
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 79

Hybrid Algorithm for Multiprocessor Task Scheduling

 Mostafa R. Mohamed1, Medhat H. A. AWADALLA 2

 1 Information Systems Department, Faculty of Computers and Information, Fayoum University,
El Fayoum, Egypt

2 Communication, Electronics and Computers Department, Faculty of Engineering, Helwan University,
Helwan, Egypt

Abstract
Multiprocessors have become powerful computing means for

running real-time applications and their high performance depends
greatly on parallel and distributed network environment system.
Consequently, several methods have been developed to optimally
tackle the multiprocessor task scheduling problem which is called NP-
hard problem. To address this issue, this paper presents two
approaches, Modified List Scheduling Heuristic (MLSH) and hybrid
approach composed of Genetic Algorithm (GA) and MLSH for task
scheduling in multiprocessor system. Furthermore, this paper
proposes three different representations for the chromosomes of
genetic algorithm: task list (TL), processor list (PL) and combination
of both (TLPLC). Intensive simulation experiments have been
conducted on different random and real-world application graphs such
as Gauss-Jordan, LU decomposition, Gaussian elimination and
Laplace equation solver problems. Comparisons have been done with
the most related algorithms like: list scheduling heuristics algorithm
LSHs, Bipartite GA (BGA) [1] and Priority based Multi-Chromosome
(PMC) [2]. The achieved results show that the proposed approaches
significantly surpass the other approaches in terms of task execution
time (makespan) and processor efficiency.

 Keywords: Multiprocessors, task scheduling, Genetic algorithm,
makespan, parallel and distributed system, Modified List Scheduling
Heuristic (MLSH).

 1. Introduction

The problem of scheduling a task graph of a parallel
program onto a parallel and distributed computing system is a
well-defined NP-hard problem that has received much
attention, and it is considered one of the most challenging
problems in parallel computing [3]. The scheduling problem
has been addressed in several applications such as information
processing, database systems, weather forecasting, image
processing, fluid flow, process control, economics, operation
research and real time high-speed stimulations of dynamical
systems. The multiprocessor task scheduling problem
considered in this paper is based on the deterministic model,
which is the execution time of tasks and the data
communication time between tasks that are assigned; and the
directed acyclic task graph (DAG) that represents the
precedence relations of the tasks of a parallel processing
system [4]. The goal of such a scheduler is to assign tasks to
available processors such that precedence requirements
between tasks are satisfied and the overall length of time
required to execute the entire program, the schedule length or
makespan, is minimized.

Many heuristic approaches for task scheduling have been
proposed [5–10]. The reason for such proposals is because the
precedence constraints between tasks can be non-uniform
therefore rendering the need for a uniformity solution. We
assume that the parallel processor system is uniform and non-
preemptive.

Recently, Genetic Algorithms (GAs) have been widely
reckoned as a useful vehicle for obtaining high quality
solutions or even optimal solutions for a broad range of
combinatorial optimization problems including task scheduling
problem [11, 12]. Another merit of a genetic search is that its
inherent parallelism can be exploited so as to further reduce its
running time. Thus, several methods have presented to solve
this problem based on GAs [13-16].

To tackle the multiprocessor task scheduling problem
(MTSP), this paper presents two approaches: a modified list
scheduling heuristic and hybrid approach composed of GA and
MLSH. GA used three new different types of chromosomes:
task list, processor list, and a combination of both types.

This paper is organized as follows: The multiprocessor
task scheduling problem on the general models of a DAG is
presented in section 2. Section 3 outlines the most related work
to the theme of this paper. Section 4 proposes MLSH. Hybrid
approach composed of genetic algorithm and MLSH
comprising three different new types of chromosomes is
presented in section 5. Genetic operators are presented in
section 6. Simulated experiments and discussions are presented
in section 7. Section 8 concludes the paper.

2. Multiprocessor task scheduling problem

Multiprocessor scheduling problems can be classified into
many different classes based on the following characteristics:

 The number of tasks and their precedence.
 Execution time of the tasks and the communication cost

which is the cost to transmit messages from a task on one
processor to a succeeding task on a different processor
(Communication cost between two tasks on the same
processor is assumed to be zero).

 Number of processors and processors uniformity (A
homogeneous multiprocessor system is composed of a set
P = {P1… Pm} of ‘m’ identical processors.

 Topology of the representative task graph.

Directed Acyclic Graph (DAG) can represent applications
executed within each multiprocessor system. A DAG G = (V,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 80

E) consists of a set of vertices V representing the tasks to be
executed and a set of directed edges E representing
communication dependencies among tasks. The edge set E
contains directed edges eij for each task Ti  V that task Tj  V
depends on. The computation weight of a task is represented
by the number of CPU clock cycles to execute the task. Given
an edge eij, Ti is called the immediate predecessor of Tj and Tj
is called the immediate successor of Ti. An immediate
successor Tj depends on its immediate predecessors such that
Tj cannot start execution before it receives results from all of
its immediate predecessors. A task without immediate
predecessors is called an entry-task and a task without
immediate successors is called an exit-task. A DAG may have
multiple entry tasks and one exit-task. Randomly generated
task model, Gauss Jordan elimination, LU decomposition [17]
and Laplace equation solver [6] task graphs are considered in
this paper. Some of these task graphs are illustrated in Fig.1.

Fig.1. Description of task dependencies for (a) Laplace equation solver and
(b) LU decomposition

3. RELATED WORK

Several approaches have been adopted to solve the
multiprocessor task scheduling such as heuristic approaches
[18-20], evolutionary approaches [2, 11, 13, 14, 15, 17, 21, 22]
and hybrid methods [23, 24]. Kwok and Ahmad [25] presented
a comprehensive review and classification of deterministic
scheduling algorithms. Among the most common methods is a
class of methods called list scheduling techniques. List
scheduling techniques are widely used in task scheduling
problems [26]. Insertion Scheduling Heuristic (ISH) and
Duplication Scheduling Heuristic (DSH) are well-known list
scheduling heuristic methods [27, 28]. ISH [27] is a list
scheduling heuristic that was developed to optimize scheduling
DAGs with communication delays. ISH extends a basic list
scheduling heuristic from Hu [29] by attempting to insert ready
tasks into existing communication delay slots. DSH [27]
improved ISH by using task duplication to reduce the starting
time of tasks within a schedule. DSH reduces inter-processor
communication time by scheduling tasks redundantly to
multiple processors.

The genetic-based methods have attracted a lot of
researcher attention in solving the MTSP [2, 11, 13, 14, 15, 17,
21]. Genetic operators are the main differences of these genetic
approaches, such as crossover and mutation. Using different
crossover and mutation methods for reproducing the offspring
is strongly dependent upon the chromosome representation
which may lead to the production of legal or illegal solutions.
Another important point in designing GA is the simplicity of
the algorithm and complexity of evolutionary optimization
process.

Hou et al. [13] reported that the results of GA were within
10% of the optimal schedules. Their results are based on task
graphs with dependencies but without communication delays.
The method proposed in [30], though it is very efficient, it does
not search all the solution space. Due to the strict ordering that
only the highest priority ready task can be selected for
scheduling, there can be many valid schedules omitted from
the search. Correa et al. [7] proposed modifications to the
approach in [30] to broaden the search space to include all
valid solutions. This modified approach was tested on task
graphs that represent well-known parallel programs. Wu et al.
[11] proposed a novel GA which allows both valid and invalid
individuals in the population. This GA uses an incremental
fitness function and gradually increases the difficulty of fitness
values until a satisfactory solution is found. This approach is
not scalable to large problems since much time is spent
evaluating invalid individuals that may never become valid
ones. Moore [31] applies parallel GA to the scheduling
problem and compares its accuracy with mathematically
predicted expected value. More GA approaches are found in
[30, 32–35].

Another genetic-based multiprocessor scheduling method
has been presented in [7]. The authors of this paper claimed
that the task duplication is a useful technique for shortening the
length of schedules. In addition, they added new genetic
operators to the GA to control the degree of replication of
tasks.

Some works tried to change the conventional approach of
GA. They combined other problem solving techniques, such as
divide and conquer mechanism with GA. A modified genetic
approach called partitioned genetic algorithm (PGA) was
proposed [15]. In PGA: the input DAG is divided into partial
graphs using b-level partitioning algorithm and each of these
separate parts is solved individually using GA. After that, a
conquer algorithm cascades the subgroups and forms the final
solution. In [36], a new GA called task execution order list
(TEOL) was presented to solve the scheduling problem in
parallel multiprocessor systems. The TEOL guarantees that all
feasible search space is reachable with the same probability.

Some researchers proposed a combination of GAs and list
heuristics [37-39]. Correa et al. [7] proposed a modified GA by
the use of list heuristics in the crossover and mutation in a pure
genetic algorithm. This method is said to dramatically improve
the quality of the solutions that can be obtained with both pure
genetic algorithm and pure list approach. Unfortunately, the
running time is larger than the time of running pure genetic

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 81

algorithm. Therefore the aim of this paper is to reduce that time
however GA is modified by the chromosomes representations.

4. The Proposed Modified List Scheduling
Heuristic (MLSH)

List scheduling techniques assign a priority to each task to
be scheduled and then sort the list of tasks in decreasing
priority. As processors become available, the task with highest
priority is processed and removed from the list. If two or more
tasks have the same priority, the selection which is performed
among the candidate tasks is typically random [26]. The
problem with list scheduling algorithms is that the priority
assignment may not always order the tasks for scheduling
according to their relative importance. In MLSH, Priorities
have been determined from DAG and then assigned to the
tasks in such way that the important task will be assigned to the
processor that eventually leads to a better scheduling. MLSH
flowchart is illustrated in Fig.2.

In this paper, real-time tasks are considered. Each task is
characterized by the following parameters:

 ts (T) : is the starting time of task T of G.
 ts (T, P) : is the starting time of task T on processor P.
 tf (T) : is the finishing time of task T.
 w (T) : is the processing time of task T.

 The algorithm starts by assigning levels for the tasks (the
root task has level 0). The level of a task graph is defined as:

Ti. of rspredecesso ofset theis (Ti) Pred where,

(1) otherwise ,
(Ti) PRED Tj

(Tj) Levelmax 1

 (Ti) Pred if, 0
 (Ti) Level












 Firstly, the Level function indirectly conveys precedence
relations between the tasks. If the task Ti is an ancestor of task
Tj, then Level (Ti) < Level (Tj). If there is no path between the
two tasks, then there is no precedence relation between them
and the order of their execution can be arbitrary [13, 40].

Secondly, the sequence of tasks’ execution in each level is
determined. For the root level (T1, T2 in Fig.3), if there is only
one parent task, then it comes first.

If there is more than one parent tasks the number of the
children for each parent in the next level is calculated and their
parent has got a priority according to that number in a
descending order. The parent with the highest number of
children comes first (T1 will be executed before T2).

Fig.2. Flowchart of MLSH algorithm

If two or more parents have the same number of children
(T3, T4 and T5) then the parent that has a common child is to be
executed first (T4 and T5 will be executed before T3). When
two parents have the same common child, they will be listed in
an arbitrary order (T4 and T5).

Thirdly, we assign each task to an appropriate processor to
reach the minimum finishing time for all tasks according to
equations (2-11).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 82

5. The Proposed Hybrid approach.

The hybrid approach composed of GA and MLSH.
Genetic algorithms try to mimic the natural evolution process
and generally start with an initial population of chromosomes,
which can either be generated randomly or based on some other
algorithms. Here, the initial population has started based on
MLSH. Three different types of chromosomes are developed to
generate the genetic chromosome. In each generation, the
population goes through the processes of fitness evaluation,
selection, crossover and mutation. The following subsections
will present these processes in full details.

5.1. Chromosomes

For task scheduling, a chromosome represents a solution
to the scheduling problem. We present three different types of
chromosomes for genetic algorithm: Task List (TL), Processor
List (PL) and combination of them (TLPLC).

5.1.1. Chromosome construction using TL

Every chromosome is a permutation of the V tasks of the
DAG. Each gene represents a position in the task list and the
value of the gene is the index of the task at that position as
shown in Fig.4. MLSH is used to form the chromosomes in the
initial population.

Fig.4. Chromosome that encodes task list

5.1.2. chromosome construction using PL

Every chromosome consists of V genes, each of which
represents one task of the DAG. Assuming a consecutive
numbering of the tasks and processors, starting with 1, gene i
corresponds to task Ti Є V. The value of the gene corresponds
to the index of the processor, 1 to P, to which the task is
allocated as shown in Fig.5. The chromosomes have uniform
distribution of the available number of processors.




























 


























 otherwise 0

processordifferent toassigned are T and T task if c
)

TT
c(e*

ki
ij

ji

(11)jjj

(10)

ji
i

ik
ji

j

kji

jj

9) (
ji

ij

(8)
ji

ij

 (7)
ji

i
ji

i

i

jj

6) (jjj

(5)

ji
i

ik
ji

kj

ijj

 4) (j
ji

ij

(3)
ji

j

ijj

*

j

2) (jjj

j

j

) w(T)(Tst)(T ft

(10), and (2) form

othewise)

TT
c(e)(T

f
t

)(T
f

t-)(T
f

 t)
TT

c(e if (Tk)
f

t
)(Ts t

 (7), form

completes T until waitsT and)T than moreon

 depends T (i.e. task one than moreon depends T if :(2.4) case

)
TT

c(e)(T
f

tw(Tj))(T
f

 t

(8), and (2) form

)
TT

c(e)(T
f

t)(T
s

 t

 (7), form

 esdependenci of no. :n

)
TT

c(e)(T
f

t
1

max)
TT

c(e)(T
f

n t the

 waitingno and)T than moreon

 depends (i.e.T task one than moreon depends T if :(2.3) case

)w(T)(T
s

t)(T
f

 t

(5), and (2) form

othewise)

TT
c(e)(T

f
t

)(T ft-)(T f t)TTc(e if (Tk) ft
(Tj)s then t

completes. T until waitsT and

)Ton depends T (i.e. task oneon only depends T if :(2.2) case

)w(T)
TT

c(e)(T
f

t)(T
f

 t

 (3), and (2) form

)
TT

c(e(Ti)
f

t)(T
s

 t, then

)Ton depends T (i.e. task oneon only depends T if : (2.1) case

: thenroot task, anot is T if : (2) case

)w(T)(Tst)(T f t

 0)(T
s

 t then,

 root task. a is T if : (1) case

n

i

Fig.3. DAG with 8 tasks

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 83

Fig.5. chromosome that encodes processor list

5.1.3. chromosome construction using TLPLC

In this case, the chromosome has a combination of tasks

and processors as show in Fig.6.

Fig.6. Chromosome that encodes task list and processor list

5.2. Fitness function

The Fitness function (FF) is essentially the objective
function for the problem. It is used to evaluate the solution, and
it also controls the selection process. For the multiprocessor
scheduling problem we can consider factors, such as
throughput, finishing time and processor utilization for the FF.

  (12) . T) (t max P) (t f
 V T

f 


tf (p): is the finishing time of processor P, the time at which the
last task scheduled on P terminates.

Genetic algorithm works naturally on the maximization
problem, while the mentioned objective function (finishing
time of schedule) has to be minimized. Therefore, it is
necessary to convert the objective function into maximization
form called fitness function. Here, the calculation of the FF.
which is determined by the following equation:

 

 populationcurrent the

in observed timefinishing maxmium theis ft ,

(13) T) (t max ft FF

max

f
V T

max

where




6. Genetic operators

The selection operator should be applied before using the
crossover and mutation operators.

6.1. Selection operator
This selection operator allocates the reproductive trials to

chromosomes according to their fitness. Different approaches
were used in the selection operators such as roulette wheel
selection and tournament selection. The tournament selection
was found to be the better one [38].

The purpose of the selection is to emphasize fitter
individuals in the population in hopes that their offspring’s
have higher fitness. Chromosomes are selected from the initial
population to be parents for reproduction.

 In this paper elitism is used to eliminate the chance of any
undesired loss of information during the selection process. It
selects the best two chromosomes and copies them into the
mating pool, meanwhile in the next generation. Because such
chromosomes might be lost if not selected for reproduction and
also they may be destroyed by the crossover or the mutation
process. This issue significantly improves the GA’s
performance.

 Tournament selection randomly picks a tournament size
(Ts) of chromosomes from the tournament which is a copy of
the population (pop). The best chromosome from (Ts) that has
the highest fitness (fit) is the winner. It is then inserted into the
mating pool (which is for example half of the tournament).
The tournament competition is repeated until the mating pool
for generating new offspring is filled. After that, crossover and
mutation are performed. The developed tournament method is
as shown in Fig.7.

Tournament Selection Method
tournamentselection (pop, fit, Ts);
BEGIN
1. Compute size of mating pool as size of population/2;
2. Compute the best two individuals from population
3. Add them at mating pool m & at new population
4. for j1 to Ts

5. DO compute random point as any point between 1 and
population size

6. T[j]  pop [point];
7. TF[j]  fit [point];

8. ENDFOR
9. Compute the best one from T according to fitness
10. Add it to the mating pool
11. Repeat steps 4 to 10 until mating pool is full
END

Fig.7. Tournament Selection Method

6.2. Crossover operator
The crossover operator is a reproduction operator which

implements the principles of evolution. It creates new
chromosomes (children or offspring) by combining two
randomly selected parent chromosomes. These newly created
chromosomes inherit the genetic material of their ancestors.
Chromosomes in the mating pool are subjected to crossover
with probability pc. Two chromosomes are selected from the
mating pool, and a random number RN [0, 1] is generated. If
RN < pc, these chromosomes are subjected to the crossover
operation using single point crossover operator. Otherwise,
these chromosomes are not changed.

6.2.1. Crossover of task list.
The chromosome encoding of a task list states that each

task T  V, can appear only once in the chromosome. To
understand this, see Fig.8, the child (offspring) ch1 and ch2 will
have tasks T5 and T4 twice, respectively.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 84

Fig.8. Single-point crossover for task list chromosomes and error

The problem is overcome with the following single-point
crossover operator. Given two randomly chosen chromosomes
c1 and c2, a cut point x, 1 ≤ x < V, is selected randomly. The
genes [1, x] of c1 and c2 are copied to the genes [1, x] of the
new children ch1 and ch2, respectively. To fill the remaining
genes [x + 1, V] of ch1 (ch2), chromosome c2 (c1) is scanned
from the first to the last gene and each task that is not yet in ch1
(ch2) is added to the next empty position of ch1 (ch2) in the
order that it is discovered. Fig.9, illustrates the procedure of this
operator. Under the condition that the task lists of chromosomes
c1 and c2 are in precedence order, this operator even guarantees
that the task lists of ch1 and ch2 also are. It is easy to see this
for the genes [1, x] of both ch1 and ch2 as they are only copied
from c1 and c2. The remaining genes of ch1 and ch2 are filled
in the same relative order in which they appear in c2 and c1,
respectively. Hence, among themselves, these remaining tasks
must also be in precedence order. Furthermore, there cannot be
a precedence conflict between the tasks on the left side of the
crossover point with those on the right side of the crossover
point, this separation of the tasks into two groups has not
changed from c1 to ch1 neither from c2 to ch2 and it adheres to
the precedence constraints in c1 and c2.

Fig.9. Single-point crossover for task list chromosomes after error

6.2.2. Crossover of Processor List
For the chromosome encoding of the processor list, quite

simple crossover operators can be employed. The processor list
chromosome in each gene can assume the same range of values
(1 to P). Furthermore, the value of one gene has no impact on
the possible values of the other genes. Fig.10, illustrates how the
single point crossover operator works. Note that the generated
new children are always valid chromosomes.

Fig.10. Single-point crossover for processor list chromosomes

6.2.3. Crossover of TLPLC

Crossover of TLPLC combines the task list and the
processor list in one chromosome. Since these parts differ
strongly, the simple solution for the operator is to apply the two
previously described operators separately to each part. If
0.35≤pc ≤ 0.55 we apply on the first part. If 0.55< pc ≤ 0.75 we
apply on the second part and if 0.75< pc ≤ 0.95 we apply on the
two parts as shown in Fig.11.

6.3. Mutation operator
The mutation operator (pm) has a much lower probability

than the crossover operator. Its main function is to safeguard
avoiding the convergence of the state search to a locally best
solution. A swapping mutation operator is very suitable for
chromosomes in TL as in Fig. 12 and PL as in Fig. 13, where
we swap the two genes that are randomly selected. Another
alternative for PL is to change the values of the genes that were
randomly picked shown in Fig.14.

The mutation in TLPLC is based on the same methods
used in TL and PL.

Fig.12. Swapping mutation operator for task list chromosome

Fig.13. Swapping mutation operator for processor list chromosome

Fig.14. Mutation operator for processor list chromosome

7. E
x

perimental results

In this section, intensive simulated experiments on random
and real applications have been conducted. The genetic

Fig.11. single-point crossover for combination between task list and processor list chromosomes (TLPLC)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 85

algorithms used the following parameters throughout the
simulations:

• Population size = 20.
• Maximum number of generation = 1000
• Crossover probability (pc) = 0.7
• Mutation probability (pm) = 0.3
• Number of generation without improvement (with same
fitness) = 200.

7.1. simulated experiments based on MLSH
In this section, MLSH is compared with the most related

heuristics, such as modified critical path (MCP) [6], dominant
sequence clustering (DSC) [4], mobility directed (MD) [6] and
dynamic critical path (DCP) [20]. Table 1 demonstrates the
makespan of randomly generated task graph, problem 1 shown
in Fig. 15. The obtained performance shown in Fig. 16 shows
that processor efficiency with MLSH outperforms all other
algorithms.

In experimental problem 1:

 Best solution: the best result from the 15 times iterations.
 Processor efficiency (%) = Sequential Time /total

processing time
 Sequential Time: is actually task execution time on

uniprocessor.
 Processing time: is (number of used processors ×

makespan).

For example: Efficiency for MLSH = (30 / 2*23) =65.2%

 Efficiency for DCP and MD = (30 / 2*32) =46.9%

 Efficiency for DSC = (30 / 4*27) =27.8%

 Efficiency for MCP = (30 / 3*29) =34.48%

Fig.15. Randomly generated task graph

Table 1: Comparative results based on problem1

Algorithms MCP DSC MD DCP MLSH

No.of
processors

3 4 2 2 2

Best solution 29 27 32 32 23

Fig.16. performance analysis of MCP, DSC, MD, DCP, and MLSH

7.2. Comparison between TL, PL, and TLPLC
In this section, the TLPLC is compared with the TL and

the PL for two problems. Problem 1 mentioned above and
problem 2, Gaussian elimination method graphs shown in Fig.
17. Tables 2 and 3 demonstrate the best solution (the
makespan) for 15 iterations of problems 1 and problem 2
respectivly. The achieved results shown in Fig.18 and Fig.19
prove that the efficiency of TLPLC is better than TL and PL.

Fig.17. Gaussian elimination with 18 tasks

Table 2: Comparative results based on problem 1

Algorithms TL PL TLPLC
No.of processors 2 2 2
Best solution 22 21 21

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 86

Table 3: Comparative results based on problem 2

Algorithms TL PL TLPLC
No. of

processors
2 3 4 2 3 4 2 3 4

Best
solution

460 440 450 510 490 490 440 440 440

Fig.18. Performance analysis of TLPLC, TL, and PL based on problem 1

Fig.19. Performance analysis of TLPLC, TL, and PL based on problem
2

Based on the achieved results:-

1- Optimum solution

 TL method reached the optimum solution several times
with the same chromosome, and sometimes, it did not
reach it.

 PL method did not reach the optimum solution for these
two problems, but it did in some other problems.
 TLPLC method did reach the optimum solution many

times with different chromosomes (TLPLC has many
optimum solutions).

2- Number of Iterations

 TL required small number of iterations to reach the
optimum solution however, each iteration consumes high
computational time.

 PL required much iteration.
 TLPLC required small number of iterations with less

computational time.

3- Crossover and Mutation operation

 TL applies the crossover operation on tasks that might
cause task duplication in the same chromosome. Mutation
operation when applied on tasks, it might cause conflict
with their precedence that requires more processing time
to get rid of it.
 PL applies the crossover operation on processors which is

easy to be implemented. The mutation is also simple and
can be done using two different methods:

1. Swapping two tasks between any two processors
2. Migration, assigning a processor’s task to any other

processor.
 TLPLC applies the crossover operation on the

chromosome using the methods used in PL and TL. The
mutation is applied in the same way as in PL and TL.

So we can conclude that TLPLC based GA (TLPLC-GA)
algorithm is better than PL and TL based GA and hence it will
be used in the rest of the paper when comparing some heuristics
and genetic algorithms.

7.3. Comparison between TLPLC-GA and some well
known heuristics

In this section, the proposed algorithm, TLPLC-GA, is
compared with MCP, DSC, MD, and DCP. Table 4 and 5
demonstrate the makespan of problem 1 and problem 2,
respectively. The results of TLPLC-GA in all cases are better
than the compared algorithms. TLPLC-GA was run 15 times in
each case (using 2, 3 and 4 processors) and the best makespan
of each case has been reported in Table 4 and 5. The obtained
results shown in Fig.20 for problem 1 and Fig.21 for problem 2
prove that the performance of TLPLC-GA surpasses the other
algorithms.

Table 4: Comparative results based on problem 1

Algorithms MCP DSC MD DCP TLPLC-GA
No. of processors 3 4 2 2 2 3 4

Best solution 29 27 32 32 21 21 21

Table 5: Comparative results based on problem 2

Algorithms MCP DSC MD DCP TLPLC-GA

No. of
processors

4 6 3 3 2 3 4

Best solution 520 460 460 440 440 440 440

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 87

Fig.20 Performance analysis of MCP, DSC, MD, DCP, and TLPLC-
GA for problem 1

Fig.21 Performance analysis of MCP, DSC, MD, DCP, and TLPLC-GA
for problem 2

7.4. Comparisons with GA Based Algorithms

Here we compare the proposed algorithm, TLPLC-GA,
with other GA-based methods, BGA and PMC and two
test benchmarks were employed.

Test bench 1:

First, TLPLC-GA, BGA and PMC are applied on problem
1. Table 6 and Fig. 22 show that the obtained results in terms
of average makespam and processor efficiency for TLPLC-GA
and BGA in all cases are the same, and they are both better
than PMC.

Table 6: Comparative results based on problem 1

Algorithms TLPLC-GA BGA PMC

No. of
processors

2 3 4 2 3 4 2 3 4

Average
makespam

21 21 21 21 21 21 21.9 22.4 22.3

Fig.22 Performance analysis of TLPLC-GA, BGA and PMC for problem 1

Second, the three algorithms are applied on the problem 2.
Table 7 shows that TLPLC-GA has better makespan compared
to BGA and PMC in terms of average solutions in all
cases.Fig.23 shows that Processor efficiency for the proposed
algorithm, TLPLC-GA is quite better than that of BGA and
PMC.

Table 7: Comparative results for Gaussian elimination on problem 2

Algorithms TLPLC-GA BGA PMC
No. of

processors
2 3 4 2 3 4 2 3 4

Average
makespam

446 443 451 463 461 461 491 522 544

Fig.23 Performance analysis of TLPLC-GA, BGA and PMC for problem 2

Test bench2:

Table 8 summarizes different problems that have been
addressed in this paper for the sake of comparison among
TLPLC-GA, BGA and PMC.

 Table 8. Selected Test Problems

Problem # tasks Comm. costs Description

P1[17] 15 25 (fixed) Gauss-Jordan algorithm

P2[17] 15 100 (fixed) Gauss-Jordan algorithm
P3[17] 14 20 (fixed) LU decomposition
P4[17] 14 80 (fixed) LU decomposition

P5[41] 17
Variable for

each graph edge
Random

P6[6] 18
Variable for

each graph edge
Gaussian elimination

P7[6] 16 40 (fixed) Laplace equation solver
P8[6] 16 160 (fixed) Laplace equation solver

The three algorithms applied on the test benches are
presented in Table 8.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 88

According to results in Table 9, TLPLC-GA and BGA
showed the same average makespan for problems 1, 2, 3, and
6. In some cases, the TLPLC-GA achieved better average
makespan than BGA as in problems 4, 5, 7, and 8. The
TLPLC-GA showed better makespan than PMC in all
problems. Fig. 24 shows that the efficiency of TLPLC-GA is
better than BGA and PMC.

Table 9 The average makespan for problems in Table 8

Problem
TLPLC-GA BGA PMC

Average
Makespan

Average
Makespan

Average
Makespan

P1 300 300 300

P 2 440 440 472
P3 270 270 290
P 4 360 365 418
P 5 37 37.2 38.4
P 6 390 390 424
P 7 760 790 810
P8 1070 1088 1232
Note: The best results in each row are shown by Bold-Italic-Underline font.

Fig.24 Performance analysis of TLPLC-GA, BGA and PMC for table 8

8. Conclusions.

 This paper presents two new approaches for task scheduling in
multiprocessor systems: Modified list scheduling heuristic
(MLSH) and hybrid approach composed of Genetic Algorithm
and MLSH. Furthermore, three different types of chromosomes
For Genetic algorithm: task list (TL), processor list (PL) and
combination of both (TLPLC) have been presented. Simulated
results show that TLPLC representation for GA is better than TL
and PL for GA. Comparisons of the proposed algorithm,
TLPLC-GA, with the most related algorithms based on GA and
heuristic algorithms in terms of best makespan, average
makespan, and processor efficiency have been conducted. The
experimental results showed that the hybrid approach (TLPLC-
GA) outperforms the other algorithms.

References
[1]. M. R. Bonyadi and M. E. Moghaddam, “A bipartite genetic

algorithm for multi-processor task scheduling”, International
Journal of Parallel Programming, Vol. 37, No. 5, 2009, pp. 462-
487.

[2]. R. Hwang, M. Gen and H. Katayama, “A comparison of
multiprocessor task scheduling algorithms with communication
costs”, Computers and Operations Research, Vol. 35, No. 3,
2008, pp. 976–993.

[3]. H. El-Rewini, T. G. Lewis and H. H. Ali, “Task Scheduling in
Parallel and Distributed Systems”, Prentice-Hall International
Editions, 1994.

[4]. T. Yang and A. Gerasoulis , “DSC: scheduling parallel tasks on
an unbounded number of processors”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 5, No. 9, 1994, pp. 951–
967.

[5]. T.L. Adam, K.M. Chandy and J.R. Dicksoni, “A comparison of
list schedules for parallel processing systems”, Communications
of the ACM, Vol. 17, No. 12, 1974, pp. 685–690.

[6]. M.Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid for
Message-Passing Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 1, No. 3, 1990, pp. 330-343.

[7]. R.C. Correa, A. Ferreira and P. Rebreyend, “Scheduling
multiprocessor tasks with genetic algorithms”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 10, No. 8,
1999, pp. 825–837.

[8]. T. Thanalapati and S. Dandamudi, “An efficient adaptive
scheduling scheme for distributed memory multicomputer”,
IEEE Transactions on Parallel and Distributed Systems, Vol. 12,
No. 7, 2001, pp. 758–768.

[9]. N. Nissanke, A. Leulseged and S. Chillara, “Probabilistic
performance analysis in multiprocessor scheduling”, Journal of
Computing and Control Engineering, Vol. 13, No. 4, 2002, pp.
171–179.

[10]. J. Corbalan, X. Martorell and J. Labarta, “Performance-driven
processor allocation”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 16, No. 7, 2005, pp. 599–611.

[11]. A.S. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone, “An
incremental genetic algorithm approach to multiprocessor
scheduling”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 9, 2004, pp. 824–834.

[12]. Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors,” ACM
Computing Surveys, vol. 31, no. 4, 1999, pp. 406-471.

[13]. E.S.H. Hou, N. Ansari and R. Hong, “A Genetic Algorithm for
Multiprocessor Scheduling”, IEEE Transactions on Parallel and
Distributed Systems. Vol. 5, No. 2, 1994, pp. 113 – 120.

[14]. R.K. Hwang and M. Gen, “Multiprocessor scheduling using
genetic algorithm with priority-based coding”, Proceedings of
IEEJ conference on electronics, information and systems, 2004.

[15]. Y.H. Lee and C. Chen, “A Modified genetic algorithm for task
scheduling in multi processor systems”, The Ninth Workshop on
Compiler Techniques for High Performance Computing 2003.

[16]. F. Montazeri, M.S. Jelodar, S.N. Fakhraie and S.M. Fakhraie,
“Evolutionary multiprocessor task scheduling”, Proceedings of
the International Symposium on Parallel Computing in Electrical
Engineering (PARELEC’06) 2006.

[17]. T. Tsuchiya, T. Osada and T. Kikuno, “Genetic-Based
Multiprocessor Scheduling Using Task Duplication,”
Microprocessors and Microsystems, vol. 22, No. 3-4, 1998, pp.
197-207.

[18]. J.J. Hwang, Y.C. Chow, F.D. Anger and C.Y. Lee, “Scheduling
precedence graphs in systems with inter-processor
communication times”, SIAM Journal on Computing vol. 8, No.
2, 1989, pp. 244-258.

[19]. H. Kasahara and S. Narita, “Practical multiprocessing
scheduling algorithms for efficient parallel processing”, IEEE
Transactions on Computers, Vol. 33, No. 11, 1984, pp. 1023–
1029.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 89

[20]. Y.K. Kwok and I. Ahmad, “dynamic critical path scheduling: an
effective technique for allocating task graphs to
multiprocessors”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 7, No. 5, 1996, pp. 506–521.

[21]. R.C. Corrga, A. Ferreira and P. Rebreyend, “scheduling
multiprocessor tasks with genetic algorithm”, IEEE Transactions
on Parallel and Distributed Systems, Vol. 10, No. 8, 1999, pp.
825–837.

[22]. K. Kaur, A. Chhabra and G. Singh, “Modified Genetic Algorithm
for Task Scheduling in Homogeneous Parallel System Using
Heuristics”, International Journal of Soft Computing, Vol. 5, No.
2, 2010, pp. 42-51.

[23]. I. Ahmad and M.K. Dhodhi, “Multiprocessor scheduling in a
genetic paradigm”, Parallel Computing, Vol. 22, No. 3, pp. 395 –
406, 1996.

[24]. M.R. Bonyadi and M. R. Azghadi, S. Hashemi and M. E.
Moghadam, “A hybrid multiprocessor task scheduling method
based on immune genetic algorithm” Qshine Workshop on
Artificial Intelligence in Grid Computing 2008.

[25]. Y.K. Kwok and I. Ahmad, “Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors,” ACM
Computing Surveys, vol. 31, no. 4, 1999, pp. 406-471.

[26]. Dr.G.Padmavathi, Mrs.S.R.Vijayalakshmi, “A Performance
Study of GA and LSH in Multiprocessor Job Scheduling”,
International Journal of Computer Science Issues, IJCSI, Vol. 7,
No. 1, 2010, pp. 37-42.

[27]. B. Kruatrachue and T.G. Lewis, “Duplication Scheduling
Heuristic, a New Precedence Task Scheduler for Parallel
Systems”, Technical Report 87-60-3, Oregon State University,
1987.

[28]. B.S. Macey and A.Y. Zomaya, “A Performance Evaluation of CP
List Scheduling Heuristics for Communication Intensive Task
Graphs,” Proc. Joint 12th Int’l Parallel Processing Symposium
and Ninth Symposium. Parallel and Distributed Processing. ,
1998, pp. 538-541.

[29]. T.C. Hu, “Parallel Sequencing and Assembly Line
Problems,”Operations Research, Vol. 19, No. 6, 1961, pp. 841-
848.

[30]. A. Zomaya, C. Ward and B. Macey, “Genetic scheduling for
parallel processor systems comparative studies and performance
issues”, IEEE Transactions on Parallel and Distributed Systems,
Vol. 10, No. 8, 1999, pp. 795 – 812.

[31]. M. Moore, “An accurate parallel genetic algorithm to schedule
tasks on a cluster”, Parallel and Distributed Systems, Vol. 30,
No. 5-6, 2004, pp. 567–583.

[32]. W. Yao, J. You and B. Li, “Main sequences genetic scheduling
for multiprocessor systems using task duplication”,
Microprocessors and Microsystems, Vol. 28, No 2, 2004, pp. 85–
94.

[33]. Y.K. Kwok and I. Ahmad, “Efficient scheduling of arbitrary task
graphs to multiprocessors using a parallel genetic algorithm”,
Parallel Distributed Computing, Vol. 47, No.1, 1997, pp. 58–77.

[34]. O. Ceyda and M. Ercan, “A genetic algorithm for multilayer
multiprocessor task scheduling. In:TENCON 2004. IEEE region
10 conference, Vol. 2, 2004, pp. 68-170.

[35]. S. Cheng and Y. Huang, “Scheduling multi-processor tasks with
resource and timing constraintsusing genetic algorithm”, IEEE
international symposium on computational intelligence
inrobotics and automation, Vol. 2, 2003, pp 624–629.

[36]. Y.W. Zhong and J.G. Yang, “A genetic algorithm for tasks
scheduling in parallel multiprocessor systems”. In: Proceedings
of the Second International Conference on Machine Learning and
Cybernetics, 2003, pp. 1785–1790

[37]. K. Kaur, A. Chhabra and G. Singh, “Heuristics Based Genetic
Algorithm for Scheduling Static Tasks in Homogeneous Parallel
System”, International Journal of Computer Science and
Security, Vol. 4, No.2, 2010, pp. 149-264

[38]. F.A. Omara and M.M. Arafa, “Genetic algorithms for task
scheduling problem”, Journal of Parallel and Distributed
Computing, Vol. 70, No.1, 2010, pp. 13–22.

[39]. S.N. Sivanandam and S.N. Deepa, “Introduction to Genetic
Algorithms”, Springer-Verlag Berlin Heidelberg, 2008.

[40]. E. S. H. Hou, R. Hong and N. Ansari, “Efficient Multiprocessor
Scheduling Based On Genetic Algorithms”, Industrial
Electronics Society, IECON '90., 16th Annual Conference of
IEEE , Vol. 2, 1990, pp. 1239 – 1243.

[41]. M.A. Al-Mouhamed, “Lower Bound on the Number of
Processors and Time for Scheduling Precedence Graphs with
Communication Costs,” IEEE Transactions on Software
Engineering., Vol. 16, No. 12, pp. 1390- 1401, 1990.

Mostafa R. Mohamed obtained his B.Sc. degree of Electronics and
Communications engineering from Faculty of Engineering, Fayoum
University in 2006. Eng. Mostafa interests include parallel and

distributed systems, parallel processing, grid
computing, distributed operating systems,
multi processor scheduling and genetic
algorithms.

Medhat H. A. Awadalla obtained his B.Sc.
degree from Helwan University in 1991 in the

Electronics and Communications Department and his M.Sc in the field
of reconfigurable computer architecture in 1996 from Helwan University.
He received his PhD from Cardiff University, UK in the field of mobile

robots in 2005. He was a postdoctoral fellow
at Cardiff University in 2006 and currently he
is working as an Assistant Professor in
Helwan University. His research interests
include real time systems, multi processor
scheduling, parallel and distributed
systems, grid computing and sensor

networks.

