”, J
ACM, Vol.37, 1990, pp.777-814.

[19] D. Nguyen et al., “Knowledge visualization in hepatitis
study”, in: Proc. Asia-Pacific Symposium on Information
Visualization, 2006, pp.59-62.

[20] S. Palaniappan, and C.S. Ling, “Clinical decision support
using OLAP with data mining”, Int. J Computer Science and
Network Security, Vol.8, No.9, 2008, pp.290-296.

[21] J.R. Quinlan, “Induction of decision trees”, Machine
Learning, Vol.1, 1986, pp.81-106.

[22] J.F. Roddick et al., “Exploratory medical knowledge
discovery: experiences and issues”, ACM SIGKDD
Explorations Newsletter, Vol.5, No.1, 2003, pp.94-99.

[23] J.F. Roddick et al., “Higher order mining”, ACM SIGKDD
Explorations Newsletter, Vol.10, No.1, 2008, pp.5-17.

[24] C.P. Ruppel, and S.J. Harrington, “Sharing knowledge
through intranets: A study of organizational culture and
intranet implementation”, IEEE Transactions on
Professional Communication, Vol.44, No.1, 2001, pp.37-51.

[25] T.R. Sahama, and P.R. Croll, “A data warehouse
architecture for clinical data warehousing”, in: Proc. 12th
Australasian Symposium on ACSW Frontiers, 2007, pp.227-
232.

[26] A. Satyadas et al., “Knowledge management tutorial: An
editorial overview”, IEEE Transactions on Systems, Man and
Cybernetics, Part C, Vol.31, No.4, 2001, pp.429-437.

[27] A. Shillabeer, and J.F. Roddick, “Establishing a lineage for
medical knowledge discovery”, in: Proc. 6th Australasian
Conf. on Data Mining and Analytics, 2007, pp.29-37.

[28] J. Thongkam et al., “Breast cancer survivability via
AdaBoost algorithms”, in: Proc. 2nd Australasian Workshop
on Health Data and Knowledge Management, 2008, pp.55-
64.

[29] N. Uramoto et al., “A text-mining system for knowledge
discovery from biomedical documents”, IBM Systems J,
Vol.43, No.3, 2004, pp.516-533.

[30] X. Zhou et al., “Text mining for clinical Chinese herbal
medical knowledge discovery”, in: Proc. 8th Int. Conf. on
Discovery Science, 2005, pp.396-398.

[31] Z.Y. Zhuang et al., “Combining data mining and case-based
reasoning for intelligent decision support for pathology
ordering by general practitioners”, European J Operational
Research, Vol.195, No.3, 2009, pp.662-675.

Nittaya Kerdprasop is an associate professor at the school of
computer engineering, Suranaree University of Technology,
Thailand. She received her B.S. in radiation techniques from
Mahidol University, Thailand, in 1985, M.S. in computer science
from the Prince of Songkla University, Thailand, in 1991 and Ph.D.
in computer science from Nova Southeastern University, USA, in
1999. She is a member of IAENG, ACM, and IEEE Computer
Society. Her research of interest includes Knowledge Discovery in
Databases, Data Mining, Artificial Intelligence, Logic and
Constraint Programming, Deductive and Active Databases.

Kittisak Kerdprasop is an associate professor and the director of
DEKD (Data Engineering and Knowledge Discovery) research unit
at the school of computer engineering, Suranaree University of
Technology, Thailand. He received his bachelor degree in
Mathematics from Srinakarinwirot University, Thailand, in 1986,
master degree in computer science from the Prince of Songkla
University, Thailand, in 1991 and doctoral degree in computer
science from Nova Southeastern University, USA, in 1999. His
current research includes Data mining, Machine Learning, Artificial
Intelligence, Logic and Functional Programming, Probabilistic
Databases and Knowledge Bases.

