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Abstract 
Direct Cover (DC) based techniques for synthesis of 
multiple-valued logic (MVL) functions have been reported 
in the literature. In this paper, we propose Fuzzy-based 
DC algorithm for synthesis of MVL functions. The 
proposed algorithm uses the principles of Fuzzy Logic in 
selecting the set of minterms and the appropriate set of 
implicants needed to synthesize a given MVL function. 
The proposed Fuzzified-Direct-Cover (FZDC) heuristic is 
tested in comparison with five other DC-based algorithms 
reported in the literature. The benchmark used in our 
comparison consists of 50000 2-variable 4-valued 
randomly generated functions. The basis for comparison is 
the chip area consumed in terms of the average number of 
implicants needed to synthesize a given MVL function. It 
is shown that on average the FZDC heuristic requires less 
number of implicants to synthesize a given MVL function 
as compared to those required by any of the other five DC-
based heuristics.  
Keywords: Multi-Valued Logic (MVL) synthesis, Heuristic 
algorithms, Direct Cover (DC) algorithms, Weighted 
direct cover algorithm (WDC), Ordered DC algorithm 
(ODC), Fuzzified-Direct-Cover algorithm (FZDC). 

1. Introduction 

Signal processing using multiple-valued logic (MVL) is 
carried out using more than two logic levels 
[11][14][17][19]. Successful hardware realization of MVL 
circuits has been reported in the literature. Examples of 
MVL circuits reported in the literature using  binary 
CMOS (Complementary Metal Oxide Semiconductor) 
circuits [45]-[47] include arithmetic circuits [24], [39], 
[48], and [49], memory (ROM, RAM, and Flash) [38] and 
[51]-[52], and machine learning [4][7]. 
  
Deterministic synthesis of MVL functions is more 
complex than its binary counterpart. Exact minimization 
of MVL functions is prohibitively expensive and the use 
of heuristic algorithms in MVL synthesis is eminent [33], 

[50]. A number of heuristic algorithms for producing near 
minimal sum-of-products realization of MVL functions 
have been introduced in the literature [9] [31] [34][36]. 
These algorithms can be categorized  as direct cover-based 
[2][8][10][15], algebraic-based [12][16][18][26][29], 
decomposition-based [1][4]-[7] [12] [25] [35], decision 
diagram-based [21], [22], [27], [28], [32], and [37], and 
iterative-based [29]. Among these, the direct cover-based 
techniques have shown promising results and therefore 
have received increasing attention by MVL systems 
designers.  
In the context of MVL functional synthesis, the following 
definitions are relevant to present. 
Definition 1: An n -variable r -valued function, )(Xf , 

is a mapping RRf n : , where  1,,1,0  rR   

is a set of r  logic values with 2r  and 

 nxxxX ,,, 21   is a set of r -valued  n  variables.  

Definition 2: A window literal of a MVL variable x is 
defined as: 
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Definition 3: A tsum (truncated sum) operator is defined 
as  
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Where ai  R and  represents the truncated sum 
operation.  
Definition 4: The maximum (MAX) of two MVL 
variables  is defined as: 
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Definition 5: The minimum (MIN) of two MVL variables 
is defined as: 
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A functionally complete set of operators is the set capable 
of realizing all possible functions. A number of 
functionally complete sets have been used in synthesizing 
MVL functions. In terms of the set of MVL operators 
discussed above, the set consisting of {Literal, MIN, 
TSUM, Constant} is used in this paper. 

Definition 6: A product term (PT), ),...,,( 21 nxxxP , is 

defined as the minimum of a set of window literals such 
that 

),...,,,min(,...,,),...,,(
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n
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with ai ,biR, ai ≤ bi and c (the value of the PT)  {1,2,…, 
r-1}.      
Definition 7: An assignment of values to variables such 

that nn axaxax  ...,, 2211 , where ai {0, 1, …, 

r-1}, in an MVL function ),...,,( 21 nxxxf  is called a 

minterm, iff: ),...,,( 21 nxxxf ≠ 0.      

A minterm is a special case of a PT for 

which nn bababa  ...,, 2211 . If the value of a 

minterm is r, then it is considered as don’t care and is 
represented as d.  
Definition 8: An implicant of a 

function ),...,,( 21 nxxxf , is a PT, ),...,,( 21 nxxxI , 

such that ),...,,( 21 nxxxf  ≥ ),...,,( 21 nxxxI   for all 

assignments of xi’s.    
     
Fig. 1 shows an example of a 2-varaible 4-valued function. 
Some of the minterms in the figure are 10X1

03X2
3, 

20X1
01X2

1 and 30X1
02X2

2 while 20X1
11X2

1and 
20X1

11X2
2 are examples for implicants. 

 

 
Fig. 1. A Tabular Representation of f(X1, X2). 

 
The paper is organized as follows. In Section 2, we briefly 
present related published work. In Section 3 we introduce 
the hybrid Fuzzy based Direct Cover heuristic (FZDC). 
The results obtained using the proposed and the related 

DC-based heuristics using a benchmarks consisting of 
50000 2-variable 4-valued randomly generated functions 
are presented in Section 4.  In Section 5, we show a case 
study for the application of both the introduced and the 
related heuristics. The presented case study is that for  a 1-
bit 4-valued adder block. Concluding remarks are drawn 
in Section 6. 
 
This document is set in 10-point Times New Roman.  If 
absolutely necessary, we suggest the use of condensed line 
spacing rather than smaller point sizes. Some technical 
formatting software print mathematical formulas in italic 
type, with subscripts and superscripts in a slightly smaller 
font size.  This is acceptable. 

2. Related Work 

In this section, we briefly cover the related work published 
in the literature. 
 
2.1 The Direct Cover Algorithm 
 
The Direct Cover (DC) techniques for synthesis of MVL 
functions consist of the following main steps:  
1. Choose a minterm (see Definition 7),  
2. Identify a suitable implicant (see Definition 8) that 

covers the chosen minterm, 
3. Obtain a reduced function by subtracting the identified 

implicant from the (remaining part of the) function, and 
4. Repeat steps 1 to 3 until no more minterms remain 

uncovered. 
The method used in the selection of minterms and 
implicants is crucial in obtaining reduced number of 
product terms to cover a given function. The Direct Cover 
approaches reported in the literature differ in the way 
minterms are selected and the way according to which 
implicants are identified. Different minterm selection 
metrics have been reported in the literature. These include 
using the Isolation Weight (IW) [3] as a measure of the 
degree to which other minterms cluster around a given 
minterm, the Isolation Factor (IF) [10] which measures the 
number of directions in which a given minterm can be 
combined with a nonzero number of other minterms, and 
the Clustering Factor (CFN) [8] which measures the 
number of minterms that are connected to a given 
minterm. Similarly, a number of metrics were used in 
selecting the appropriate implicant to cover a given 
minterm. These include the Largest Number of Minterms 
Reduced to Zero (LRZ) [3] [15] which counts the number 
of 0 (or don’t care) that resulted from removing the 
selected implicant from the given MVL function, the 
Relative Break Count (RBC) [10] which a measure of the 
degree to which a function is simplified if a specific 
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implicant is chosen, and the Neighborhood Relative Count 
(NRC) [8] which measures the degree of the strength to 
which a given implicant couples with its neighbors.  
 
It should be noted that there is no general agreement on 
which set of criteria is the best to use for a given MVL 
function. An analysis of a limited subset of the different 
suggested criteria has been reported in [23]. Considering 
the different minterm/implicant selection criteria, it is 
possible to combine all metrics to create a new selection 
criterion. One possible way to achieve this is by using the 
weighted sum approach. However, the different scale and 
behavior of each criterion makes it difficult to determine 
the perfect weights for each objective and the perfect way 
of aggregating these into a single function. We have 
reported in the literature two approaches to deal with such 
issue. These are the weighted DC-based (WDC) and the 
Ordered DC-based (ODC) heuristic algorithms [53]. These 
are briefly covered below. 
 
2.2 The Weighted Direct Cover (WDC) [53] 
 
In the WDC, the term weight pattern is used to specify the 
weight for each selection criterion. Assuming 4-valued 
logic, we assume that the weight should be integer in the 
set {0, 1, 2, 3}. Consider the minterm selection process. In 
this case, a weight pattern of (112) means that the 
following weights are used: wCF =1, wCFN =1, and wIW =2.  
The number of different weight patterns for minterms (CF, 
CFN and IW) combined with the different weight patterns 
for implicants (LRZ, RBC, and NRC) is calculated 
as .409664  We have shown in [53] that it is possible to 
reduce the number of weight combinations to 

5762)24(  . It has also been shown in [53] that the best 

weighted combination of criteria is as follows:  
(a) Minterm Selection:  

2 ,1 ,0  IWwCFNwCFw , weight pattern (012) 

(b) Implicant Selection: 

0 ,0 ,1  LRZWNRCwRBCw , weight patter (100). 

 
Using the patterns the patterns shown above, a combined 
weight patter is written shortly as 012-100.   
Example 1: Consider the SUM output function of the 1-
bit 4-valued adder building block. This building block 
receives two 4-valued inputs  ii yx  and  and produces two 

outputs . and ii CS  The SUM output iS is given by the 

table shown in Fig. 2. We have used the WDC algorithm 
to synthesis the SUM function. The total number of 
implicants needed to synthesize the SUM function is eight. 
This is shown below using the MVL operators introduced 
in Section 1. 
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A benchmark consisting of 50000 randomly generated 4-
valued 2-variable functions has been used to test the 
performance of the WDC. It was found that the (best) 
average number of product terms required to cover a given 
4-valued 2-variable function is 7.24914. More details 
about the obtained results are included in Section 4, in 
which we hold a comparison between the DC-based 
heuristics.   
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Fig. 2. The SUM output  iS   of a 1-bit 4-valued adder block 

2.2 The Ordered Direct Cover (ODC) [53] 
 
We have observed that different ordering of the Minterm 
and the Implicant criteria can result in different number of 
product terms for a given MVL function. Hence, in the 
ODC the ordering of the selection criteria for both 
minterm and implicant selection is taken into 
consideration while synthesizing a given MVL function.  
It should be noted that the minterm selection criteria are: 
Smallest CF, Smallest CFN, and Smallest IW. The 
implicant selection criteria are:  Smallest RBC, Smallest 
NRC, and Largest LRZ. A number of different orderings 
of these criteria have been experimented with using the 
same benchmark consisting of 50000 randomly generated 
4-valued 2-variable functions. It was found that the 
following criteria ordering: minterm selection: Smallest 
IW; implicant selection: Smallest RBC followed by 
Largest LRZ.  
Example 2: We have applied the ODC in synthesizing the 
SUM output function of the 1-bit 4-valued adder building 
block (as explained in Example 1 above).  The total 
number of implicants needed to synthesize the SUM 
function is eight (the same as in the case of the WDC). 
This is shown below using the MVL operators introduced 
in Section 1. 
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 The same benchmark consisting of 50000 randomly 
generated 4-valued 2-variable functions which has been 
used in the case of WDC has been used to test the 
performance of the ODC. It was found that the (best) 
average number of product terms required to cover a given 
4-valued 2-variable function is 7.20234. This is somewhat 
better than the results obtained using the WDC.  
 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     161 

 

More details about the obtained results are included in 
Section 4, in which we hold a comparison between the 
DC-based heuristics.   

3. Fuzzy based Direct Cover Algorithm 

In DC-based algorithms, the implicants that should be 
included in the final synthesis of the given function are the 
ones that best cover the chosen set of minterms and such 
that all minterms are covered. The selection of a minterm 
is based on the quality of its CF, CFN, IW or a 
combination thereof. We observe that such condition can 
be translated into a Fuzzy Logic Rule of the form:   
 
IF a given  minterm has a good CF criterion OR a good 
CFN criterion OR a good IW criterion, THEN it is a 
potential minterm to select. 
 
 If a designer wants to emphasize a given criterion he/she 
will have to use a set of Preference Rules in order to give 
more significance to that particular criterion. In order to 
formulate the (PRs), preference terms need to be defined. 
These terms will be associated with the main linguistic 
terms. In the fuzzy rules, the linguistic terms ‘‘low’’, 
‘‘high’’, and ‘‘good’’ have been used. A number of 
approaches to find preference terms and preference rules 
based on Membership Functions has been reported in the 
literature [20][40][41][43][44]. These approaches map a 
PR relation P to a fuzzy membership function P in the 
range [0, 1] with ‘1(0)’ means the criterion is definitely 
preferred (not preferred). 
 
There are two basic types of fuzzy operators. The 
operators for the intersection, interpreted as the logical 
“AND", and the operators for the union, interpreted as the 
logical “OR" of fuzzy sets. The intersection operators are 
known as triangular norms (t-norms), and union operator 
as triangular co-norms (t-co-norms or s-norms). In multi 
criteria decision problem, such as ours, this translates to 
two extremes which lead to the formation of overall 
functions. One extreme is the case requiring all criteria to 
be satisfied, which leads to the pure-AND-ing operation. 
On the other hand, when it is required to satisfy any of the 
criteria, the pure OR-ing operation is used. The 
formulation of multi criterion decision functions neither 
requires the pure “AND-ing" of t-norm nor the pure “OR-
ing" of s-norm. The reason for this is the complete lack of 
compensation of t-norm for any partial fulfillment and 
complete submission of s-norm to fulfillment of any 
criteria.The use of ordered weighted averaging OWA 
operator has been used by a number of researchers in the 
solution of multi-objective problems [42]. The OWA 
category of operators allows easy adjustment of the degree 
of ‘‘ANDing’’ and ‘‘ORing’’ embedded in the 
aggregation. The ‘‘OR-like’’ and ‘‘AND-like’’ OWA for 

two fuzzy sets A and B are expressed in the following 
equations. 

)(
2

1
)1(),()( BABABA Maxx  

 

)(
2

1
)1(),()( BABABA Minx  

 

In the above equations  represents the membership value 
in a fuzzy function;  [0, 1] is a constant parameter, 
which represents the degree to which the OWA operator 
resembles the pure ‘‘OR’’ or pure ‘‘AND’’, respectively. 
Our proposed Fuzzy-based Direct Cover (FZDC) 
algorithm employs fuzzy rules (along with preferences) to 
select the best set of minterm and the most appropriate 
implicant covering each such that the whole function is 
covered. The goodness of a minterm (implicant) is 
examined using the abovementioned fuzzy rules and 
preferences. Looking at these rules, it is easy to deduce 
that we can use the ‘OR-‘like operator to aggregate all 
decision criteria. Tables 1 shows the mathematical 
formulae we introduced for each membership function in 
the minterm selection. Table 2 shows the same for 
implicant selection. 
 

Table 1: Membership functions in Min terms selection. 
Minterm Selection 

Technique Criterion Our Formulated Membership Function 
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Table 2: Membership functions in implicant selection. 

Implicant Selection 
Technique Criterion Our Formulated Membership Function 
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Efficiency of the proposed fuzzy selection process is 
influenced by the value of   in OWA operator (see the 

  equations above). In order to assess such influence, we 

have experimented with the effect of   on the results 
obtained using the FZDC algorithm. Table 3 summarizes 
such effect in terms of the average number of product 
terms needed to synthesize a given function from the 
50000 benchmark functions.  
 

Table 3: Effect of   

 0.2 0.5 0.8 0.9 

# PT 7.19526 7.1945 7.19358 7.1945 

 
In addition to the impact of  there is also the impact of 
the fuzzy preference rules. Since there are three criteria for 
each of the minterm and implicant selection, there will be 
additional 6 parameters that need to be fine tuned to get 
the best performance of the algorithm. In order to obtain 
the best result using the proposed fuzzy-based selection 
criteria, the following set of experiments are conducted: 
1. Experiments with different fuzzy operators 
2. Experiments with different parameter values in the 

fuzzy operators 
For the first experiment, the following fuzzy operators are 
used: 
1. Max operator 
2. Max operator with fuzzy preference rules 
3. The Ordered Weighted Averaging (OWA) operator  
4. OWA operator with fuzzy preference rules 
5. Weighted Averaging (using fuzzy preference as the 

weight) 
The fuzzy preference rules can be obtained by looking at 
the results of WDC and ODC algorithms. Using the 
information obtained from our work on these two 
approaches, we adopted some general rules: 
(A) According to the WDC: 
1. minterm selection process 
 PM1a. IW is preferred as compared to other criteria 
 PM1b. Either IW or CFN is preferred as compared to 

CF 
 PM1c. If CF is preferred more than IW, then the 

preference of CFN should be greater than or    equal 
to that of CF. 

2. implicant selection process 
PL1a. RBC is strongly preferred as compared to other 
criteria 
PL1b. LRZ is slightly preferred as compared to NRC 

(B) According to the ODC: 
1. minterm selection process 

PM2a. IW is strongly preferred as compared to other 
criteria 
PM2b. CF is slightly preferred as compared to CFN 

2. implicant selection process 
PL2a. RBC is strongly preferred as compared to other 
criteria 
PL2b. LRZ is slightly preferred as compared to NRC 

As can be seen, the preference rules for implicant’s 
selection are consistent in both WDC and ODC. However, 
this is not the case with minterm’s selection. Although we 
can also deduce a general rule that IW is the strongly 
preferred criterion from PM1a and PM2b, there is some 
inconsistency in PM1b, PM1c and PM2b. However, since 
results of ODC are superior to those of WDC, we will use 
the preference rules deduced from ODC experiments. 
Table 4 shows the fuzzy preference used for the first 
experiment. It should be noted that we have used  = 0.5 
for the OWA operator in the obtaining the results reported 
in Table 4. 
 

Table 4: Fuzzy preference for minterm and implicant criteria 

Minterm Implicant 

Criteria Fuzzy Preference Criteria Fuzzy Preference 

IW 0.9 RBC 0.9 

CF 0.2 LRZ 0.2 

CFN 0.1 NRC 0.1 

 
Using the abovementioned fuzzy preferences, we tested 
the proposed fuzzy selection criteria against the 50000 
randomly generated 4-valued 2-variable benchmark MVL 
functions. Five different fuzzy operators are used for this 
purpose. Table 5 shows the results of the experiment.  
 

Table 5: Performance of different fuzzy operators in FZDC. 
Operator # PT No CMV # PT With CMV 
Max 8.55136 8.03014 
Max with pref. 7.30344 7.21964 
OWA 7.38226 7.28898 
OWA with pref. 7.27186 7.19450 
Weighted average 7.30646 7.19784 

 
It should be noted that we list the results obtained in two 
cases: not considering minterm values in any order (No 
CMV) and taking minterm values in ascending orders; 
lower to higher values (With CMV). The results show that 
taking the minterm value into consideration while 
selecting the next minterm to cover produces on average 
better results in terms of the average number of implicants 
needed to cover a given MVL function. This can be 
attributed to the use of the tsum operator as a connecting 
operator for the obtained implicants. This result is 
consistent with the observation made in [10]. 
Example 3: We have applied the FZDC in synthesizing 
the SUM output function of the 1-bit 4-valued adder 
building block (as explained in Example 2 above).  The 
total number of implicants needed to synthesize the SUM 
function is eight (the same as in the case of the ODC). 
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This is shown below using the MVL operators introduced 
in Section 1. 

00333300012222010211110223333323
.3.3.22.1.1.1.1),( iiiiiiiiiiiiiiiiiii yxyxyxyxyxyxyxyxyxS 

 In addition, we have also applied the three reported DC 
algorithms, i.e. ARM, BS, and MD in synthesizing the 
SUM output function of the 1-bit 4-valued adder block. 
The results obtained are shown below.  
Example 4:  The results obtained in the case of ARM [15] 
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Example 5: The results obtained in the case of BS [3] 
 

),( iii yxS 13X1
32X2

3  12X1
33X2

3  10X1
01X2

3  10X1
02X2

2  

11X1
30X2

0  12X1
20X2

0  21X1
11X2

2  32X1
21X2

1  23X1
30X2

0  
20X1

03X2
3  11X1

12X2
2 

 
Example 6: The results obtained in the case of DM [10] 

 
),( iii yxS 12X1

33X2
3  13X1

32X2
3  10X1

21X2
1  11X1

10X2
2  

20X1
12X2

2  22X1
20X2

1  30X1
03X2

3  33X1
30X2

0 

 
As can be seen synthesis of the SUM output function of 
the 1-bit 4-valued adder using the ARM [15] requires 11 
PTs as compared to 8 PTs if the FZDC is used (a saving of 
50%) while synthesis of the same function using the BS 
[3] requires 11 PTs as compared to 8 PTs using the FZDC 
(a saving of 37.5%). It is only in the case of DM [10] that 
the same number of PTs will be needed as in the case of 
the FZDC. A number of other experiments were 
conducted in order to further assess the performance of the 
FZDC. These are explained below. 
 

4. Comparison 
 
In order to assess the performance of the proposed FZDC 
algorithm with respect to the performance of existing DC-
based techniques, we have tested the five DC-based 
algorithms (ARM [15], BS [3], DM [10], WDC [53], and 
ODC [53]) as well as the proposed FZDC algorithm using 
the set of benchmark consisting of 50000 4-valued 2-
variable randomly generated functions. The criterion used 
for assessing these algorithms is the average number of 
implicants required to cover a given function. The results 
obtained are shown in Table 6. 
 
As can be seen from Table 6 the proposed FZDC 
algorithm performs on average better than the other five 
DC-based algorithms. For more insight into the obtained 
results, we report in Table 7 the constituents of the 50000 
4-valued 2-variable functions benchmark classified 
according to the number of minterms in each function 

generated. The average number of Product Terms (PTs) 
required to synthesis the functions in each category are 
listed in Table 7.  
 

Table 6: Overall Comparison among different algorithms  
Algorithm Average Number of Product Terms needed 

ARM [15]  7.89012 

BS [3] 7.93882 

DM [10] 7.24786 

WDC [53]  7.24914 

ODC  [53] 7.20234 

FZDC 7.19422 

 
Table 7: Average # PTs using MVL Functions having Different Number 

of Minterms 
#Minterms/
#Fuctions 

ARM 
[15] 

BS 
[3] 

DM
[10] 

ODC
[53] 

WDC 
[53] 

FZDC 

16/500 7.594 7.562 7.002  7.086  7.01 6.946
15/2679 8.295 8.307 7.51  7.481  7.501 7.423
14/6589 8.355 8.405 7.569  7.516  7.559 7.500
13/10585 8.275 8.352 7.541  7.491  7.545 7.484
12/11230 8.049 8.098 7.382  7.33  7.383 7.320
11/9003 7.707 7.757 7.129  7.086  7.134 7.087
10/5434 7.323 7.366 6.831  6.787  6.837 6.794
9/2575 6.871 6.879 6.473  6.436  6.479 6.444
8/1038 6.309 6.322 6.023  5.978  6.022 5.981
7/277 5.726 5.751 5.527  5.484  5.523 5.505
6/75 5.133 5.147 4.973  4.96  4.987 4.960
5/13 4 4 4 3.923  4  4 

4/1 4 4 4 4  4  4 

3/1 3 3 3 3  3  3 

 

The results shown in Table 7 reveal that the proposed 
FZDC algorithm performs better than the other DC-based 
algorithms in each category of functions within the 50000 
benchmark. 
In order to analyze further the results obtained, we have 
computed the maximum percentage improvement 
achieved by the FZDC algorithm with respect to any of the 
other DC-based algorithm. Table 8 provides such 
information. From Table 8 we can see that the maximum 
percentage of improvement achieved over all DC-based 
techniques is 12.0667 and this is achieved in 6589 
functions out of the 50000 (about 13.2% of the benchmark 
functions).  
 
Furthermore, we have categorized in Table 9 the 
improvement achieved by the proposed FZDC.  
 
The results shown in Table 9 reveal that for about 62% 
(31083 functions) of the 50000 benchmark functions 
improvement greater than or equal to 10% have been 
achieved using FZDC. For about 37% (18550 functions) 
of the 50000 benchmark functions improvement between 
5% and 10% has been achieved. This indicated that for 
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99.9 % (49985 functions) of the 50000 benchmark 
functions an improvement greater than or equal to 5% 
have been possible with the proposed FZDC algorithm. It 
is only in 15 functions out of the 50000 (about 0.003%) 
there has been no improvement.  

 
Table 8: Maximum improvement achieved by FZDC 

#Functions ARM 
[15] 

BS 
[3] 

DM 
[10] 

FZDC Max.% 
Improvement 

500 7.594 7.562  7.002  6.946  9.329 
2679 8.295 8.307  7.51  7.423  11.909 
6589 8.355 8.405  7.569  7.500  12.067 
10585 8.275 8.352  7.541  7.484  11.598 
11230 8.049 8.098  7.382  7.320  10.628 
9003 7.707 7.757  7.129  7.087  9.454 
5434 7.323 7.366  6.831  6.794  8.419 
2575 6.871 6.879  6.473  6.444  6.750 
1038 6.309 6.322  6.023  5.981  5.701 
277 5.726 5.751  5.527  5.505  4.469 
75 5.133 5.147  4.973  4.960  3.770 
13 4 4 4 4  0 

1 4 4 4 4  0 

1 3 3 3 3  0 

 
Table 9: The percentage of improvement achieved by FZDC 

Functions with Number of functions  % age 
 Improve.  12%    6589  13.2% 
10%   improve. <12%  (2679+10585+11230) = 24494   49% 
< 10% improve.  5%  (500+9003+5434+2575+1038) 

= 18550 
  37.1% 

 < 5%  improve.  (277+75)= 352   0.7% 
no improvement  15   0.03% 

 
 

5. Conclusions 
 

In this paper, a Fuzzy-DC-based algorithm (FZDC) for 
synthesis of MVL functions has been proposed. The 
algorithm uses the principles of Fuzzy logic in order to 
make the selection of minterms and the appropriate 
implicants needed to cover them in synthesizing a given 
MVL function. The performance of the proposed FZDC 
algorithm in terms of the average number of product terms 
(implicants) required to synthesize a given MVL function 
from a set of benchmark consisting of 50000 4-bvalued 2-
variable functions has been assessed. In making such 
assessment we have compared the proposed FZDC 
algorithm with five other existing DC-based algorithms. 
The results obtained using the introduced FZDC algorithm 
were compared to those obtained using existing DC-based 
techniques. It has been shown that the proposed algorithm 
performs better than the other existing DC-based 
algorithms. In particular it has been found that the 
proposed algorithm achieved a maximum of about 12% 
improvement in the number of implicants required in 
synthesizing 6589 functions (about13.2% of the 
benchmark functions). The FZDC achieved improvement 
of greater than or equal to 10% in 31283 functions (about 

62% of the benchmark functions). It has also been shown 
that in 49633 functions (about 99% of the benchmark 
functions) an improvement of greater than or equal to 5% 
is possible using the proposed FZDC algorithm. We have 
also shown the applicability of the FZDC algorithm in 
synthesizing the SUM output of a 1-bit 4-valued adder 
circuit. In this later case, it was found that the FZDC 
algorithm produces results that are as good as those 
produced by our previously proposed ODC & WDC [53] 
and the algorithm reported in [10].   

Acknowledgment 

The author would like to acknowledge the contribution 
made by Mr. Bambang Sarif in an earlier draft of the 
paper. 
 
References 
[1] Mishchenko, B. Steinbach, M. Perkowski, ”Bi-

decomposition of multi-valued relations”. Proc. 
International Workshop on Logic and Synthesis 2001, pp. 
35-40. 

[2] Mishchenko and R. Brayton, ”Simplification of non-
deterministic multi-valued networks”, Proc. International 
Conference on Computer Aided Design 2002, pp.557-562.  

[3] Besslich P. W. "Heuristic Minimization of MVL functions: 
A Direct Cover Approach." IEEE Transactions on 
computer, Feb. 1986, pp.134-144. 

[4] Zupan, B., Machine Learning Based on Functional 
Decomposition. PhD thesis, University of Ljubljana, 
Slovenia, 1997. 

[5] Files, C., R. Drechsler, and M. Perkowski. Functional 
decomposition of MVL functions using multi-valued 
decision diagram. International Symposium on Multi-
Valued Logic (ISMVL), May 1997, pages 27–32. 

[6] Files, C. and M.A Perkowski, “New multi-valued functional 
decomposition algorithms based on MDDs”. IEEE Trans. 
CAD. Vol. 19(9), Sept. 2000, pp. 1081-1086. 

[7] Files, C. and M. A Perkowski, “Multi-valued functional 
decomposition  as a machine learning method”, Proc. 
ISMVL '98, pp. 173 -178. 

[8] Yang, C. and Y.-M. Wang. A neighborhood decoupling 
algorithm for truncated sum minimization. Proceedings of 
the 20th ISMVL, 1990, May 1990, pp. 153-160. 

[9] Yildirim, C., J. T. Butler and C. Yang, "Multiple-valued 
PLA minimization by concurrent multiple and mixed 
simulated annealing," Proceedings of the 23rd ISMVL, May 
1993, pp. 17-23. 

[10] Dueck, G. and Miller, D. M., "A Direct Cover MVL 
Minimization Using the Truncated Sum." Proceeding of the 
17th ISMVL, May 1987, pp. 221-227.  

[11] Olmsted, D.,  “The History and Principles of Multi-valued 
Logic”, 1998. 

[12] Miller, D., Decomposition in many valued design. PhD 
thesis, University of Manitoba, May 1976. 

[13] Dubrova, E., Y. Jiang, R. Brayton, “Minimization of multi-
valued functions in Post algebra”, Proc. International 
Workshop on Logic and Synthesis 2001, pp. 132-137. 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     165 

 

[14] Post, E., “Introduction to a general theory of elementary 
propositions”, American Journal of Mathematics, Vol. 43, 
1920, pp. 163-185. 

[15] Promper, G. and J. A. Armstrong. Representation of 
multiple valued functions using the direct cover method. 
IEEE transactions on Computers, September 1981, pp. 674-
679. 

[16] Dueck, G. and G. H. J. van Rees, “On the Maximum 
Number of Implicants Needed to Cover a Multiple-Valued 
Logic Function Using Window Literals”, Proceedings of the 
21st ISMVL, May 1991, pp. 280-286. 

[17] Epstein, G., G. Frieder and D. C. Rine, “The development 
of Multiple-valued logic as related to computer science”, 
Computer, Vol. 7 (9), 1974, pp. 20-32.  

[18] Goa, J.-H. and R. Brayton. Optimization of multi-valued 
multi-level networks. Proceedings of the International 
Symposium on Multiple-Valued Logic, Tahoe City, June 
2002. 

[19] Lukasiewicz, J. english translation: On three valued-logic, 
in L. Borkowski (ed), Select Works, North-Holland, 
Amsterdam, Vol. 5, 1920, pp. 169-171. 

[20] Zadeh, L., “Fuzzy Sets, Information and Control, 8(3): 338-
353, June 1965. 

[21] Miller, D., “Spectral transformation of multiple-valued 
decision diagrams”, Proc. 24th ISMVL, May 1994, pp. 89-
96. 

[22] Miller, D., Drechsler, R., “Implementing a multiple-valued 
decision diagram package”, Proc. 28th ISMVL, May 1998, 
pp. 52-57. 

[23] Abd-El-Barr, M. and Louai Al-Awami, “Analysis of Direct 
Cover Algorithms for Minimization of MVL Functions”, 
Dec. 2003, pp.  308- 312. 

[24] Kameyama, M., S. Kawahito, T. Higuchi, “ A Multiplier 
chip with Multiple-Valued Bidirectional Current-Mode 
Logic Circuits”, IEEE Computer, April, 1988, pp. 43-56. 

[25] Perkowski, M., M. Marek-Sadowska, L. Jozwiak, T. Luba, 
S. Grygiel, M. Nowicka, R. Malvi, Z. Wang, J. S. Zhang, 
“Decomposition of multiple-valued relations”. Proc. 27th 
ISMVL, May 1997, pp. 13-18. 

[26] Cheung, P. and D. M. Purvis. A computer-oriented heuristic 
minimization algorithm for multiple-output multivaued 
switching functions. Proceeding of the 4th ISMVL, May 
1974, pp. 112-120. 

[27] Drechsler, R., Dragan Jankovi´c Radomir S. Stankovi´c, 
Generic Implementation of DD Packages in MVL, 
EUROMICRO Conference, 1999. Proceedings. 25th, Vol. 
1, 1999, pp.  352-359. 

[28] Drechsler, R. Mitch Thornton David Wessels, MDD-Based 
Synthesis of Multi-Valued Logic Networks, Proceedings 
30th ISMVL,   May 2000, pp. 41-46. 

[29] Hong, R., S. J. and D. L. Ostapko. Mini: A heuristic 
approach for logic minimization. IBM J. Res. Develop., 
1974, 18:443-458. 

[30] Brayton, R. and S. P. Khatri. Multi-valued logic synthesis. 
International Conference on VLSI Design, Goa, India, Jan 
1999. 

[31] Rudell, R. and A. Sangiovanni-Vincentelli, “Multiple-
valued minimization for PLA optimization”. IEEE Trans. 
CAD, vol. 6(5), Sep. 1987, pp. 727-750. 

[32] Stankovi´c, R.S., “Functional decision diagrams for 
multiple-valued functions”, Proc. 25th ISMVL, May 1995, 
pp. 284-289. 

[33] Tirumalai, P. and Butler, J. “Analysis of Minimization 
Algorithms for Multiple-Valued Programmable Logic 
Arrays.” Proceedings 28th ISMVL, May 1988, pp. 226-236. 

[34] Tirumalai, P. Multiple-valued programmable logic arrays. 
Ph.D. Thesis, Northwestern University, Evanston, USA, 
1989. 

[35] Luba, T., Decomposition of multiple-valued functions. 
Proceedings 25th ISMVL, May 1995, pp. 256–261. 

[36] Sasao, T., "On the Optimal design of Multiple-Valued 
PLA's," IEEE Trans. Comput., C-38, 4, 1989, pp. 582-592. 

[37] Sasao, T. and J.T. Butler. Planar multiple-valued decision 
diagrams. Proceedings 25th ISMVL, May 1995, pp. 28–35. 

[38] Naiff, K., D. A. Rich and K. G. Smalley, “A Four-State 
ROM Using Multilevel Process Technology”, IEEE Journal 
of Solid-State Circuits, Vol. 19, No. 2, April 1984, pp. 174–
179. 

[39] Razavi, H., S. E. Bou-Ghazale, “Design of a Fast CMOS 
Ternary Adder”, Proceedings 17th ISMVL, May 1997, pp. 
20–23. 

[40] Zadeh, L., Fuzzy Sets, Information and Control 8 (1965) 
338-353. 

[41] Shragowitz, E., J. Lee, E. Kang, Application of Fuzzy Logic 
in Computer-aided VLSI Design, IEEE Transactions on 
Fuzzy Systems 6(1) (1998) 163-172. 

[42] Yager, R., On Ordered Weighted Averaging Aggregation 
Operators in Multi-criteria Decision Making, IEEE 
Transactions on Systems, Man, and Cybernetics 18(1), 
1988, pp. 183-190. 

[43] Kacprzyk, J., M. Fedrizzi, H. Nurmi, Group decision 
making and consensus under fuzzy preferences and fuzzy 
majority, Fuzzy Sets and Systems 49, 1992, pp. 21-31. 

[44] Marimin, M. Umano, I. Hatono, H. Tamura, Linguistic 
labels for expressing fuzzy preference relations in fuzzy 
group decision making, IEEE Transactions on Systems, 
Man, Cybernetics, Part B 28 (2) (1998) 205-218. 

[45] Dubrova, E., “Multiple-Valued Logic in VLSI”, Multiple-
Valued Logic: An International Journal, 2002, pp. 1-17. 

[46] Current, K., “Multiple-Valued Logic Circuits”, Computer 
Engineering Handbook, 2nd Edition, CRC Press 2008, Vojin 
Oklobzija (Editor), Digital Design and Fabrication, Chapter 
8, pp. 1-25. 

[47] Khan, M., “Synthesis of quaternary reversible/quantum 
comparators”, Journal of System Architectures, vol. 54, no. 
10, October 2008, pp. 977-982. 

[48] Kawahito, S., Kameyama, M., Higuchi, T., and Yamada, H., 
A 32×32-bit multiplier using multiple-valued MOS current-
mode circuits”, IEEE Journal of Solid-State Circuits, vol. 
23(1), Feb. 1988, pp. 124-132. 

[49] Kim, J., and Ahn, S., “High-speed CMOS de-multiplexer 
with redundant multi-valued logic”, International Journal of 
Electronics, 94, 2007, pp. 915-924. 

[50] Tirumalai, P. and Butler, J., “Minimization Algorithms for 
Multiple-Valued Programmable Logic Arrays”, IEEE 
Transactions of Computers, vol. 40, no. 2, Feb. 1991, pp. 
167-177. 

[51] Intel Strata TM Flash. Available at 
http://www.intel.com/design/flash/isf/overview.pdf 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     166 

 

[52] Okuda, T. and Murotani, T., “A four-level storage 4GB 
DRAM”, IEEE Journal of Solid State Circuits, vol. 32, no. 
11, 1997, pp. 1743-1747. 

[53] Abd-El-Barr, M. and Bambang Sarif, “Weighted and 
Ordered Direct Cover Algorithms for Minimization of MVL 
Functions”, Proceedings of the IEEE 37th International 
Symposium on Multiple-Valued Logic (ISMVL07), Oslo, 
Norway, May 2007, pp. 48-52. 

 
 
 
 
Mostafa Abd-El-Barr (Senior Member of IEEE) has received his 
B.Sc. and M.SC. degrees in Electrical Engineering (Computer 
Track), Cairo University, Egypt in 1973 and 1979, respectively. He 
received his PhD degree in Computer Engineering, University of 
Toronto, Ontario, Canada in 1986. In July 1986 he joined the 
faculty of the Department of Computer Science, University of 
Saskatchewan (U. of S.), Saskatoon, Canada, where he was 
promoted to the rank of full professor in July 1993. He was also an 
associate member of the Department of Electrical Engineering, U. 
of S. In September 1996, he joined the Department of Computer 
Engineering at King Fahd University of Petroleum and Minerals 
(KFUPM), Saudi Arabia as a full professor. In September 2003 he 
was appointed as the founding chairman of the Information 
Science Department, Kuwait University (KU). In September 2005 
he was appointed as the Vice Dean for Academic Affairs, CFW, 
KU. He is currently an Adjunct Professor with the Department of 
Electrical and Computer Engineering, University of Victoria, BC, 
Canada.  His research interests include Design and Analysis of 
Reliable & Fault-Tolerant Computer Systems, Computer Networks 
Optimization, Parallel Processing/Algorithms, Information and 
Computer Systems Security, Beyond-Binary Logic System Design 
& Analysis, VLSI System Design & Algorithms, and Digital 
Systems Testing. He is the author and/or co-author of more than 
150 scientific papers published in journals and conference 
proceedings. He is a certified professional engineer in the 
Province of Ontario, Canada.   
 
 
 
 
 
 
 
 
 


