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Abstract 
Multiprocessors have become powerful computing means for 

running real-time applications and their high performance depends 
greatly on parallel and distributed network environment system. 
Consequently, several methods have been developed to optimally 
tackle the multiprocessor task scheduling problem which is called NP-
hard problem. To address this issue, this paper presents two 
approaches, Modified List Scheduling Heuristic (MLSH) and hybrid 
approach composed of Genetic Algorithm (GA) and MLSH for task 
scheduling in multiprocessor system.  Furthermore, this paper 
proposes three different representations for the chromosomes of 
genetic algorithm: task list (TL), processor list (PL) and combination 
of both (TLPLC). Intensive simulation experiments have been 
conducted on different random and real-world application graphs such 
as Gauss-Jordan, LU decomposition, Gaussian elimination and 
Laplace equation solver problems. Comparisons have been done with 
the most related algorithms like: list scheduling heuristics algorithm 
LSHs, Bipartite GA (BGA) [1] and Priority based Multi-Chromosome 
(PMC) [2]. The achieved results show that the proposed approaches 
significantly surpass the other approaches in terms of task execution 
time (makespan) and processor efficiency. 

 Keywords: Multiprocessors, task scheduling, Genetic algorithm, 
makespan, parallel and distributed system, Modified List Scheduling 
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 1. Introduction 

The problem of scheduling a task graph of a parallel 
program onto a parallel and distributed computing system is a 
well-defined NP-hard problem that has received much 
attention, and it is considered one of the most challenging 
problems in parallel computing [3]. The scheduling problem 
has been addressed in several applications such as information 
processing, database systems, weather forecasting, image 
processing, fluid flow, process control, economics, operation 
research and real time high-speed stimulations of dynamical 
systems. The multiprocessor task scheduling problem 
considered in this paper is based on the deterministic model, 
which is the execution time of tasks and the data 
communication time between tasks that are assigned; and the 
directed acyclic task graph (DAG) that represents the 
precedence relations of the tasks of a parallel processing 
system [4]. The goal of such a scheduler is to assign tasks to 
available processors such that precedence requirements 
between tasks are satisfied and the overall length of time 
required to execute the entire program, the schedule length or 
makespan, is minimized. 

Many heuristic approaches for task scheduling have been 
proposed [5–10]. The reason for such proposals is because the 
precedence constraints between tasks can be non-uniform 
therefore rendering the need for a uniformity solution. We 
assume that the parallel processor system is uniform and non-
preemptive.  

Recently, Genetic Algorithms (GAs) have been widely 
reckoned as a useful vehicle for obtaining high quality 
solutions or even optimal solutions for a broad range of 
combinatorial optimization problems including task scheduling 
problem [ 11, 12]. Another merit of a genetic search is that its 
inherent parallelism can be exploited so as to further reduce its 
running time. Thus, several methods have presented to solve 
this problem based on GAs [13-16]. 

To tackle the multiprocessor task scheduling problem 
(MTSP), this paper presents two approaches: a modified list 
scheduling heuristic and hybrid approach composed of GA and 
MLSH. GA used three new different types of chromosomes: 
task list, processor list, and a combination of both types. 

This paper is organized as follows: The multiprocessor 
task scheduling problem on the general models of a DAG is 
presented in section 2. Section 3 outlines the most related work 
to the theme of this paper. Section 4 proposes MLSH. Hybrid 
approach composed of genetic algorithm and MLSH 
comprising three different new types of chromosomes is 
presented in section 5. Genetic operators are presented in 
section 6. Simulated experiments and discussions are presented 
in section 7. Section 8 concludes the paper. 

2. Multiprocessor task scheduling problem 

Multiprocessor scheduling problems can be classified into 
many different classes based on the following characteristics: 

 The number of tasks and their precedence. 
 Execution time of the tasks and the communication cost 

which is the cost to transmit messages from a task on one 
processor to a succeeding task on a different processor 
(Communication cost between two tasks on the same 
processor is assumed to be zero). 

 Number of processors and processors uniformity (A 
homogeneous multiprocessor system is composed of a set 
P = {P1… Pm} of ‘m’ identical processors. 

 Topology of the representative task graph. 

Directed Acyclic Graph (DAG) can represent applications 
executed within each multiprocessor system. A DAG G = (V, 
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E    ) consists of a set of vertices V representing the tasks to be 
executed and a set of directed edges E representing 
communication dependencies among tasks. The edge set E 
contains directed edges eij for each task Ti  V that task Tj  V 
depends on. The computation weight of a task is represented 
by the number of CPU clock cycles to execute the task. Given 
an edge eij, Ti is called the immediate predecessor of Tj and Tj 
is called the immediate successor of Ti. An immediate 
successor Tj depends on its immediate predecessors such that 
Tj cannot start execution before it receives results from all of 
its immediate predecessors. A task without immediate 
predecessors is called an entry-task and a task without 
immediate successors is called an exit-task. A DAG may have 
multiple entry tasks and one exit-task. Randomly generated 
task model, Gauss Jordan elimination, LU decomposition [17] 
and Laplace equation solver [6] task graphs are considered in 
this paper. Some of these task graphs are illustrated in Fig.1. 

 

Fig.1. Description of task dependencies for (a) Laplace equation solver and 
(b) LU decomposition 

3. RELATED WORK  

Several approaches have been adopted to solve the 
multiprocessor task scheduling such as heuristic approaches 
[18-20], evolutionary approaches [2, 11, 13, 14, 15, 17, 21, 22] 
and hybrid methods [23, 24]. Kwok and Ahmad [25] presented 
a comprehensive review and classification of deterministic 
scheduling algorithms. Among the most common methods is a 
class of methods called list scheduling techniques. List 
scheduling techniques are widely used in task scheduling 
problems [26]. Insertion Scheduling Heuristic (ISH) and 
Duplication Scheduling Heuristic (DSH) are well-known list 
scheduling heuristic methods [27, 28]. ISH [27] is a list 
scheduling heuristic that was developed to optimize scheduling 
DAGs with communication delays. ISH extends a basic list 
scheduling heuristic from Hu [29] by attempting to insert ready 
tasks into existing communication delay slots. DSH [27] 
improved ISH by using task duplication to reduce the starting 
time of tasks within a schedule. DSH reduces inter-processor 
communication time by scheduling tasks redundantly to 
multiple processors. 

The genetic-based methods have attracted a lot of 
researcher attention in solving the MTSP [2, 11, 13, 14, 15, 17, 
21]. Genetic operators are the main differences of these genetic 
approaches, such as crossover and mutation. Using different 
crossover and mutation methods for reproducing the offspring 
is strongly dependent upon the chromosome representation 
which may lead to the production of legal or illegal solutions. 
Another important point in designing GA is the simplicity of 
the algorithm and complexity of evolutionary optimization 
process. 

Hou et al. [13] reported that the results of GA were within 
10% of the optimal schedules. Their results are based on task 
graphs with dependencies but without communication delays. 
The method proposed in [30], though it is very efficient, it does 
not search all the solution space. Due to the strict ordering that 
only the highest priority ready task can be selected for 
scheduling, there can be many valid schedules omitted from 
the search. Correa et al. [7] proposed modifications to the 
approach in [30] to broaden the search space to include all 
valid solutions. This modified approach was tested on task 
graphs that represent well-known parallel programs. Wu et al. 
[11] proposed a novel GA which allows both valid and invalid 
individuals in the population. This GA uses an incremental 
fitness function and gradually increases the difficulty of fitness 
values until a satisfactory solution is found. This approach is 
not scalable to large problems since much time is spent 
evaluating invalid individuals that may never become valid 
ones. Moore [31] applies parallel GA to the scheduling 
problem and compares its accuracy with mathematically 
predicted expected value. More GA approaches are found in 
[30, 32–35]. 

Another genetic-based multiprocessor scheduling method 
has been presented in [7]. The authors of this paper claimed 
that the task duplication is a useful technique for shortening the 
length of schedules. In addition, they added new genetic 
operators to the GA to control the degree of replication of 
tasks.  

Some works tried to change the conventional approach of 
GA. They combined other problem solving techniques, such as 
divide and conquer mechanism with GA. A modified genetic 
approach called partitioned genetic algorithm (PGA) was 
proposed [15]. In PGA: the input DAG is divided into partial 
graphs using b-level partitioning algorithm and each of these 
separate parts is solved individually using GA. After that, a 
conquer algorithm cascades the subgroups and forms the final 
solution. In [36], a new GA called task execution order list 
(TEOL) was presented to solve the scheduling problem in 
parallel multiprocessor systems. The TEOL guarantees that all 
feasible search space is reachable with the same probability. 

Some researchers proposed a combination of GAs and list 
heuristics [37-39]. Correa et al. [7] proposed a modified GA by 
the use of list heuristics in the crossover and mutation in a pure 
genetic algorithm. This method is said to dramatically improve 
the quality of the solutions that can be obtained with both pure 
genetic algorithm and pure list approach. Unfortunately, the 
running time is larger than the time of running pure genetic 
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algorithm. Therefore the aim of this paper is to reduce that time 
however GA is modified by the chromosomes representations.  

4. The Proposed Modified List Scheduling 
Heuristic (MLSH) 

List scheduling techniques assign a priority to each task to 
be scheduled and then sort the list of tasks in decreasing 
priority. As processors become available, the task with highest 
priority is processed and removed from the list. If two or more 
tasks have the same priority, the selection which is performed 
among the candidate tasks is typically random [26]. The 
problem with list scheduling algorithms is that the priority 
assignment may not always order the tasks for scheduling 
according to their relative importance. In MLSH, Priorities 
have been determined from DAG and then assigned to the 
tasks in such way that the important task will be assigned to the 
processor that eventually leads to a better scheduling. MLSH 
flowchart is illustrated in Fig.2. 

In this paper, real-time tasks are considered. Each task is 
characterized by the following parameters: 

 ts (T) :  is the starting time of task T of G. 
 ts (T, P) :  is the starting time of task T on processor P. 
 tf (T) : is the finishing time of task T. 
 w (T) : is the processing time of task T. 

 The algorithm starts by assigning levels for the tasks (the 
root task has level 0). The level of a task graph is defined as:  

Ti. of rspredecesso ofset   theis (Ti) Pred     where,

(1)                                         otherwise ,        
(Ti) PRED  Tj

(Tj) Levelmax   1

  (Ti) Pred if,                                0 
  (Ti) Level










  

 Firstly, the Level function indirectly conveys precedence 
relations between the tasks. If the task Ti is an ancestor of task 
Tj, then Level (Ti) < Level (Tj). If there is no path between the 
two tasks, then there is no precedence relation between them 
and the order of their execution can be arbitrary [13, 40]. 

Secondly, the sequence of tasks’ execution in each level is 
determined. For the root level (T1, T2 in Fig.3), if there is only 
one parent task, then it comes first.  

If there is more than one parent tasks the number of the 
children for each parent in the next level is calculated and their 
parent has got a priority according to that number in a 
descending order. The parent with the highest number of 
children comes first (T1 will be executed before T2).  

Fig.2. Flowchart of MLSH algorithm 
 

If two or more parents have the same number of children 
(T3, T4 and T5) then the parent that has a common child is to be 
executed first (T4 and T5 will be executed before T3). When 
two parents have the same common child, they will be listed in 
an arbitrary order (T4 and T5). 

Thirdly, we assign each task to an appropriate processor to 
reach the minimum finishing time for all tasks according to 
equations (2-11). 
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5. The Proposed Hybrid approach.  

The hybrid approach composed of GA and MLSH. 
Genetic algorithms try to mimic the natural evolution process 
and generally start with an initial population of chromosomes, 
which can either be generated randomly or based on some other 
algorithms. Here, the initial population has started based on 
MLSH. Three different types of chromosomes are developed to 
generate the genetic chromosome. In each generation, the 
population goes through the processes of fitness evaluation, 
selection, crossover and mutation. The following subsections 
will present these processes in full details.  

5.1. Chromosomes 

For task scheduling, a chromosome represents a solution 
to the scheduling problem. We present three different types of 
chromosomes for genetic algorithm: Task List (TL), Processor 
List (PL) and combination of them (TLPLC). 

5.1.1. Chromosome construction using TL 

Every chromosome is a permutation of the V tasks of the 
DAG. Each gene represents a position in the task list and the 
value of the gene is the index of the task at that position as 
shown in Fig.4. MLSH is used to form the chromosomes in the 
initial population. 

 

Fig.4. Chromosome that encodes task list 
 

5.1.2. chromosome construction using PL 

Every chromosome consists of V genes, each of which 
represents one task of the DAG. Assuming a consecutive 
numbering of the tasks and processors, starting with 1, gene i 
corresponds to task Ti Є V. The value of the gene corresponds 
to the index of the processor, 1 to P, to which the task is 
allocated as shown in Fig.5. The chromosomes have uniform 
distribution of the available number of processors. 
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Fig.3. DAG with 8 tasks 
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Fig.5. chromosome that encodes processor list 

 
5.1.3. chromosome construction using TLPLC 

In this case, the chromosome has a combination of tasks 

and processors as show in Fig.6. 
  

 
Fig.6. Chromosome that encodes task list and processor list 

5.2. Fitness function 

The Fitness function (FF) is essentially the objective 
function for the problem. It is used to evaluate the solution, and 
it also controls the selection process. For the multiprocessor 
scheduling problem we can consider factors, such as 
throughput, finishing time and processor utilization for the FF. 
  

  (12)                                . T) (t max   P) ( t          f
 V T

f 
  

tf (p): is the finishing time of processor P, the time at which the 
last task scheduled on P terminates. 

Genetic algorithm works naturally on the maximization 
problem, while the mentioned objective function (finishing 
time of schedule) has to be minimized. Therefore, it is 
necessary to convert the objective function into maximization 
form called fitness function. Here, the calculation of the FF. 
which is determined by the following equation: 

 

 populationcurrent    the                    

in  observed   timefinishing maxmium  theis ft  ,

(13)                      T) (t max ft   FF           

max

f
V T

max

where




  

6. Genetic operators 

The selection operator should be applied before using the 
crossover and mutation operators.  

6.1. Selection operator 
This selection operator allocates the reproductive trials to 

chromosomes according to their fitness. Different approaches 
were used in the selection operators such as roulette wheel 
selection and tournament selection. The tournament selection 
was found to be the better one [38]. 

The purpose of the selection is to emphasize fitter 
individuals in the population in hopes that their offspring’s 
have higher fitness. Chromosomes are selected from the initial 
population to be parents for reproduction. 

  In this paper elitism is used to eliminate the chance of any 
undesired loss of information during the selection process. It 
selects the best two chromosomes and copies them into the 
mating pool, meanwhile in the next generation. Because such 
chromosomes might be lost if not selected for reproduction and 
also they may be destroyed by the crossover or the mutation 
process. This issue significantly improves the GA’s 
performance. 

  Tournament selection randomly picks a tournament size 
(Ts) of chromosomes from the tournament which is a copy of 
the population (pop). The best chromosome from (Ts) that has 
the highest fitness (fit) is the winner. It is then inserted into the 
mating pool (which is for example half of the tournament).  
The tournament competition is repeated until the mating pool 
for generating new offspring is filled. After that, crossover and 
mutation are performed. The developed tournament method is 
as shown in Fig.7. 

Tournament Selection Method 
tournamentselection (pop, fit, Ts); 
BEGIN 
1. Compute size of mating pool as size of population/2; 
2. Compute the best two individuals from population 
3. Add them at mating pool m & at new population 
4. for j1 to Ts 

5. DO compute random point as any point between 1 and 
population size 

6. T[j]  pop [point]; 
7. TF[j]  fit [point]; 

8. ENDFOR 
9. Compute the best one from T according to fitness 
10. Add it to the mating pool  
11. Repeat steps 4 to 10 until mating pool is full 
END 

Fig.7. Tournament Selection Method 

6.2. Crossover operator 
The crossover operator is a reproduction operator which 

implements the principles of evolution. It creates new 
chromosomes (children or offspring) by combining two 
randomly selected parent chromosomes. These newly created 
chromosomes inherit the genetic material of their ancestors.  
Chromosomes in the mating pool are subjected to crossover 
with probability pc. Two chromosomes are selected from the 
mating pool, and a random number RN [0, 1] is generated. If 
RN < pc, these chromosomes are subjected to the crossover 
operation using single point crossover operator. Otherwise, 
these chromosomes are not changed.  

6.2.1. Crossover of task list. 
The chromosome encoding of a task list states that each 

task T  V, can appear only once in the chromosome. To 
understand this, see Fig.8, the child (offspring) ch1 and ch2 will 
have tasks T5 and T4 twice, respectively.  
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Fig.8. Single-point crossover for task list chromosomes and error 
 

The problem is overcome with the following single-point 
crossover operator. Given two randomly chosen chromosomes 
c1 and c2, a cut point x, 1 ≤ x < V, is selected randomly. The 
genes [1, x] of c1 and c2 are copied to the genes [1, x] of the 
new children ch1 and ch2, respectively. To fill the remaining 
genes [x + 1, V] of ch1 (ch2), chromosome c2 (c1) is scanned 
from the first to the last gene and each task that is not yet in ch1 
(ch2) is added to the next empty position of ch1 (ch2) in the 
order that it is discovered. Fig.9, illustrates the procedure of this 
operator. Under the condition that the task lists of chromosomes 
c1 and c2 are in precedence order, this operator even guarantees 
that the task lists of ch1 and ch2 also are. It is easy to see this 
for the genes [1, x] of both ch1 and ch2 as they are only copied 
from c1 and c2. The remaining genes of ch1 and ch2 are filled 
in the same relative order in which they appear in c2 and c1, 
respectively. Hence, among themselves, these remaining tasks 
must also be in precedence order. Furthermore, there cannot be 
a precedence conflict between the tasks on the left side of the 
crossover point with those on the right side of the crossover 
point, this separation of the tasks into two groups has not 
changed from c1 to ch1 neither from c2 to ch2 and it adheres to 
the precedence constraints in c1 and c2. 

Fig.9. Single-point crossover for task list chromosomes after error 
 

6.2.2. Crossover of Processor List 
For the chromosome encoding of the processor list, quite 

simple crossover operators can be employed. The processor list 
chromosome in each gene can assume the same range of values 
(1 to P). Furthermore, the value of one gene has no impact on 
the possible values of the other genes. Fig.10, illustrates how the 
single point crossover operator works. Note that the generated 
new children are always valid chromosomes. 
 
 

 
Fig.10. Single-point crossover for processor list chromosomes 

6.2.3. Crossover of TLPLC 

Crossover of TLPLC combines the task list and the 
processor list in one chromosome. Since these parts differ 
strongly, the simple solution for the operator is to apply the two 
previously described operators separately to each part. If 
0.35≤pc ≤ 0.55 we apply on the first part. If 0.55< pc ≤ 0.75 we 
apply on the second part and if 0.75< pc ≤ 0.95 we apply on the 
two parts as shown in Fig.11. 

6.3. Mutation operator 
The mutation operator (pm) has a much lower probability 

than the crossover operator. Its main function is to safeguard 
avoiding the convergence of the state search to a locally best 
solution. A swapping mutation operator is very suitable for 
chromosomes in TL as in Fig. 12 and PL as in Fig. 13, where 
we swap the two genes that are randomly selected. Another 
alternative for PL is to change the values of the genes that were 
randomly picked shown in Fig.14.  

The mutation in TLPLC is based on the same methods 
used in TL and PL. 

 

Fig.12. Swapping mutation operator for task list chromosome 

 

Fig.13. Swapping mutation operator for processor list chromosome 

 

Fig.14. Mutation operator for processor list chromosome 

 

 

 

 

 

 

 

 

 

7. E
x

perimental results 

In this section, intensive simulated experiments on random 
and real applications have been conducted. The genetic 

Fig.11. single-point crossover for combination between task list and processor list  chromosomes  (TLPLC) 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org    85 

 

algorithms used the following parameters throughout the 
simulations: 

 

• Population size = 20. 
• Maximum number of generation = 1000 
• Crossover probability (pc) = 0.7 
• Mutation probability (pm) = 0.3 
• Number of generation without improvement (with same 
fitness) = 200. 

7.1. simulated experiments based on MLSH  
In this section, MLSH is compared with the most related 

heuristics, such as modified critical path (MCP) [6], dominant 
sequence clustering (DSC) [4], mobility directed (MD) [6] and 
dynamic critical path (DCP) [20]. Table 1 demonstrates the 
makespan of randomly generated task graph, problem 1 shown 
in Fig. 15.  The obtained performance shown in Fig. 16 shows 
that processor efficiency with MLSH outperforms all other 
algorithms.  

In experimental problem 1:  

 Best solution: the best result from the 15 times iterations. 
 Processor efficiency (%) =   Sequential Time /total 

processing time 
 Sequential Time: is actually task execution time on 

uniprocessor. 
  Processing time: is (number of used processors × 

makespan). 

For example:  Efficiency for MLSH = (30 / 2*23) =65.2% 

            Efficiency for DCP and MD = (30 / 2*32) =46.9% 

                          Efficiency for DSC = (30 / 4*27) =27.8% 

                          Efficiency for MCP = (30 / 3*29) =34.48% 
 

Fig.15. Randomly generated task graph  
 

Table 1: Comparative results based on problem1 

Algorithms MCP DSC MD DCP MLSH 

No.of  
processors 

3 4 2 2 2 

Best solution 29 27 32 32 23 

 

Fig.16. performance analysis of MCP, DSC, MD, DCP, and MLSH 
 

7.2. Comparison between TL, PL, and TLPLC  
In this section, the TLPLC is compared with the TL and 

the PL for two problems. Problem 1 mentioned above and 
problem 2, Gaussian elimination method graphs shown in Fig. 
17. Tables 2 and 3 demonstrate the best solution (the 
makespan) for 15 iterations of problems 1 and problem 2 
respectivly. The achieved results shown in Fig.18 and Fig.19 
prove that the efficiency of TLPLC is better than TL and PL. 

 

 
Fig.17. Gaussian elimination with 18 tasks

 

 

Table 2: Comparative results based on problem 1  

Algorithms TL PL TLPLC 
No.of  processors 2 2 2 
Best solution 22 21 21 
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Table 3: Comparative results based on problem 2  

Algorithms TL PL TLPLC 
No. of 

processors 
2 3 4 2 3 4 2 3 4 

Best 
solution 

460 440 450 510 490 490 440 440 440 

 

 
Fig.18. Performance analysis of TLPLC, TL, and PL based on problem 1 

 

Fig.19. Performance analysis of TLPLC, TL, and PL based on problem 
2 

 
 
Based on the achieved results:- 

1- Optimum solution 

 TL method reached the optimum solution several times 
with the same chromosome, and sometimes, it did not 
reach it. 

  PL method did not reach the optimum solution for these 
two problems, but it did in some other problems. 
 TLPLC method did reach the optimum solution many 

times with different chromosomes (TLPLC has many 
optimum solutions). 

 

2- Number of Iterations 

 TL required small number of iterations to reach the 
optimum solution however, each iteration consumes high 
computational time. 

  PL required much iteration. 
 TLPLC required small number of iterations with less 

computational time. 

3- Crossover and Mutation operation 

 TL applies the crossover operation on tasks that might 
cause task duplication in the same chromosome. Mutation 
operation when applied on tasks, it might cause conflict 
with their precedence that requires more processing time 
to get rid of it.   
 PL applies the crossover operation on processors which is 

easy to be implemented. The mutation is also simple and 
can be done using two different methods: 

1. Swapping two tasks between any two processors  
2. Migration, assigning a processor’s task to any other 

processor. 
 TLPLC applies the crossover operation on the 

chromosome using the methods used in PL and TL. The 
mutation is applied in the same way as in PL and TL.  

So we can conclude that TLPLC based GA (TLPLC-GA) 
algorithm is better than PL and TL based GA and hence it will 
be used in the rest of the paper when comparing some heuristics 
and genetic algorithms.  

7.3. Comparison between TLPLC-GA and some well 
known heuristics 

In this section, the proposed algorithm, TLPLC-GA, is 
compared with MCP, DSC, MD, and DCP. Table 4 and 5 
demonstrate the makespan of problem 1 and problem 2, 
respectively. The results of TLPLC-GA in all cases are better 
than the compared algorithms. TLPLC-GA was run 15 times in 
each case (using 2, 3 and 4 processors) and the best makespan 
of each case has been reported in Table 4 and 5. The obtained 
results shown in Fig.20 for problem 1 and Fig.21 for problem 2 
prove that the performance of TLPLC-GA surpasses the other 
algorithms. 

 
Table 4: Comparative results based on problem 1

Algorithms MCP DSC MD DCP TLPLC-GA 
No. of processors 3 4 2 2 2 3 4 

Best solution 29 27 32 32 21 21 21 
 
 

Table 5: Comparative results based on problem 2

Algorithms MCP DSC MD DCP TLPLC-GA 

No. of 
processors 

4 6 3 3 2 3 4 

Best solution 520 460 460 440 440 440 440 
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Fig.20 Performance analysis of MCP, DSC, MD, DCP, and TLPLC-
GA for problem 1  

 

Fig.21 Performance analysis of MCP, DSC, MD, DCP, and TLPLC-GA  
for problem 2 

7.4. Comparisons with GA Based Algorithms 

Here we compare the proposed algorithm, TLPLC-GA, 
with other GA-based methods, BGA and PMC and two 
test benchmarks were employed.  

Test bench 1: 

First, TLPLC-GA, BGA and PMC are applied on problem 
1. Table 6 and Fig. 22 show that the obtained results in terms 
of average makespam and processor efficiency for TLPLC-GA 
and BGA in all cases are the same, and they are both better 
than PMC.  
 

Table 6: Comparative results based on problem 1 

Algorithms TLPLC-GA BGA PMC 

No. of 
processors 

2 3 4 2 3 4 2 3 4 

Average 
makespam 

21 21 21 21 21 21 21.9 22.4 22.3 

 

 
Fig.22 Performance analysis of TLPLC-GA, BGA and PMC for problem 1  

Second, the three algorithms are applied on the problem 2. 
Table 7 shows that TLPLC-GA has better makespan compared 
to BGA and PMC in terms of average solutions in all 
cases.Fig.23 shows that Processor efficiency for the proposed 
algorithm, TLPLC-GA is quite better than that of BGA and 
PMC. 

Table 7: Comparative results for  Gaussian elimination on problem 2 

Algorithms TLPLC-GA BGA PMC 
No. of 

processors 
2 3 4 2 3 4 2 3 4 

Average 
makespam 

446 443 451 463 461 461 491 522 544 

 

Fig.23 Performance analysis of TLPLC-GA, BGA and PMC for problem 2 

Test bench2: 

Table 8 summarizes different problems that have been 
addressed in this paper for the sake of comparison among 
TLPLC-GA, BGA and PMC. 

 Table 8. Selected Test Problems 

Problem # tasks Comm. costs Description 

P1[17] 15 25 (fixed) Gauss-Jordan algorithm 

P2[17] 15 100 (fixed) Gauss-Jordan algorithm 
P3[17] 14 20 (fixed) LU decomposition 
P4[17] 14 80 (fixed) LU decomposition 

P5[41] 17 
Variable for 

each graph edge 
Random 

P6[6] 18 
Variable for 

each graph edge 
Gaussian elimination 

P7[6] 16 40 (fixed) Laplace equation solver 
P8[6] 16 160 (fixed) Laplace equation solver 

The three algorithms applied on the test benches are 
presented in Table 8. 
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According to results in Table 9, TLPLC-GA and BGA 
showed the same average makespan for problems 1, 2, 3, and 
6. In some cases, the TLPLC-GA achieved better average 
makespan than BGA as in problems 4, 5, 7, and 8. The 
TLPLC-GA showed better makespan than PMC in all 
problems. Fig. 24 shows that the efficiency of TLPLC-GA is 
better than BGA and PMC. 
 

Table 9 The average makespan for problems in Table 8  

Problem 
TLPLC-GA BGA PMC 

Average 
Makespan 

Average 
Makespan 

Average 
Makespan 

P1 300 300 300 

P 2 440 440 472 
P3 270 270 290 
P 4 360 365 418 
P 5 37 37.2 38.4 
P 6 390 390 424 
P 7 760 790 810 
P8 1070 1088 1232 
Note: The best results in each row are shown by Bold-Italic-Underline font.

 

Fig.24 Performance analysis of TLPLC-GA, BGA and PMC for table 8

8. Conclusions. 

    This paper presents two new approaches for task scheduling in 
multiprocessor systems: Modified list scheduling heuristic 
(MLSH) and hybrid approach composed of Genetic Algorithm 
and MLSH. Furthermore, three different types of chromosomes 
For Genetic algorithm: task list (TL), processor list (PL) and 
combination of both (TLPLC) have been presented. Simulated 
results show that TLPLC representation for GA is better than TL 
and PL for GA. Comparisons of the proposed algorithm, 
TLPLC-GA, with the most related algorithms based on GA and 
heuristic algorithms in terms of best makespan, average 
makespan, and processor efficiency have been conducted. The 
experimental results showed that the hybrid approach (TLPLC-
GA) outperforms the other algorithms.  
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