
Inverted indexes: Types and techniques

Ajit Kumar Mahapatra1, Sitanath Biswas2

 1 Information Technology, ITER, Siksha ‘O’ Anusandhan University,
Bhubaneswar, Orissa, 751030, India

2 Information Technologies, ITER, Siksha ‘O’ Anusandhan University,
Bhubaneswar, Orissa, 751030, India

Abstract
There has been a s ubstantial amount of research on high
performance inverted index because most web and search
engines use an inverted index to execute queries.
Documents are normally stored as lists of words, but
inverted indexes invert this by storing for each word the list
of documents that the word appears in, hence the name
“inverted index”. This paper presents the crucial research
findings on inverted indexes, their types and techniques.

1. Introduction

Most web and intranet search engines uses an
inverted text index to execute text queries. Because
inverted indexes are expensive to update, search
engines typically reconstruct their index from scratch
on a periodic basis. The more frequently an index can
be reconstructed, the faster update will be reflected in
search results, which in turns improves search
quality. There has been a substantial amount of
research on high performance inverted index because
most web and search engines use an inverted index to
execute queries. Documents are normally stored as
lists of words, but inverted indexes invert this by
storing for each word the list of documents that the
word appears in, hence the name “inverted index”.

2. Inverted indexes

Documents are normally stored as lists of words, but
inverted indexes invert this by storing for each word
the list of documents that the word appears in, hence
the name “Inverted index”. There are several
variations on inverted indexes. At a minimum, you
need to store for each word the list of documents that
the word appears in. If you want to support phrase
and proximity queries you need to store word
positions for each document, i.e. the positions that the
word appears in. The granularity of a position can
range from byte offset to word to paragraph to
section, but usually it is stored at word position
granularity. You can also store just the word

frequency for each document instead of word
positions.

Storing the total frequency for each word can be
useful in optimizing query execution plans. Some
implementations store two inverted lists, one storing
just the document lists (and usually the word
frequencies) and one storing the full word position
lists. Simple queries can then be answered consulting
just the much shorter document lists. Some
implementations go even further and store meta-
information about each “hit”, i.e. word position. They
typically use a b yte or two for each hit that has bits
for things like font size, text type (title, header,
anchor (HTML), plain text, etc.) This information
can then be used for better ranking of search results
as words that have special formatting are usually
more important.

Another possible variation is whether the lexicon is
stored separately or not. The lexicon stores all the
tokens indexed for the whole collection. Usually it
also stores statistical information for each token like
the number of documents it appears in. The lexicon
can be helpful in various ways that we refer to later
on.

The space used by the inverted index varies
somewhere in the range of 5-100% of the total size of
the documents indexed. This enormous range exists
because inverted index implementations come in so
many different variations. Some store word positions,
some do not, some do aggressive document
preprocessing to cut down the size of the index, some
do not, some support dynamic updates (they cause
fragmentation and usually one must reserve extra
space for future updates), some do not, some use
more powerful (and slower) compression methods
than others, and so on.ble 3 contains three examples
of inverted indexes for the document collection from
table 2. No stop words or stemming are used in this
example. The indexes are:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 384

Table 1: Sample document collection
Id Contents
1 The only way not to think about money is to have

a great deal of it.
2 When I was young I thought that money was the

most important thing in life; now that I am ld I
know that it is.

3 A man is usually more careful of his money than
he is of his principles.

List 1 Just the document lists. The format is (d1, d2 .
. .), where dn is the document id number.

List 2 Document lists with word frequencies. The
format is (d1:f1, d2:f2 . . .), where dn is the document
id number and fn is the word frequency.

List 3 Document lists and word positions with word
granularity. The format is (d1 :(w1, w2 . . .), (d2 :(
w1, w2 . . .) . . .) , where dn is the document id
number and wn are the word positions.

Table 3 is also a good example of how time-
consuming manual construction of inverted indexes
is. It took over half an hour to create the lists by
hand, but that pales when compared to Mary Cowden
Clarke, who in 1845 pu blished a concordance (an
archaic term for an inverted index) of Shakespeare’s
works that had taken her 16 years to create

2.1 Compression

Storing inverted lists totally uncompressed wastes
huge amounts of space. Using the word “is” in table 3
as an example, if we stored the numbers as fixed-
width 32-bit integers, list 1 would take 12 bytes, list 2
would take 26 bytes (using a special marker byte to
mark ends of word position lists), and list 3 would
take 30 bytes.

Table 2: Inverted list example
Word List1 List2 List3

a 1,3 1:1.3:1 1: (12) ,3:
(1)

About 1 1:1 1: (7)
am 2 2:1 2: (19)

Careful 3 3:1 3: (6)
deal 1 1:1 1: (16)
great 1 1:1 1: (13)
have 1 1:1 1: (11)
he 3 3:1 3: (11)
his 3 3:2 3: (8,14)
i 2 2:4 2:

(2,5,18,21)
important 2 2:1 2: (12)

in 2 2:1 2: (14)
is 1,2,3 1:1,2:1,3:2 1:(: (9),2:

(25),3:
(3,12)

it 1,2 1:1,2:1 1:(16) ,2:
(25)

know 2 2:1 2: (22)
life 2 2:1 2: (25)
man 3 3:1 3: (2)

money 1,2,3 1:1,2:1,3:1 1: (8),
2:(8),3:(9)

more 3 3:1 3: (5)
most 2 2:1 2: (11)
not 1 1:1 1: (4)
now 2 2:1 2: (16)
of 1,3 1:1 , 3:2 1: (15),3:

(7,13)
old 2 2:1 2: (20)
only 1 1:1 1: (2)

principles 3 3:1 3: (15)
than 3 3:1 3: (10)
that 2 2:2 2: (7,23)
the 1,2 1:1,2:1 1: (1),2: (10)

thing 2 2:1 2: (13)
think 1 1:1 1: (6)

thought 2 2:1 2: (6)
to 1 1:2 1: (5,10)

usually 3 3:1 3:4
was 2 2:1 2: (9)
way 1 1:1 1: (3)

when 2 2:1 2: (1)

There are many ways to store the lists in a more
compact form. They can be divided into two
categories depending on whether the number of bits
they use for coding a single value is always a
multiple of 8 or not. The non-byte-aligned methods
are slightly more compact, but more complex, harder
to handle if dynamic updates are needed, and much
slower to encode/decode. In practice, simple byte-
aligned methods are the preferred choice in most
cases.

Variable length integers Instead of using 32 bits to
store every value, we can use variable length integers
that only use as many bytes as needed. There are
many variations on these, but a simple and often used
variation marks the final byte of the value by setting
the high bit (0x80) to 1. The lower 7 bits of each byte
are concatenated to form the value.

Elias gamma Elias gamma coding [Eli75] consists of
the number written in binary, prefixed by N zeros,
where N = number of bits in the binary representation
− 1. This is efficient for small values, for example 1
is coded as 1, 2 as 010, and 3 as 011, but inefficient
for bigger values, for example 64396 is coded as
0000000000000001111101110001100, which is 31
bits. Elias delta Elias delta coding [Eli75] consists of

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 385

separating the number into the highest power of 2 it
contains (2N) and the remaining N binary digits of
the number, encoding N+1 with Elias gamma coding,
and appending the remaining N binary digits. This is
slightly more inefficient than Elias gamma coding for
very small values, but much more efficient for large
numbers. For example, 1 is coded as 1, 2 as 010|0, 3
as 010|1, and 64396 as
000010000|111101110001100, which is 24 bi ts. The
character | in the examples is used to mark the
boundary between the two parts of the coded value.

Golomb-Rice Golomb coding [Gol66] differs from
Elias codes in that it is a parameterized one. The
parameter b changes how the values are coded, and
must be chosen according to the distribution of
values to be coded, either real or expected. If b is a
power of two, the coding is known as Golomb-Rice
coding, and is the one usually used, since shift
operations can then be used instead of divides and
multiplies.The number to be coded is divided into
two parts: the result of a division by b, and the
remainder. The quotient is stored first, in unary
coding, followed by the remainder, in truncated
binary encoding. Using a value of 4 for b, 1 is coded
as 101, 2 as 110, 3 as 111, and 4 as 0100. Coding the
number 64396 with b = 4 would take over 16100 bits,
so using a r oughly correct value for b is of critical
importance.

Delta coding We can increase our compression ratios
for the lists of numbers significantly if we store them
delta coded. This means that instead of storing
absolute values, we store the difference to the
previous value in the list. Since we can sort the lists
before storing them, and there are no duplicate
values, the difference between consecutive values is
always ¸ 1.The smaller the values are that we store,
the more efficient the compression methods
described above are. It takes less space to store (1,
12, 5, 2, 3, 15, and 4) than (1, 13, 18, 20, 23, 38, and
42). In table 3, the word “is” has the following for list
3: “1 :(9), 2 : (25), 3 : (3, 12)”. Applying delta
coding would produce the following list: “1 :(9), 1 :(
25), 1 :(3, 9)”.

def memoryInvert(documents):
 index = {}

for d in documents:
 for t in tokenize(d):

 if t.word not in index:
 index[t.word] = CompressedList()

 index[t.word].add(t)
 return index

Figure 1: In-memory inversion

2.1.2 Construction

Constructing an inverted index is easy. Doing it
without using obscene amounts of memory, disk
space or CPU time is a much harder task. Advances
in computer hardware do not help much as the size of
the collections being indexed is growing at an even
faster rate. If the collection is small enough; doing
the inversion process completely in memory is the
fastest and easiest way. The basic mechanism is
expressed in Python pseudo code in Figure 1.

In-memory inversion is not feasible for large
collections so in those cases we have to store
temporary results to disk. Since disk seeks are
expensive, the best way to do that is to construct in-
memory inversions of limited size, store them to disk,
and then merge them to produce the final inverted
index.

Moffat and Bell describe such a method .To avoid
using twice the disk space of the final result they use
an in-place multi-way merge sort to merge the
temporary blocks. After the sort is complete the index
file is still not quite finished, since due to the in-place
aspect of the sort the blocks are not in their final
order, and need to be permuted to their correct order.
Heinz and Zobel present a modified version of the
above algorithm that is slightly more efficient,
mainly because it does not require keeping the
lexicon in memory permanently during the inversion
process and also due to their careful choice of data
structures used in the implementation. Keeping the
lexicon in memory permanently during the inversion
process is a p roblem for very large collections,
because as the size of the lexicon grows, the memory
available for storing the position lists decreases.

3. Inverted index techniques

In this section we describe the techniques needed to
implement a search engine using an inverted index.
At the end of the section we describe some of the
remaining unsolved problems.

3.1 Document preprocessing

Documents are normally not indexed as-is, but are
preprocessed first. They are converted to tokens in
the lexing phase, the tokens are possibly transformed
into more generic ones in the stemming phase, and
finally some tokens may be dropped entirely in the
stop word removal phase. The following sections
describe these operations.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 386

3.1.1 Lexing

Lexing refers to the process of converting a
document from a list of characters to a list of tokens,
each of which is a single alphanumeric word. Usually
there is a maximum length for a single token,
typically something like 32 characters, to avoid
unbounded index size growth in atypical cases. To
generate these tokens from the input character
stream, first case-folding is done, i.e. the input is
converted to lowercase. Then, each collection of
alphanumeric characters separated by non-
alphanumeric characters (whitespace, punctuation,
etc.) is added to the list tokens. Tokens containing too
many numerical characters are usually pruned from
the list since they increase the size of the index
without offering much in return. The above only
works for alphabetic languages. Ideographic
languages (Chinese, Japanese, and Korean) do not
have words composed of characters and need
specialized search technologies.

3.1.2 Stemming

Stemming means not indexing each word as it
appears after lexing, but transforming it to its
morphological root (stem) and indexing that instead.
For example, the words “compute”, “computer”,
“computation”, “computers”, “computed” and
“computing” might all be indexed as “compute”.

The most common stemming algorithm used for the
English language is Porter’s. All stemming
algorithms are complex, full of exceptions and
exceptions to the exceptions, and still do a lot of
mistakes, i.e., they fail to unite words that should be
united or unite words that should not be united. They
also reduce the accuracy of queries, especially phrase
queries. In the old days, stemming was possibly
useful since it decreased the size of the index and
increased the result set for queries, but today the
biggest problems search engines have are too many
results returned by queries and ranking the results so
that the most relevant ones are shown first, both of
which are hindered by stemming. For this reason,
many search engines (Google, for example) do not do
stemming at all. This trend will probably increase in
the future, as stemming can be emulated quite easily
by wildcard queries or by query expansion.

3.1.3 Stop words

Stop words are words like “a”, “the”, “of”, and “to”,
which are so common that nearly every document
contains them. A stop word list contains the list of

words to ignore when indexing the document
collection. For normal queries, this usually does not
worsen the results, and it saves some space in the
index, but in some special cases like searching for
“The Who” or “to be or not to be” using stop words
can completely disable the ability to find the desired
information. Since stop words are so common the
differences between consecutive values in both
document number and word position lists for them
are smaller than for normal words, and thus the lists
compress better. Because of this, the overhead for
indexing all words is not as big as one might think.
Like with stemming, modern search engines like
Google do not seem to use stop words, since doing so
would put them at a competitive disadvantage. A
slightly bigger index is a small price to pay for being
able to search for any possible combination of words.

3.2 Query types

There are many different ways of searching for
information. Here we describe the most prominent
ones and how they can be implemented using an
inverted index as the base structure. Sample queries
are formatted in bold type.

3.2.1 Normal

A normal query is any query that is not explicitly
indicated by the user to be a specialized query of one
of the types described later in this section. For
queries containing only a single term, the desired
semantics are clear: match all documents that contain
the term. For multi-word queries, however, the
desired semantics are not so clear. Some
implementations treat it as an implicit Boolean query
(see the next section for details on Boolean queries)
by inserting hidden AND operators between each
search term. This has the problem that if a user enters
many search terms, for example 10, then a document
that only contains 9 of them will not be included in
the result set even though the probability of it being
relevant is high. For this reason, some
implementations choose another strategy: instead of
requiring all search terms to appear in a d ocument,
they allow some of the terms to be missing, and then
rank the results by how many of the search terms
were found in each document. This works quite well,
since a user can specify as many search terms as he
wants without fear of eliminating relevant matches.
Of course it is also much more expensive to evaluate
than the AND version, which is probably the reason
Most Internet search engines do not seem to use it.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 387

3.2.2 Boolean

Boolean queries are queries where the search terms
are connected to each other using the various
operators available in Boolean logic [Boo54], most
common ones being AND, OR and NOT. Usually
parentheses can be used to group search terms. A
simple example is madonna AND discography, and a
more complex one is bruce AND mclaren AND NOT
(“formula one” OR “formula 1” OR f1). These are
implemented using an inverted index as follows:

NOT A pure NOT is usually not supported in Full-
Text Search (FTS) implementations since it can
match almost all of the documents. Instead it must be
combined with other search terms using the AND
operator, and after those are processed and the
preliminary result set is available, that set is then
further pruned by eliminating all documents from it
that contain the NOT term. This is done by retrieving
the document list for the NOT term and removing all
document ids in it from the result set.

OR The query term1 OR term2 OR . . . term n is
processed by retrieving the document lists for all of
the terms and combining them by a union operation,
i.e., a document id is in the final result set if it is
found in at least one of the lists.

AND The query term1 AND term2 AND . . . term
n is processed by retrieving the document lists for all
of the terms and combining them by an intersection
operation, i.e., a document id is in the final result set
if it is found in all of the lists.

Unlike the OR operation which potentially expands
the result set for each additional term, the AND
operation shrinks the result set for each additional
term. This allows AND operations to be implemented
more efficiently. If we know or can guess which
search term is the least common one, retrieving the
document list for that term first saves memory and
time since we are not storing in memory longer lists
than are needed. The second document list to retrieve
should be the one for the second least common term,
etc.

If we have a lexicon available, a good strategy is to
sort the search terms by each term’s document count
found in the lexicon, with the term with the smallest
document count being first, and then doing the
document list retrievals in that order. As an example,
consider the query cat AND toxoplasmosis done on a
well known Internet search engine. If we processed
cat first, we would have to store a temporary list

containing 136 million document ids. If we process
toxoplasmosis first, we only have to store a
temporary list containing 2 million document ids. In
both cases the temporary list is then pruned to contain
only 200,000 document ids when the lists for the
terms are combined. Another way to optimize AND
operations is by not constructing any temporary lists.
Instead of retrieving the document lists for each term
sequentially, they are all retrieved in parallel, and
instead of retrieving the whole lists, they are read
from the disk in relatively small pieces. These pieces
are then processed in parallel from each list and the
final result set is constructed. Which one of the above
optimizations is used depends on other
implementation decisions in the FTS system. Usually
the latter one is faster, however.

3.2.3 Phrase

Phrase queries are used to find documents that
contain the given words in the given order. Usually
phrase search is indicated by surrounding the
sentence fragment in quotes in the query string. They
are most useful for finding documents with common
words used in a very specific way. For example, if
you do not remember the author of some quotation,
searching for it on the Internet as a phrase query will
in all likelihood find it for you. An example would be
“there are few sorrows however poignant in which a
good income is of no avail”.

The implementation of phrase queries is an extension
of Boolean AND queries, with most of the same
optimizations applying, e.g., it is best to start with the
least common word. Phrase queries are more
expensive though, because in addition to the
document lists they also have to keep track of the
word positions in each document that could possibly
be the start position of the search phrase. For
example, consider the query “big deal”. The lexicon
is consulted and it is determined that “deal” is the
rarer word of the two, so it is retrieved first. It occurs
in document 5 a t positions 1, 46 and 182, and in
document 6 a t position 74. We transform these so
that the word positions point to the first search term,
giving us 5(0, 45, 181) and 6(73). Since position 0 is
before the start of the document, we can drop that one
as it cannot exist.

Next we retrieve the document lists for the word
“big” and prune our result set so it only contains
words where “big” occurs in the right place. If “big”
occurs in document 5 at positions 33 and 45 and in
document 53 a t position 943, the final result set is
“document 5, word position 45”. Since the above is
more expensive than normal searches, there have

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 388

been efforts to investigate the use of auxiliary
indexes for phrase searches. For example, Bahle,
Williams and Zobel propose using a “next word
index”, which indexes selected two-word sentence
fragments. They claim that it achieves significant
speedups with only a modest disk space overhead.

3.2.4 Proximity

Proximity queries are of the form term1 NEAR(n)
term2, and should match documents where term1
occurs within n words of term2. They are useful in
many cases, for example when searching for a
person’s name you never know whether a name is
listed as “Osku Salerma” or “Salerma, Osku”, so you
might use the search osku NEAR(1) salerma to find
both cases. Queries where n is 1 could also be done
as a co mbination of Boolean and phrase queries
(“osku salerma” OR “salerma osku”), but for larger
n, proximity queries cannot be emulated with other
query types. An example of such a q uery is apache
NEAR (5) “performance tuning”.

Proximity queries are implemented in the same way
as phrase queries, the only difference being that
instead of checking for exact relative word positions
of the search terms, the positions can differ by a
maximum of n.

3.2.5 Wildcard

Wildcard queries are a f orm of fuzzy, or inexact,
matching. There are two main variants:
• Whole-word wildcards, where whole words are left
unspecified. For example, searching for Paris is the *
capital of the world matches documents that contain
phrases “Paris is the romance capital of the world”,
“Paris is the fashion capital of the world”, “Paris is
the culinary capital of the world”, and o on. This can
be implemented efficiently as a variant of a phrase
query with the wildcard word allowed to match any
word.
• In-word wildcards, where part of a single word is
left unspecified. It can be the end of a word
(Helsin*), the start of the word (*sinki), the middle of
the word (Hel*ki) or some combination of these
(*el*nki).

These can be handled by first expanding the wildcard
word to all the words it matches and then running the
modified query normally with the search term
replaced by (word1 OR word2 OR . . . wordn). To be
able to expand the word, the inverted index needs a
lexicon available. If it does not have a lexicon, there
is no way to do this query.

If the lexicon is implemented as a tree of some kind,
or some other structure that stores the words in sorted
order, expanding suffix wildcards (Helsin*) can be
done efficiently by finding all the words in the given
range ([Helsin, Helsio]).If the lexicon is implemented
as a h ash table this cannot be done. Expansion of
non-suffix wildcards is done by a complete traversal
of the lexicon, and is potentially quite expensive.
Since in-word wildcard queries need an explicit
lexicon and are much more expensive in terms of
time – and possibly space – needed than other kinds
of queries, many implementations choose not to
support them.

3.3 Result ranking

There are certain applications that do not care about
the order in which the results of a query are returned,
such as when the query is done by a computer and all
the matching documents are processed identically.
Usually, however, the query is done by a human
being who is not interested in all the documents that
match the query, but only in the few that best do so.
It is for the latter case that ranking the search results
is so important. With the size of the collections
available today, reasonable queries can match
millions of documents. If the search engine is to be of
any practical use, it must be able to somehow sort the
results so that the most relevant are displayed first.

Traditionally, the information retrieval field has used
a similarity measure between the query and a
document as the basis for ranking the results. The
theory is that the more similar the query and the
document are to each other, the better the document
is as an answer to the query. Most methods of
calculating this measure are fairly similar to each
other and use the factors listed below in various
ways.

Some of the factors to consider are: the number of
documents the query term is found in (ft), the number
of times the term is found in the document (fd,t), the
total number of documents in the collection (N), the
length of the document (Wd) and the length of the
query (Wq).

If a document contains a few instances of a rare term,
that document is in all probability a better answer to
the query than a document with many instances of a
common term, so we want to weigh terms by their
inverse document frequency (IDF, or 1 ft).
Combining this with the term frequency (TF, or fd,t)
within a document gives us the famous TF × IDF
equation.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 389

The cosine measure is the most common similarity
measure. It is an implementation of the TF × I DF
equation with many variants existing, with a fairly
typical one shown below:

The details of how Wd and Wq are calculated are not
important in this context. Typically they are not
literal byte lengths, or even term counts, but
something more abstract like the square root of the
unique term count in a document. They are not even
necessarily stored at full precision, but perhaps with
as few bits as five.

The above similarity measures work reasonably well
when the queries are hundreds of words long, which
is the case for example in the TREC (Text Retrieval
Conference) competitions [tre], whose results are
often used to judge whether a given ranking method
is good or not.

Modern search engine users do not use such long
queries, however. The average length of a query for
web search engines is under three words, and the
similarity measures do not work well for such
queries.

There are several reasons for this. With short queries,
documents with several instances of the rarest query
term tend to be ranked first, even if they do not
contain any of the other query terms, while users
expect documents that contain all of the query terms
to be ranked first.

Another reason is that the collections used in official
competitions like TREC are from trusted sources and
contain reasonable documents of fairly similar
lengths, while the collections indexed in the real
world contain documents of wildly varying lengths
and the documents can contain anything at all. People
will spend a lot of time tuning their documents so
that they will appear on the first page of search
results for popular queries on the major web search
engines.

Thus, any naive implementation that tries to
maximize the similarity between a q uery and a
document is bound to do ba dly, as the makers of
Google discovered when evaluating existing search
engines. They tried a search for “Bill Clinton” and
got as a top result a page containing just the text “Bill
Clinton sucks”, which is clearly not the wanted result
when the web is full of pages with relevant
information about the topic.

3.4 Query evaluation optimization

Much research over the last 20 years has been
conducted on optimizing query evaluation. The main
things to optimize are the quality of the results
returned and the time taken to process the query.

There are surprising gaps in the published research,
however. The only query type supported by the best
Internet search engines today is a hybrid mode that
supports most of the extended query types discussed
in Section 3.2 but also ranks the query results.

The query evaluation optimization research literature,
however, ignores the existence of this hybrid query
type almost completely and discusses just plain
ranked queries, i.e., queries with no particular syntax
which are supposed to return the k most relevant
documents as the first k results. This is unfortunate
since normal ranked queries are almost useless on
huge collections like the Internet, because almost any
query besides the most trivial one needs to use
extended query methods like disallowing some words
(Boolean AND NOT) and matching entire phrases
(phrase query) to successfully find the relevant
documents from the vast amounts in the collection.

The reason for this lack of material is obvious: the
big commercial search engines power multi-billion
dollar businesses and have had countless very
expensive man years of effort from highly capable
people invested in them. Of course they are not going
to give away the results of all that effort for everyone,
including their competitors, to use against them.
Some day the details will leak out or an academic
researcher will come up with them on his own, but
the bar is continuously being raised, so I would not
expect this to happen any time soon. That said, we
now briefly mention some of the research done, but
do not discuss the details of any of the work. Most of
the optimization strategies work by doing some kind
of dynamic pruning during the evaluation process, by
which we mean that they either do not read all the
inverted lists for the query terms (either skipping a
list entirely or not reading it through to the end) or
read them all, but do not process all the data in them
if, it is unnecessary. The strategies can be divided
into safe and unsafe groups, depending on whether or
not they produce the exact same results as un-
optimized queries. Buckley and Lewit were one of
the first to describe such a heuristic.

Turtle and Flood give a good overview of several
strategies. Anh and Moffat describe yet another
pruning method. Persin et al. describe a method
where they store the inverted lists not in document

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 390

order as is usually done, but in frequency-order,
realizing significant gains in processing time.

There are two basic methods of evaluating queries:
term-at-a-time and document at- a-time. In term-at-a-
time systems, each query term’s inverted list is read
in turn and processed completely before proceeding
to the next term. In document-at-a time systems, each
term’s inverted lists are processed in parallel.
Kaszkiel and Zobel investigate which of these is
more efficient, and end up with a different conclusion
than Broder et al. who claim that document at- a-time
is the more efficient one. To be fair, one is talking
about context-free queries, i.e. queries that can be
evaluated term by term without keeping extra data
around, while the other one is talking about context-
sensitive queries, e.g. phrase queries, where the
relationships between query terms are important.
Context sensitive queries are easier to handle in
document-at-a-time systems since all the needed data
is available at the same time.

Anh and Moffat also have another paper, this time on
impact transformation, which is their term for a
method they use to enhance the retrieval
effectiveness of short queries on large collections.
They also describe a dynamic pruning method based
on the same idea.

Anh and Moffat make a t hird appearance with a
paper titled “Simplified similarity scoring using term
ranks”, in which they describe a simpler system for
scoring documents than what has traditionally been
used.

Strohman et al. describe an optimization to
document-at-time query evaluation they call term
bounded max_score, which has the interesting
property of returning exactly the same results as a un
optimized query evaluation while being 61% faster
on their test data. Carmel et al. describe a static index
pruning method that removes entries from the
inverted index based on whether or not the removals
affect the top k documents returned from queries.
Their method completely removes the ability to do
more complex searches like Boolean and phrase
searches, so it is usable only in special circumstances.

J´onsson et al. tackle an issue left alone in
information retrieval research so far, buffer
management strategies. They introduce two new
methods: 1) a modification to a query evaluation
algorithm that takes into account the current buffer
contents, and 2) a new buffer-replacement algorithm
that incorporates knowledge of the query processing
strategy. The applicability of their methods to generic

Full-Text Search (FTS) systems is not especially
straightforward, since they use a very simplistic Full
–Text Search (FTS) system with only a single query
running at one time and other restrictions not found
in real systems, but they do have some intriguing
ideas.

4. Conclusion

To construct inverted index is an important issue in
web search engines. In this paper we showed how to
build inverted index for web search engine. We have
discussed about the different strategies, and
techniques. We have also discussed about various
research findings on how to efficiently build inverted
index.

References

[1] Vo Ngoc Anh and Alistair Moffat, ” Compressed

inverted files with reduced decoding overheads”. In
SIGIR ’98: Proceedings of the 21st annual
international ACM SIGIR conference on Research
and development in information retrieval, 1998,
pp.290–297, New York, NY, USA, ACM Press.

[2] Vo Ngoc Anh and Alistair Moffat,”Impact

transformation: effective and efficient web retrieval”,
In SIGIR ’02: Proceedings of the 25th annual
international ACM SIGIR conference on Research
and development in information retrieval”, 2002,
pp.3–10, New York, NY, USA, ACM Press.

[3] Vo Ngoc Anh and Alistair Moffat, ”Simplified

similarity scoring using term ranks”, In SIGIR ’05:
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval,2005, pp.226–233, New York,
NY, USA, ACM Press.

[4] Andrei Z. Broder, David Carmel, Michael

Herscovici, Aya Soffer, and Jason Zien, ” Efficient
query evaluation using a two-level retrieval process”,
In CIKM ’03: Proceedings of the 12th international
conference on I nformation and knowledge
management, 2003, pp.426–434, New York, NY,
USA, ACM Press.

[5] Chris Buckley and Alan F. Lewit, ” Optimization of

inverted vector searches”, In SIGIR ’85: Proceedings
of the 8th annual international ACM SIGIR
conference on Research and development in
information retrieval, 1985, pp. 97–110, New York,
NY, USA, ACM Press.

[6] Sergey Brin and Lawrence Page, “The anatomy of a

large-scale hyper textual Web search engine”,
Computer Networks and ISDN Systems, Vol.30,
No.17, 1998, pp.107–117.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 391

[7] Dirk Bahle, Hugh E. Williams, and Justin Zobel,

“Efficient phrase querying with an auxiliary index”,
In SIGIR ’02: Proceedings of the 25th annual
international ACM SIGIR conference on Research
and development in information retrieval, 2002,
pp.215–221, New York, NY, USA, ACM Press.

[8] Charles L. A. Clarke, Gordon V. Cormack, and

Elizabeth A. Tudhope, “ Relevance ranking for one
to three term queries”, Information Processing and
Management, Vol.36, No.2 ,2000, pp.291–311.

[9] Ho-Leung Chan, Wing-Kai Hon, Tak-Wah Lam, and

Kunihiko Sadakane, “ Dynamic dictionary matching
and compressed suffix trees”, In SODA ’05:
Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, 2005, pp.13–22,
Philadelphia, PA, USA, Society for Industrial and
Applied Mathematics.

Mr. Ajit Kumar Mahapatra is presently
working as an Asst. Professor in
Information Technology Dept., ITER,
Bhubaneswar under Siksha ‘O’
Anusandhan University (SOAU).
Also,He is continuing his M.Tech in IT
Dept. in Institute of Technical Education
& Research (ITER), Bhubaneswar
under Siksha ‘O’ Anusandhan
University. She is having 6 y ears of

teaching experience and keen interest in the areas such as
Web Search Engine Optimization and building.

Mr. Sitanath Biswas is presently
working as an A sst. Professor in
Information Technology Dept.,
Institute of Technical Education &
Research (ITER), Bhubaneswar under
Siksha O Anusandhan University. He
is having 3 y ears of teaching
experience. H e got his M.E. Degree
from Utkal University, Bhubaneswar.

He published 15 r esearch papers in International and
National journals and delivered invited lectures at various
conferences, seminars and workshops. He guided a large
number of students for their B.Tech and M.Tech degrees in
Computer Science and E ngineering and I nformation
Technology. His current research interests are Artificial
Intelligence, Semantic Web, and Ontology Engineering

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 392

