
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

290

Performance Analysis of Web Service Model
 for Video on Demand

Lavanya Rajendran1, Ramachandran Veilumuthu2
 1 Department of Media Sciences, CEG, Anna University,

Chennai, Tamilnadu, 600 035, India.

2 Department of Information Science and Technology,
CEG, Anna University,

Chennai, Tamilnadu, India

Abstract
In today’s world, the demand for video in the Internet has gained
high popularity. One of the best and optimal ways to provide the
video contents on demand to users is through web services. This
research aims to develop a generalized web service model for
providing video on demand. To fetch the video file requested by
the user, JAX-RPC is been used, which is more flexible and
loosely coupled. The implementation of the developed web
service depicts the methodology for providing video contents on
demand in real time. The video distributors can adopt this model,
as it ensures smooth and jitter-free videos, thereby both the users
and the distributors will be benefitted. The performance measure,
Round Trip Time (RTT) is estimated for the developed JAX-
RPC video on demand model by requesting the video files of
various sizes in both local invocation and remote invocation. The
result shows that the developed model solves the connectivity
issues and interoperability which was a major constraint with the
rmi model. The performance was better for smaller video files
when compared with the larger files and there was very little
variation obtained between the local and remote invocation.

Keywords: Video Service, Web Service model, Video on
Demand, JAX-RPC.

1. Introduction

Today, Internet users expect the on-line video to possess
best resolution, less round trip time, without jitter, delay
and essentially high throughput. The attempt to display
media files was started from the mid-20th century. Little
progress was made for several decades, primarily due to
high cost and limited capabilities of computer hardware
and standards. The standard Web1.0 used dial-up
connection and 50K average bandwidth during 1991 to
2003 which does not support for Video Service as this
standard supports only static web pages. The advent of
Web 2.0 from 2004 has drastically changed the way in
which people see and use Internet as it supports two way
communications. The Web 2.0 uses an average of 1Mb of

bandwidth [7]. The distributed application development
using Java and related tools and implementations evolved
with many approaches, specifications and relevant APIs
from SUN, Open standards like OMG, XML-RPC, Oasis,
Apache and many open groups and forums [1]. As there
are multiple standards available, the developers will
always have a dilemma in selecting the architecture to
work with. The confusion is even higher when compared
to provide multimedia using different JAVA platform.
This research paper aims to develop a video on demand
service using JAX-RPC and its performance is analyzed to
throw light to the developers working with video files.

This research paper is organized in the following ways:
The first part of the paper putforth the JAX-RPC model
adopted for the video on demand service. In the second
part, the pipeline for developing the JAX-RPC model for
video on demand service depicts the methodology for
providing video service in real time. Following which, the
research paper elaborates on the performance analysis of
the developed JAX-RPC model. In the final part, the
results of the performance analysis of various video file
with different file sizes are reported in two different
scenarios namely local and remote. The significance of
this paper and the scope for the future research is revealed
in the conclusion.

2. JAX-RPC Model for Video on Demand

The architecture of the proposed JAX-RPC model for
video on demand service model is given in Figure 1. The
client using the VideoClient Application creates a request
that contains all the details required by the video
implementation. This request is appended as a SOAP
message context for further processing.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

291

public interface VideoInt extends Remote{
 public byte[] getVideo(String fname) throws
 RemoteException;
}

Figure 1: JAX – RPC Architectural Model for Video Service

The JAX-RPC Runtime Environment invokes the Client
Request Handler to process the request, by checking
whether all the required attachments are available and if
all the required information is available then it sends to the
video implementation through the SOAP Request Message.
The WSDL file contains all the methods that the generated
stubs can invoke. The generated stub in the client side has
all the required details about the Web Service end point.
Thus the client through the VideoClient invokes the
method in the Web Service endpoint. This model solves
the connectivity issues and interoperability.

As the developed JAX-RPC model for video on demand
service uses the dynamic proxy, therefore the stub
referring to the specific endpoint is not required. The
dynamic invocation interface dynamically access the
service endpoints. At the server side, the JAX-RPC run
time environment, invokes the server request handler to
handle the received SOAP message. This checks for the
attachment inside the SOAP message and if available, it
repackages to the SOAP message context and forwards it
to the service endpoint. The response from the web service
end point is sent to the client following the same
procedure.

The issues that have carefully considered during design
and implementation of JAX-RPC architecture includes the
reliability, performance, and cost of the system. Web
Services are essentially real time processes in which
performance and availability problems have a high cost.
The developed JAX-RPC model for video on demand
service provides a guaranteed quality of service.

3. Implementation of JAX – RPC
Model For Video Service

The video on demand service is adopted to illustrate the
pipeline of JAX-RPC Web Service and the developed

model is tested under local invocation and remote
invocation. Java based XML-RPC model has been
developed to deploy Video on Demand services in a
distributed environment. It is examined how to use JAX-
RPC system to publish Video on Demand Web Services
and how to use this system on the client to consume VoD
services. The getVideo method accepts the video file name
as its parameter from the user and returns the video.

3.1 Web Service Endpoint Interface for Video

Service

The interface for video on demand service consists of the
declaration for the getVideo method to be invoked from
the remote reference by users. This method invokes the
RemoteException and the VideoInt class by itself extends
the Remote interface of the rmi package. The following
web service endpoint interface “VideoInt” is shown below:

This VideoInt defines a method “getVideo” that accepts
the video file name to be fetched and returns the byte array
of the video.

3.2 Implementation for Video Service

The video on demand service is implemented in a remote
entity. As it is an instance of the VideoInt Interface class,
it implements the video on demand interface. The
definition for the getVideo method declared in the
interface program is defined here.

This getVideo method is being triggered by the clients
through the VideoInt Interface to fetch the required Video.

3.3 Configuration for Video on Demand Interface

public class VideoImpl implements VideoInt{
 byte [] buffer;
 public byte[] getVideo(String fname) throws
 RemoteException {
 // Accept the Video File and Returns the
 Video Byte Array
 return buffer;
 } }

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

292

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<wsdl location="http://192.168.1.2:1078/myvideo/
 VideoStream?WSDL" packageName="dynamicstub"/>
</configuration>

The mapping file consists of all the data required to
associate the VideoInt Interface to the definition of wsdl
file. This mapping file and “VideoService” wsdl file
which is used to generate the client side stubs are
generated by defining and compiling the configuration file
for the VideoInt interface. This wsdl file will have all the
necessary details like the location of the web service,
purpose of the web service and by what approach will the
method be invoked. In detail, it contains of the datatype of
the messages, the message itself which is sent from one
endpoint to the other, the portnumber at which the service
is operating, the input, the output and the fault details, the
necessary binding information like which protocol will be
used to carry the message and at the end, the service
details are generated.

The definition of the configuration file includes the name
of the service, various NameSpace, the Package Name and
the details of the video service interface. This generated
“VideoService” wsdl file acts as the tie between the web
service end point and the JAX-RPC Runtime. The
following is the configuration file for the VideoInt
interface.

As the video service implementation (VideoImpl) returns
the byte array, the generated wsdl file will return the
datatype as xsd:base64Binary. The xsd represents the
XML schema definition datatype. The JAX-RPC provides
the direct mapping between these datatypes. The following
code shows a portion of the generated wsdl file where it
clearly denotes that the datatype of the input is a string,
which is the video filename and the output is the bytearray.

All the necessary files are packaged into war file and the
same is deployed. After deployment of the service, the
wsdl file in the server is ready for the remote object to
access it. The tie class required to communicate with the
clients are generated by the server during deployment
process. The video service definition language can be
viewed by requesting the following URL:
http://192.168.1.2:1078/myvideo/VideoStream?WSDL

3.4 Generating the Dynamic Proxy

The remote reference will trigger the getVideo method
through the stub. The client side stub is acquainted with
the service offered by the remote interface. As the stub is
available with the client, the wsdl file which contains all
the required details about the service is not required for
the client. The stub for the video on demand service is
generated by defining and compiling the following code:

The configuration file contains the location of the wsdl file
deployed in the above step. On compiling the configuration
program, the dynamic stub is created using the VideoImpl
and other required runtime entities like serializers and type
value. Now, the client will be able to invoke the getVideo
method using this dynamic stub. During runtime, the client
creates the dynamic proxy stubs using the rpc.Service
interface. This stub has the knowledge of the video service
and the WSDL file.

3.5 Fetching the Video

A service end-point interface is created to encapsulate
fetching video service and Real Time Streaming service.
The Service End-point Interface for the proposed JAX-
RPC based video service model is given below:

….
<message name="VideoInt_getVideo">
 <part name="String_1" type="xsd:string"/>
</message>

 <message name="VideoInt_getVideoResponse">
 <part name="result" type="xsd:base64Binary"/>
</message>
….

<configuration
 xmlns="http://java.sun.com/xml/ns/jax-
rpc/ri/config">
 <service name="VideoService"
 targetNamespace="urn:video"
 typeNamespace="urn:video"
 packageName="video">
 <interface name="video.VideoInt"/>
 </service>

Stub stub = (Stub)(new
 VideoService_Impl().getVideoIntPort());

stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
"http://192.168.1.2:1078/myvideo/VideoStream");

VideoInt client = (VideoInt)stub;
 resp = client.getVideo(request.getParameter("VideoFileName"));

//convert the video file data into byte array - buffer
if (resp) {
 client.RTS_Service(buffer);
}

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

293

A Service class is created which is effectively a factory for
calling the object, which in turn encapsulates the
mechanisms to call a VoD Service Endpoint.

4. Test Cases And Results

The developed JAX-RPC model for video service is
implemented in a distributed environment. It works for
different file formats and for different sizes. The following
Figure 2 shows the requested video which is streamed as a

response to the client.

Figure 2 : Client Response

5. Performance Analysis

The performance measure, Round Trip Time (RTT) is
estimated for the developed JAX-RPC video service
model by requesting the Video files of various size in local
and remote environment. RTT is the time that elapses
between the initiations of a getVideo method invoked by
the video requestor till the specified video is played to
them. To analyse the performance exactly, the getVideo
method was invoked 10 times for each video file, and the
average of these were considered for analyzing the final
results.

5.1 Local Invocation Performance

To identify the RTT for fetching video files of different
sizes locally, the server and the client was executed in the
same system. The below Figure 3 shows the average
Round Trip Time in ms obtained for different sizes of
video files starting from 1MB to 30MB.

Figure 3 : Local Invocation Performance of Web Service Model
for Video on Demand
It is very simple and easy to create and maintain the web
service model for video on demand using JAX-RPC. The
RTT increases as the size of the video file increases. The
below Figure 4 shows the Local Invocation performance
for web service model for video on demand for different
video sizes starting from 30MB to 75MB .

Figure 4 : Local Invocation Performance of Web Service
Model for Video on Demand

The RTT is very high for large video files. From, the
above, it is clear that the web service model for video on
demand has better performance for smaller video files than
large files.

5.2 Remote Invocation Performance

The performance measure, Round Trip Time (RTT) is
estimated for the developed JAX-RPC video service
model by requesting the Video files of various size from
remote System. Two computers connected in a LAN with
100Mbps speed with similar hardware configuration of
Dual Core Processor at 2.00 GHZ, and 2 GB RAM was
used for testing the remote invocation. The below Figure 5
shows the Round Trip Time obtained for different sizes of
video files starting from 1MB to 30MB invoked locally
and remotely.

Figure 5 : Comparison of Performance of Web Service
Model for Video on Demand in both local and remote
scenarios.

When the Video files were invoked remotely, the
connectivity and the interoperability was not an issue as

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org

294

the JAX-RPC model uses the XML-based SOAP
communication between remote services. It is clear from
the graph that the RTT is very less for smaller video files
but still higher than the local performance. The below
Figure 6 shows the comparison of performance of web
service model for video on demand in both local and
remote scenarios for larger video files. The performance
of JAX-RPC model for video on demand is better for
video files with small size in both local and remote
invocation.

Figure 6 : Comparison of Performance of Web Service
Model for Video on Demand in both local and remote
scenarios.

When comparing the local performance results of
individual approaches with remote invocation strategy, the
factor of variation is also calculated and shown below in
Figure 7.

Figure 7 : Factor variation between Local and Remote
invocation of web service model for video on demand.

The above result shows that very little variation between
the performance of local invocation and the remote
invocation.

6. Conclusion

Though webservices bring more flexibility in different
sectors, there raises new challenges for the multimedia
files especially video files. Thus, the webservice model is
created using Java and deployed in J2EE deployment tool.
The JAX-RPC was selected to develop the Video on

Demand model, thereby solving the connectivity issues
and interoperability. Thus when the clients request the
video to the server, the server fetches the same to the
client. The performance was better for smaller video files
when compared with the larger files and there was very
little variation obtained between the local and remote
invocation. In the future study, to increase the security
issues the SAAJ model for Video Service can be adopted.

References

[1] D. Jagannadham, V. Ramachandran and H.N. Harish Kumar,
“Java2 Distributed Application development (Socket, RMI,
Servlet, CORBA) approaches, XML-RPC and Web Services
Functional analysis and Performance comparison”,
“International Symposium on Communications and
Information Technologies”, 2007

[2] Developing Web Services for Existing Java Applications,
“Mind Fire Technologies” at
“http://www.mindfiresolutions.com”, 2003.

[3] Hovedoppgave , “E-wallet decentralized credential keepers”,
European Research Project CAFÉ,, 2003.

[4] Huang, Cheng, Jin Li, and Keith W. Ross, "Can Internet
Video-on-Demand Be Profitable?", SIGCOMM, Vol. 2 No.
4, 2007.

[5] Johnson P Thomas, Mathews Thomas, George Ghinea,
“Modeling of Web Services Flow”, “Proceedings of the
IEEE International Conference on E-Commerce”, 2003

[6] Jong, Alex De, Karen Hsing, and David Su, "A VoD
Application Implemented in Java", Multimedia Tools and
Applications Vol. 5 No. 2 pp. 161-70, 1997.

[7] Reed Hastings, Retrieved May 26, 2010,
“http://roseindia.net/Technology-revolution/web3.0/history-
of-web-3.shtml”,2006.

Lavanya Rajendran received her Bachelor’s degree in Computer
Applications. She completed her M.Sc. in Electronic Media and
Informatics. She is currently pursuing her research in College of
Engineering, Anna University, Chennai. Her areas of interest
include Cloud Computing, Computer Networks, Web Designing
and Video Production.

Ramachandran Veilumuthu received his Masters degree and
Ph.D. in Electrical Engineering from College of Engineering, Anna
University, Chennai, India. He is currently working as a Professor
in the Department of Information Science and Technology, College
of Engineering, Anna University, Chennai. His research interest
includes Cloud Computing, Network Security, Soft Computing and
Web Technology.

