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Abstract 
In this paper the problem of active fault tolerant control design 
for noisy systems described by Takagi-Sugeno fuzzy models is 
studied. The proposed control strategy is based on the known of 
the fault estimated and the error between the faulty system state 
and a reference system state. The considered systems are affected 
by actuator and sensor faults and have the weighting functions 
depending on the fault tolerant control. A mathematical 
transformation is used to conceive an augmented system in 
which all the faults affecting the initial system appear as actuator 
faults. Then, an adaptive proportional integral observer is used in 
order to estimate the state and the faults. The problem of 
conception of the proportional integral observer and of the fault 
tolerant control strategy is formulated in linear matrices 
inequalities which can be solved easily. To illustrate the 
proposed method, It is applied to the three tanks systems. 
Keywords: fault estimation, active fault tolerant control, 
proportional integral observer, nonlinear Takagi-Sugeno fuzzy 
models, actuator faults, sensor faults. 

1. Introduction 

State observers are always used to estimate system outputs 
by the known of the system model and some measures of 
the system control and output [27]. This estimation is 
compared to the measured value of the output to generate 
residuals. The residuals are used as reliable indicators of 
the process behavior. They are equal to zero if the system 
is not affected by faults. The residuals depend of faults if 
they are present.  There are three categories of faults 
detection methods: sensors faults detection, actuators 
faults detection and system faults detection. 
In most cases, processes are subjected to disturbances 
which have as origin the noises due to its environment and 
the model uncertainties. Moreover, sensors and/or 
actuators can be corrupted by different faults or failures. 
Many works are dealing with state estimation for systems 
with unknown inputs or parameter uncertainties.  In [37], 
Wang et al. propose an observer able to entirely 
reconstruct the state of a linear system in the presence of 
unknown inputs and in [28], to estimate the state, a model 
inversion method is used. Using the Walcott and Zak 

structure observer [36], Edwards et al. [7] and [8] have 
also designed a convergent observer using the Lyapunov 
approach. 

 
In the context of nonlinear systems described by Takagi-
Sugeno fuzzy models, some works tried to reconstruct the 
system state in spite of the unknown input existence. This 
reconstruction is assured via the elimination of unknown 
inputs [10]. Other works choose to estimate the unknown 
inputs and system state simultaneously [1], [12], [18], [23] 
and [30]. Unknown input observers can be used to 
estimate actuator faults provided they are assumed to be 
considered as unknown inputs. This estimation can be 
obtained by using a proportional integral observer [15], 
[17], [21-23]. That kind of observers gives some 
robustness property of the state estimation with respect to 
the system uncertainties and perturbations [4], [31]. 

 
Faults affecting systems have harmful effects on the 
normal behavior of the process and their estimation can be 
used to conceive a control strategy able to minimize their 
effects (named fault tolerant control (FTC)). A control 
loop can be considered fault tolerant if there exist 
adaptation strategies of the control law included in the 
closed-loop that introduce redundancy in actuators [38]. 
Fault Tolerant Control (FTC) is, relatively, a new idea in 
the research literature [5] which allows having a control 
loop that fulfils its objectives when faults appear [11], [16], 
[19] and [20] 
 
There are two main groups of control strategies: the active 
and the passive techniques. The passive techniques are 
control laws that take into account the faults appearance as 
system perturbations [38]. Thus, within certain margins, 
the control law has inherent fault tolerant capabilities, 
allowing the system to cope with the fault presence [38]. 
This kind of control is described in [5], [6] [25], [26], [32] 
and [33]. The active fault tolerant control techniques 
consist on adapting the control law using the information 
given by the FDI block [5], [16], [19], [20] and [40]. With 
this information, some automatic adjustments are done 
trying to reach the control objectives [38]. 
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In this paper, an active FTC strategy inspired from that 
given in [38] is proposed. In [38] Witczak et al. designed a 
FTC strategy for the class of discrete systems. This FTC is 
conceived using the error between the faulty and the 
reference system states.  However, in real cases the faulty 
system state is unknown. The main contribution in this 
work is to conceive the FTC for the case of non linear 
systems described by Takagi-Sugeno fuzzy models with 
weighting functions depending on the fault tolerant control. 
This case is not treated enough in the literature [11]. It is 
important to consider this system class because if the 
weighting functions are depending on the system input 
and if the system input changes because of the action of 
the fault affecting the system, the weighting functions 
must depend on the new system input. State and faults 
estimation is made using an adaptive proportional integral 
observer. A mathematical transformation is used to 
conceive an augmented system in which the sensor fault 
affecting the initial system appears as an actuator fault. 
The actuator fault is considered as an unknown input. 
Once the fault is estimated, the FTC controller is 
implemented as a state feedback controller. In this work 
the observer design and the control implementation can be 
made simultaneously.   
 
The paper is organized as follows. Section 2 recalls an 
elementary background about the Takagi-Sugeno fuzzy 
models (named also multiple models). In section 3 the 
proposed method of fault tolerant control design is 
presented. The application of the proposed control to the 
three tanks system is the subject of section 4.  

2. On the Takagi-Sugeno fuzzy systems 

Takagi–Sugeno fuzzy models are non linear systems 
described by a set of if–then rules which gives local linear 
representations of an underlying system [1], [12], [14] and 
[39] Such models can approximate a wide class of non 
linear systems [39]. They can even describe exactly some 
non linear systems [38] and [39].  
Each non linear dynamic system can be simply, described 
by a Takagi-Sugeno fuzzy model [35] and [34]. A Takagi-
Sugeno fuzzy model is the fuzzy fusion of many linear 
models [1-3], [12] and [30] each of them represents the 
local system behavior around an operating point. A 
Takagi-Sugeno model is described by fuzzy IF-THEN 
rules which represent local linear input/output relations of 
the non-linear system [38]. It has a rule base of M rules, 

each having p antecedents, where the thi  rule is expressed 

as: 

1 1:   IF    is    and ... and   is  

( ) ( ) ( )
              THEN : 

( ) ( )

i i i
p p

i i

i

R F F

x t A x t B u t

y t C x t

 

 
 

                         (1) 

in which 1 ... ,  ( 1... )i
ji M F j p   are fuzzy sets and 

1 2 ... p        is a known vector of premise 

variables [23] which may depend on the state, the input or 
the output.  
The final output of the normalized Takagi-Sugeno fuzzy 
model can be inferred as: 

1

1

( ) ( ( ))( ( ) ( ))

( ) ( ( )) ( )

M

i i i
i

M

i i
i

x t t A x t B u t

y t t C x t

 

 






 



 








                                (2) 

The weighting functions ( ( ))i t   are non linear and 

depend on the decision variable ( )t . 

The weighting functions are normalized rules defined as: 

1

1
1

( ( ))
( ( ))

( ( ))

p
ij

i M
p

jj
j

T t
t

T t

 
 

 









                                             (3) 

where ( ( ))i t   is the grade of membership of the premise 

variable ( )t  and T  denotes a t-norm. The weighting 

functions satisfy the sum convex property expressed in the 
following equations:  

1

0 ( ( )) 1   and   ( ( )) 1
M

i i
i

t t   


                              (4) 

If, in the equation which defines the output, we impose 
that 1 2 ... MC C C C    , the output of the model (2) is 

reduced to: ( ) ( )y t Cx t  and the Takagi-Sugeno fuzzy 

model becomes: 

1

( ) ( ( ))( ( ) ( ))

( ) ( )

M

i i i
i

x t t A x t B u t

y t Cx t

 



 


 


                              (5) 

This model, known also as Takagi-Sugeno multiple 
model, has been initially proposed, in a fuzzy modeling 
framework, by Takagi and Sugeno [34] and in a multiple 
model modeling framework in [13] and [29]. This model 
has been largely considered for analysis [29], [34] and [9], 
modeling [13] and [41], control [21] and  [9]  and state 
estimation [1-3], [12], [22], [23] and [30 ] of non linear 
systems.  
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3. Active fault tolerant control design 

A non linear system described by multiple model can be 
expressed as follow: 

1

( ) ( ( )) ( ) ( )

( ) ( )

M

i i
i

x t u t A x t Bu t

y t Cx t





 


 


                                    (6) 

where ( ) nx t R is the state vector, ( ) ru t R  is the input 

vector, ( ) my t R   the output vector and ,iA B and C are 

known constant matrices with appropriate dimensions. 
The scalar M represents the number of local models. 
Consider the following nonlinear Takagi-Sugeno model 
affected by actuator and sensor faults and measurement 
noise: 

1

( ) ( ( )) ( ) ( ) ( )

( ) ( ) ( ) ( )

M

f i f i f f a
i

f f s

x t u t A x t Bu t Ef t

y t Cx t Ff t Dw t





  


   


             (7) 

where ( ) n
fx t R   is the state vector, ( ) r

fu t R  is the 

fault tolerant control which will be conceived, ( ) m
fy t R  

is the output vector. ( )af t and ( )sf t are respectively the 

actuator and sensor faults which are assumed to be 
bounded and ( )w t  represents the measurement noise. 

,E F and D are respectively the faults and the noise 
distribution matrices which are assumed to be known. 
Let us define the following states [15]: 

1

1

( ) ( ( ))( ( ) ( ))

( ) ( ( ))( ( ) ( ) ( ) ( ))

M

i
i

M

f i f i s
i

z t u t Az t ACx t

z t u t Az t ACx t AFf t ADw t









  

    









    (8) 

where A is a stable matrix with appropriate dimension. 
Defining the two augmented states ( )X t  and ( )fX t as:  

( ) ( ) ( )
TT TX t x t z t     and ( ) ( ) ( )

TT T
f f fX t x t z t    , 

these two augmented state vectors can be written: 
 

1

( ) ( ( )) ( ) ( )

( ) ( )

M

i ai a
i

a

X t u t A X t B u t

Y t C X t





 


 


                              (9) 

and 

1

( ) ( ( )) ( ) ( ) ( ) ( )

( ) ( )

M

f i f ai f a f a a
i

f a f

X t u t A X t B u t E f t D w t

Y t C X t





   


 



                                                                                     (10) 
with: 

0i
ai

A
A

AC A

 
    

, 
0

0a

E
E

AF

 
  
 

, a

s

f
f

f

 
  
 

,
0a

B
B

 
  
 

, 

0
aD

AD

 
  
 

 and  0aC I ,                                      (11) 

A proportional integral observer is used to estimate the 
augmented state ( )fX t and the generalized fault ( )f t . It is 

given by the following equations: 

1

1

ˆˆ ˆ( ) ( ( ))( ( ) ( )) ( ) ( )

ˆ( ) ( ( )) ( )

ˆ ˆ( ) ( )

M

f i f ai f i f a f a
i

M

i f i f
i

a

X t u t A X t K Y t B u t E f t

f t u t LY t

Y t C X t










   


 

 






 

 

                                                                                       (12) 

where ˆ ( )fX t is the estimated system state, ˆ ( )f t represents 

the estimated fault, ˆ ( )fY t is the estimated output, iK are 

the proportional gains of the local observers and iL are 

their integral gains to be computed and ˆ( ) ( ) ( )f f fY t Y t Y t  .  

The fault tolerant control ( )fu t is conceived on the base of 

the strategy described by the following expression [38].  
ˆ ˆ( ) ( ) ( ( ) ( )) ( )f fu t Sf t G X t X t u t                             (13) 

where S and G are two constant matrices with appropriate 
dimensions.  

Let us define ( )X t  the error between the states ( )X t  and 

( )fX t , ( )fX t  the estimation error of the state ( )fX t   

and ( )f t  the fault estimation error : 

( ) ( ) ( )

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )

f

f f f

X t X t X t

X t X t X t

f t f t f t

 

 

 







                                                 (14) 

Choosing the matrix S verifying a aE B S , the dynamics 

of ( )X t  is given by: 

1
1

( ) ( ) ( )

= ( ( ))( ) ( ) ( ) ( ) ( )

f

M

i ai a a a f
i

X t X t X t

u t A B G X t E f t B GX t t


 

   

  

 
  (15) 

with : 

1
1

( ) ( ( ) ( )) ( ) ( )
M

i f i ai f a
i

t u t u t A X t D w t 


                (16) 

The dynamic of ( )fX t   can be written: 
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2
1

( ) ( ) ( )

          = ( ( ))( ) ( ) ( ) ( )

f f f

M

i ai i a f a
i

X t X t X t

u t A K C X t E f t t


 

   

  


 (17) 

with : 

2
1

( ) ( ( ) ( ))( ) ( ) ( )
M

i f i ai i a f a
i

t u t u t A K C X t D w t 


         (18) 

The dynamic of the fault error estimation is: 

3
1

ˆ( ) ( ) ( )

      ( ( )) ( ) ( )
M

i i a f
i

f t f t f t

u t L C X t t


 

   

 


                          (19) 

with : 

3
1

( ) ( ( ) ( )) ( ) ( ) ( )
M

i f i i a f a
i

t u t u t L C X t D w t f t 


       (20) 

The equations (15), (17) and (19) can be rewritten: 
( ) ( ) ( )mt A t t                                                           (21) 

where :  

( )

( ) ( )

( )

f

X t

t X t

f t



 
 

  
 
  







, 
1

2

3

( )

( ) ( )

( )

t

t t

t


 
   
  

and 
1

( ( ))
M

m i mi
i

A u t A


   

                                                                                       (22) 
where 

0

0 0

ai a a a

mi ai i a a

i a

A B G B G B

A A K C B

L C

  
   
  

                           (23) 

Considering the Lyapunov function ( ) ( ) ( )TV t t P t  , the 

generalized error vector ( )t converges to zero if ( ) 0V t  , 

( ) 0V t   if  0   1...T
mi miA P PA i M     . 

The problem of robust state and faults estimation and of 
the fault tolerant control design is reduced to find the 
gains K  and L  of the observer and the matrix G to 
ensure an asymptotic convergence of the generalized error 
vector ( )t  toward zero if ( ) 0t   and to ensure a 

bounded error in the case where ( ) 0t  , i.e.: 

lim ( ) 0                  for ( ) 0

( ) ( )      for ( ) 0
t

Q Q

t t

t t t
 

 

   


 

 
                             (24) 

where 0   is the attenuation level. To satisfy the 
constraints (13), it is sufficient to find a Lyapunov 
function ( )V t  such that: 

2( ) ( ) ( ) ( ) ( ) 0T TV t t Q t t Q t                              (25) 

where Q  and Q  are two positive definite matrices.  

The inequality (25) can be written: 

( ) ( )
0

( ) ( )

T
t t

t t

 
 
   

    
   

                                                     (26) 

where: 

2

T
m mA P PA Q P

P Q





  
   

  
                                 (27) 

Choosing Q Q I   and assume that the Lyapunov 

matrix P  has the form: 2 3( , , )diag I P P , the matrix   is 

written : 

1

( ( ))
M

i i
i

u t


                                                           (28) 

where: 

11

22 23 2

32 3 3

1 01

2 2 02

3 3 03

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0

i a a

T T
a i i

T
a i

i

B G B I

G B P

B I P

I I

P I

P I






  
 
   
   
 
 
 
  

 (29) 

with: 

11 1

22 2 2 2 2 2

23 2 3

32 23

T T T
i ai a ai a

T T T
i ai i a ai a i

T T
i a a i

T
i

A B G A G B I

P A P K C A P C K P I

P B C L P

     

     

  

  

             (30) 

0   if  0   1...i i M    , the inequalities 0i  are 

bilinear, they can be linearised using the changes of 
variables : 2 2i iU P K  and 3 3i iU P L . The observer gains 

are then computed using the equations: 
1

2 2

1
3 3

i i

i i

K P U

L P U








                                                                 (31) 

Summarizing the following theorem can be proposed: 
Theorem: 
The system (21) describing the evolution of the errors 

( ), ( )fX t X t   and ( )f t  is stable if there exist symmetric 

definite positive matrices 2P and 3P and matrices 

3 2,i iU U and G ,  1...i M so that the LMI 0i   are 

verified  1...i M  where : 

11

22 23 2

32 3 3

1 01

2 2 02

3 3 03

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0

i a a

T T
a i i

T
a i

i

B G B I

G B P

B I P

I I

P I

P I






  
 
   
   
 
 
 
  

 (32) 
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and: 

11 1

22 2 2 2 2 2 2

23 2 3

32 23

T T T
i ai a ai a

T T T
i ai i ai a i

T T
i a a i

T
i

A B G A G B I

P A P U A P C U I

P B C U

     

     

  

  

                  (33) 

The observer gains are obtained by:  
1

3 3i iL P U  and 1
2 2i iK P U  

4. Application to the three tanks system   

The main objective of this part is to show the robustness 
of the proposed method by its application to a hydraulic 
process made up of three tanks [3] and [34].  

 

Fig. 1 Three tanks system  

The considered system is affected simultaneously by 
sensor and actuator faults. The three tanks 1 2,T T , and 3T  

with identical sections  , are connected to each others by 
cylindrical pipes of identical sections nS . The output 

valve is located at the output of tank 2T ; it ensures to 

empty the tank filled by the flow of pumps 1 and 2 with 
respectively flow rates 1Q  and 2Q . Combinations of the 

three water levels are measured. The pipes of 
communication between the tanks are equipped with 
manually adjustable ball valves, which allow the 
corresponding pump to be closed or open. The three levels 

1 2,x x  and 3x  are governed by the constraint 1 3 2x x x  ; 

the process model is given by the equation (33). Indeed, 
taking into account the fundamental laws of conservation 
of the fluid, one can describe the operating mode of each 
tank; one then obtains a non linear model expressed by the 
following state equations [3] and [41] 
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



 


(34) 

where 1 2,   and 3  are constants, ( )af t  is the actuator 

fault regarded as an unknown input.  / , 1...3iQf f i  

denote the additional mass flows into the tanks caused by 
leaks and g  is the gravity constant. The multiple model, 

with ( ) ( )t u t  , which approximates the non linear 

system (34), is: 

1

( ) ( ( ))( ( ) ( ) ( ) )

( ) ( ) ( ) ( )

M

i i a i
i

s

x t t A x t Bu t Ef t d

y t Cx t Ff t Dw t

 



   


   


     (35) 

The matrices ,i iA B , and id  are calculated by linearizing 

the initial system (34) around four points chosen in the 
operation range of the system. Four local models have 
been selected in a heuristic way. That number guarantees a 
good approximation of the state of the real system by the 
multiple models [3] and [41]. The following numerical 
values were obtained: 

1
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, 3
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In the following, the functions 1 2,Qf Qf  and 3Qf  are 

constant, the numerical application are performed with: 
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 410 1...4iQf i    and  0,t x , 9.8g  , 1 0.78,   

2 0.78   and 3 0.75  , 55*10nS  and 0.0154  . 

The two actuator faults signals  1 2( ) ( ) ( )a a af t f t f t  

are defined as: 

1

sin(0.4 ),    for  15 75s
( )
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t s t
f t

  
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2
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( ) 0.5,    for  70s

0,    elswere
a

s t

f t t

 
 



 

It is supposed that a sensor fault ( )sf t  is affecting the 

system. This fault is defined as follows: 

 1 2( ) ( ) ( )s s sf t f t f t with: 

1

0,    for  35s
( )

0.6,    for  35ss

t
f t

t


  

 and 

2

0,    for  25s
( )

sin(0.6 ),    for  25ss

t
f t

t t


  
 

The chosen weighting functions depends on the system 
input ( )u t . They have been created on the basis of 

Gaussian membership functions. Figure (2) shows their 
time-evolution showing that the system is clearly 
nonlinear since  , 1,..., 4i i  are not constant functions. 

 

Fig. 2. Weighting functions 

Choosing, 10  A I   the 1 2 3 4 1 2 3 4, , , , , , , ,K K K K L L L L and 

G  computation gives: 1.2936  , 
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The obtained results are shown in figures (3) to (7).   

 

Fig. 3. Actuator faults and their estimation  

Figure (3) visualizes the two actuator faults ( 1( )af t  and 

2 ( )af t ) and their estimations, the two sensor faults 

( 1( )sf t  and 2 ( )sf t ) and their estimations are represented 

in figure (4). In figure (5), the state error estimation is 
visualized. 
These three figures show that the proposed observer 
permits to estimate simultaneously the sensor and actuator 
faults and the system state.  The application of the 
proposed method to the three tanks system shows its 
robustness. Simulation results show that the fault is 
estimated well and the effect of the measurement noise is 
minimized. This method allows estimating well the sensor 
and actuator faults even in the case of time-varying faults. 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     94 

 

 

Fig. 4. Sensor faults and their estimation 

 

Fig. 5. state error estimation 

 
 

Fig.6. error between  x and xf 

 

      Fig. 7. Fault tolerant control uf 

Figure (6) shows the time-evolution of the error ( )X t  

between the reference state ( )x t  and the faulty state ( )fx t . 

This error converges toward zero. So the application of the 
conceived fault tolerant control law ( )fu t  to the faulty 

system let the behavior of the system affected by the 
sensor and the actuator fault similar to the reference 
system behavior. The action of the proposed fault tolerant 
control is quick.  
Fault and state estimation is very important because the 
fault and state estimated are used to conceive the fault 
tolerant control strategy. This control is shown in the 
figure (7) 

5. Conclusion 

This work proposes a direct application of the use of 
proportional integral observer to the fault tolerant control 
design. This control was conceived for systems described 
by Takagi-Sugeno fuzzy models with weighting function 
depending on the FTC. The proposed method is based on 
the estimation of the state and faults affecting the system. 
To make faults estimation, a mathematical transformation 
was used to conceive an augmented system in which the 
sensor fault affecting the initial system appears as an 
actuator fault. Then an adaptive proportional integral 
observer is used to estimate simultaneously actuator and 
sensor faults and the system state. The main contribution 
in this work is that the considered systems have the 
weighting functions depending on the fault tolerant control 
which is a very important case and is the subject of few 
works and in the use of the mathematical transformation 
and the proportion integral observer to estimate time-
varying sensor and actuator faults.  The FTC controller is 
implemented as a state feedback controller. This controller 
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is designed such that it can stabilize the faulty plant using 
Lyapunov theory and LMIs.  
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