
Classification of Load Balancing Conditions for parallel and
distributed systems

 Zubair Khan1 Ravendra Singh2 Jahangir Alam3 Shailesh Saxena4

1,4Department Of Computer Science and engineering Invertis University Bareilly India

2Department of CS&IT MJP Rohilkhand University Bareilly, India

3Woman Polytechnic Department of CSE AMU Aligargh India

Abstract
Although intensive work has been done in the area
of load balancing, the measure of success of load
balancing is the net execution time achieved by
applying the load balancing algorithms. This paper
deals with the problem of load balancing conditions
of parallel and distributed applications. Parallel and
distributed computers have multiple-CPU
architecture, and in parallel system they have shared
memory. While in distributed system each processing
element has its own private memory and connected
through networks. Parallel and distributed systems
communicate to each other by Message-passing
mechanism. Based on the study of recent work in the
area, we propose a general classification for
describing and classifying the growing number of
different load balancing conditions. This gives an
overview of different algorithms, helping designers to
compare and choose the most suitable strategy for a
given application .To illustrate the applicability of the
classification, different well-known load balancing
algorithms are described and classified according to
it. Also, the paper discusses the use of the
classification to construct the most suitable load
balancing algorithms for different parallel
algorithmic paradigms.
Keywords: Load Balancing, Load Matching, Under load,
Over load, processor communication, Network(Topology)

1. Introduction
Load balancing is one of the central problems which
have to be solved to achieve a high performance from
a parallel computer. For parallel applications load
balancing attempts to distribute the computation load

across multiple processors or machines as evenly as
possible to improve performance. Since load
imbalance leads directly to processor idle times, high
efficiency can only be achieved if the computational
load is evenly balanced among the processors.
Generally a load balancing scheme consists of three
phases-1.Information collection, 2.Decision-Making
and 3.Data migration.
1.1 Information collection: During this phase the
load balancer gathers the information of workload
distribution and the state of computing environment
and detects whether there is a load imbalance.
1.2 Decision-Making: This phase focuses on
calculating an optimal data distribution.
1.3 Data migration: This phase transfer the excess
amount of workload from overloaded processor to
under loaded ones.
Three kinds of load balancing schemes have been
proposed and reviewed in the literature [2], and they
can be distinguished depending on the knowledge
about the application behavior. The first one, static
load balancing, is used when the computational and
communication requirements of a problem are known
a priori. In this case, the problem is partitioned into
tasks and the assignment of the task-processor is
performed once before the parallel application
initiates its execution.
The second approach, dynamic load balancing
schemes, is applied in situations where no priori
estimations of load distribution are possible. It is only
during the actual program execution that it becomes
apparent how much work is being assigned to the
individual processor. In order to retain efficiency, the
imbalance must be detected and an appropriate

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 411

dynamic load balancing strategy must be devised.
Some dynamic strategies that use local information in
a distributed architecture, have been proposed in the
literature. These strategies describe rules for
migrating tasks on overloaded processors to under
loaded processors in the network of a given topology.
In this survey dynamic load balancing techniques
(also referred as Resource-Sharing, Resource
scheduling, job scheduling, task- migration etc.) in
large MIMD multiprocessor systems are also studied.
Dynamic load balancing strategies have been shown
to be the most critical part of an efficient
implementation of various algorithms on large
distributed computing systems. A lot of dynamic
load balancing strategies have been proposed in the
last few years. With this large number of algorithms,
it becomes harder for designers to compare and select
the most suitable strategy. A load-balancing
algorithm must deal with different unbalancing
factors, according to the application and to the
environment in which it is executed. Unbalancing
factors may be static, as in the case of processor
heterogeneity, or dynamic. Examples of dynamic

unbalancing factors include the unknown
computational cost of each task, dynamic task
creation, task migration, and variation of available
computational resources due to external loads.
The third one is hybrid load balancing condition
when dynamic and static are merge together and
perform to take the advantages of both conditions.

2. The Classification
The proposed classification is represented in Fig. 1.
In order to define a Load-balancing algorithm
completely, the main four sub-strategies (initiation,
location, exchange, and selection) have to be
defined. The goal of this Classification is to
understand load balancing algorithms. This
Classification provides a terminology and a
framework for describing and classifying different
existing load balancing algorithms, facilitating the
task of identifying a suitable load balancing strategy.
A detailed discussion of the Classification is
presented in the following sections:

Load balancing

Dynamic Load Balancing Static Load Balancing

Initiation Load-Selection Information-Exchange Load-Balancer Location Golomb recovery trapezium

Periodic Event Processor Load Decision Communication Central Distributed
 Driven Matching Matching Making

Sender Receiver Local Global Topology Task Synchronous asynchr-
Initiated Initiated Exchange onous

 Randomized Uniform Local Global

Figure 1 Grouping of Load Balancing Algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 412

2.1Initiation
The initiation approach specifies the system, which
invokes the load balancing behavior. This may be a
episodic or event-driven initiation. Episodic initiation
is a timer based initiation in which load information
is exchanged every preset time interval. The event-
driven is a usually a load dependent policy based on
the observation of the local load. Event-driven
strategies are more reactive to load imbalances, while
episodic policies are easier to implement. However,
episodic policies may result in extra overheads when
the loads are balanced.
2.2 Load-balancer location
This approach specifies the location at which the
algorithm itself is executed. The load balancing
algorithm is said to be vital if it is executed at a
single processor, determining the necessary load
transfers and informing the involved processors.
Distributed algorithms are further classified as
synchronous and asynchronous. A synchronous load-
balancing algorithm must be executed simultaneously
at all the participating processors. For
asynchronous algorithms, it can be executed at any
moment in a given processor, with no dependency
on what is being executed at the other processors.

2.3 Information exchange
This specifies the information and load flow through
the network. The information used by the dynamic
load-balancing algorithm for decision-making can be
local information on the processor or gathered from
the surrounding neighborhood. The communication
policy specifies the connection topology (network) of
the processors in the system, by sending the messages
to its neighboring processing elements. This network
doesn’t have to represent the actual physical
topology of the processors. A uniform network
indicates a fixed set of neighbors to communicate
with, while in a randomized network the processor
randomly chooses another processor to exchange
information with.
2.4 Load selection
The load selection is very vital part of system in
which the processing elements decide from which
node to exchange load . Apart from that, it specifies
the appropriate load items(tasks) to be exchanged.
Local averaging represents one of the common
techniques. The overloaded processor sends load-
packets to its neighbors until its own load drops to a
specific threshold or the average load.

Table 1: Classification of dynamic load balancing algorithms
Algorithm Inform-

ation
exchange

Processor
Matching

Load
Matching

Communi-
cation

Applica-
tions

LB Locations Initia-
tion

SASH Global Processor that
will
produce the
fastest
turn around

Cost function Randomized
Global

independent
tasks

Central
(dedicated)

Event
driven
(Shortest
execution
time)

Dynamic Load
Balancing (DLB)

Local/
Global

According to
the load
balancer

cost function
which uses
past
to predict
future

Randomized
Global

Independent

loops

Central/
Distributed

Receiver
initiated

Automatic
Heteregene-ous
Supercomputing

Global According to
the load
balancer

N/A Randomized
Global

Whole
programs

Central Event
driven
(User)

Direct
Neighbor-hood
Repeated (DNR)

Local

Least loaded
processor
in the
neighborhood
of
the receiver

load is sent.

If the load
difference
exceeds a
threshold, a
percentage of
the

Uniform
Local

Independent
loops

Central/
Distributed

Receiver
initiated

Neighbor Local Adjacent
processors

Load is
distributed
over the
nodes of the
island.

Uniform
Local

Independent
tasks

Distributed
Asynchronous

Receiver
initiated

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 413

Central
Algorithm

Global Match
overloaded
with idle

Divides the
load among
the
loaded and
idle peers

Randomized
Global

Independent
tasks

Distributed
Asynchronous

Periodic

Pre -Computed
Sliding

Local Adjacent
processors

An extra step,
which
calculates
the required
total number
of
transfers
required, is
done before
transfer

Uniform
Local

Independent
tasks

Distributed
Asynchronous

Periodic

Rendez-Vous Global Matches most
load

Divides the
most loaded
with least
loaded

Randomized
Global

Independent
tasks

Distributed
Asynchronous

Periodic

Random Local Random Each new
task is
redistributed
randomly

Randomized
Global

Independent
tasks

Distributed
Asynchronous

Periodic

Rake Local Adjacent
processors

Load above
the average
workload is
transferred to
the
adjacent
processor

Uniform
Local

Independent
Tasks

Distributed
Synchronous

Periodic

Tilling (DN) Local Balances
processors
within same
window

The load is
distributed
among
processors in
the window.

Uniform
Local

Independent
tasks

Distributed
Synchronous

Periodic

X-Tilling Local Balances
processors
connected in
the
hypercube

The load is
distributed
among
processors in
the
hypercube

Uniform
Global

Independent
tasks

Distributed
Synchronous

Periodic

3. Categorization of Different Load
Balancing Algorithms
In this paper we will illustrate how the proposed
Classification is capable of classifying diverse load-
balancing algorithms. A number of Dynamic load
balancing algorithms are existing for different
systems; a small description is presented for each
algorithm, followed by a detailed classification.
3.I. Decision and Migration based
algorithms[25],[26],[8]
These algorithms are classified as fallows.

3.1.1. Local Decision and Local Migration
(LDLM): In this strategy a processor distributes
some of his load to its neighbors after each fixed time
interval. This is a LDLM because the decision to
migrate a load unit is done purely local. The receiver
of a load is also a direct neighbor. The balancing is
initiated by a processing unit which sends a load unit.
We implemented this strategy after x iterations of the
simulator y load units are sent to random neighbors.
3. I.2. Direct neighborhood (d-N) : if the local
load increased by more than Up percent or decrease
by more than Down percent, actual value is
broadcasted to direct neighbors. if the load of a

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 414

processing element exceeds that of its least neighbor
load by more than d percent, then it sends one unit to
that neighbor.
3. I.3.Local Decision and Global Migration
(LDGM): in this strategy the load units are migrated
over the whole network to a randomly chosen
processor.
3. I.4.Global Decision and Local Migration
(GDLM) :The Gradient Model method discussed
above in section 2,was introduces by Lin & Keller
[10].it belongs to the group of GDLMr-strategies
,because decisions are based on Gradient
information. Gradients are vectors consisting of load
respectively, distance information of all processing
elements. Which means that each processing element
wants to achieve well approximated global state
information on network?
3. I.5.Global decision and Global Migration
(GDGM) : This method is classified as fallows
a) Bidding algorithm: it is also a state controlled
algorithm. The number of processing elements able
to take load from a processor in state H depends on
the distance between these processors.
b) Drafting Algorithm: in this a processor can be
one of the three states L(low),n(normal),H(high)
which represent actual load situation. Each processor
maintains a load table which contains the most recent
information of the so called”candidate processors”. A
candidate processors is a processor from which load
may be received.
Since the workload of system changes dynamically,
X-gradient surface can only be approximated. This is
done by the protocol that is used in original gradient
model For this we recursively define a pressure
function
 p: V-> {0,……D(G)+1 And the suction function S:
V ->{0,……D(G)+1}
3.2 The Random Algorithm [16]
Each time an element (task) is created on a processor,
it is sent on a randomly selected node anywhere in
the system. For each node, the expectation to receive
a part of the load is the same regardless of its place
in the system.
3.3 The Tiling (Direct Neighborhood DN)
Algorithm [13]
It divides the system in small and disjointed sub-
domains of processors called windows. A perfect
load balancing is realized in each window using
regular communications. In order to propagate the
work over the entire system, the window is shifted
(slightly moved so that they overlap only a part of
the old domain) for the next balancing phase.
3.4 The X-Tiling Algorithm [13]

Similar to Tiling algorithm but extra links are added
to the current topology of the processor to form a
hypercube topology.
3.5 The Rake Algorithm [13]
It uses only regular communications with processors
in the neighborhood set. Firstly, the average load is
processed and broadcasted. In the first transfer phase,
during p iterations, each processor sends to its right
neighbor the data over the average workload It uses
only regular communications with processors in the
neighborhood set. Firstly, the average load is
processed . In the second transfer phase, during the
extra workloads, each processor sends to its right the
work over the average workload + 1.
3.6 The Pre-Computed Sliding Algorithm [13]
It is an improvement of the Rake algorithm. Instead
of transferring data over the average workload of the
system, it computes the minimal number of data
exchanges needed to balance the load of the system.
Unlike the Rake algorithm, it may send data in two
directions.
3.7 The Average Neighbor Algorithm [17],
[20]
The architecture is made of islands. An island is
made of a center processor and all the processors in
its neighborhood. It works on the load balancing
every node in the island. The partial overlapping
allows the load to propagate.
3.8 The Direct Neighborhood Repeated
Algorithm [21]
Once a sender-receiver couple is established, the
migrating load can move from the sender to the
receiver. In its turn, the receiver can have an even
less neighborhood. The receiver is allowed to directly
forward the migrating load to the less loaded nodes.
Load migration stops when there are no more useful
transfers.
3.9 The Central Algorithm [11], [28]
Firstly, the average workload is computed and
broadcasted to every processor in the system. Then,
the processors are classified into 3 classes: idle,
overloaded, and the others. The algorithm tries to
match each overloaded node with an idle peer.

4. Dynamic Load Balancing (DLB) [18]
Synchronization is triggered by the first processor
that finishes its portion of the work. This processor
then sends an interrupt to all the other active slaves,
who then send their performance profiles to the load
balancer. Once the load balancer has all the profile
information, it calculates a new distribution. If the
amount of work to be moved is below a threshold,
then work is not moved else a profitability analysis
routine is performed. This makes a trade-off between
the benefits of moving work to balance load.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 415

According to the first run, the application adjusts
itself for one of the load balancing strategies: global-
centralized (GCDLB), global-distributed (GDDLB),
and local-centralized (LCDLB) and, local-distributed
(LDDLB). The compilation phase is used to collect
information about the system and generate cost
functions, and prepare the suitable libraries to be
used after the first run.
4.1. Automatic Heterogeneous
Supercomputing (AHS) [19]
Uses a quasi-dynamic scheduling strategy for
minimizing the response time observed by a user
when submitting an application program for
execution. This system maintains an information file
for each program that contains an estimate of the
execution time of the program on each of the
available machines. When a program is invoked by a
user, AHS examines the load on each of the
networked machines and executes the program on the
machine that it estimates will produce the fastest
turn-around time.
4.2. Self-Adjusting Scheduling for
Heterogeneous Systems (SASH)[20]
It utilizes a maximally overlapped scheduling and
execution paradigm to schedule a set of independent
tasks on to a set of heterogeneous processors.
Overlapped scheduling and execution in SASH is
accomplished by dedicating a processor to execute
the scheduling algorithm. SASH performs repeated
scheduling phases in which it generates partial
schedules. At the end of each scheduling phase, the
scheduling processor places the tasks scheduled in
that phase on to the working processors’ local
queues.
The SASH algorithm is a variation of the family of
branch-and-bound algorithms. It searches through a
space of all possible partial and complete schedules.
The cost function used to estimate the total execution
time produced by a given partial schedule consists of
cost of executing a task on a processor and the
additional communication delay required to transfer
any data values needed by this task to the processor.
As observed from Table 1, that any dynamic load-
balancing algorithm may be classified according to
the Classification. Accordingly, this makes it simpler
for designers to compare and select the proper
algorithm for their application to be executed on a
certain computing environment. The next section will
illustrate how to select the most suitable dynamic
load-balancing category for the different parallel
programming paradigms.

5. Dynamic Load-Balancing Conditions
A number of parallel algorithmic paradigms have
emerged for parallel computing like:

1. Gradient Model ,
2. Sender Initiated Diffusion (SID),
3. Receiver Initiated Diffusion (RID) ,
4. Hierarchical Balancing Method (HBM) ,
5. The Dimension Exchange Method (DEM)
6. Phase Parallel,
7. Divide and Conquer,
8. Pipeline,
9. Process Farm ,

Each paradigm has its own characteristics. A brief
description is given for each paradigm and a suitable
load-balancing algorithm is suggested for each based
on the Classification. It should be noted that
scalability and low communication cost are the main
considerations affecting the choice of the following
suggested strategies.
Gradient Model [9]
The gradient model is a demand driven approach [8].
The basic concept is that underloaded processors
inform other processors in the system of their state,
and overloaded processors respond by sending a
portion of their load to the nearest lightly loaded
processor in the system.
Sender Initiated Diffusion (SID) [15]
 The SID strategy is a, local, near-neighbor diffusion
approach which employs overlapping balancing
domains to achieve global balancing. A similar
strategy, called Neighborhood Averaging, is
proposed in [12]. The scheme is purely distributed
and asynchronous. for an N processor system with a
total system load L unevenly distributed across the
system, a diffusion approach, such as the SID
strategy, will eventually cause each processor’s load
to converge to L/N.
Receiver Initiated Diffusion (RID) [16]
The RID strategy can be thought of as the converse
of the SID strategy in that it is a receiver initiated
approach as opposed to a sender initiated approach.
However, besides the fact that in the RID strategy
underloaded processors request load from overloaded
neighbors, certain subtle differences exist between
the strategies. First, the balancing process is initiated
by any processor whose load drops below a
prespecified threshold (Llow). Second, upon receipt
of a load request, a processor will fulfill the request
only up to an amount equal to half of its current load.
When a processor’s load drops below the
prespecified threshold Llow, the profitability of load
balancing is determined by first computing the
average load in the domain, Lpavg [(8)]. If a
processor’s load is below the average load by more
than a prespecified amount, L threshold &, it
proceeds to implement the third phase of the load
balancing process.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 416

Hierarchical Balancing Method (HBM)
[15],[16]
The HBM strategy organizes the multicomputer
system into a hierarchy of balancing domains,
thereby decentralizing the balancing process. Specific
processors are designated to control the balancing
operations at different levels of the hierarchy.
The Dimension Exchange Method (DEM)
[17], [19]
The DEM strategy [17], [19] is similar to the HBM
scheme in that small domains are balanced first and
these then combine to form larger domains until
ultimately the entire system is balanced. This differs
from the HBM scheme in that it is a synchronized
approach, designed for a hypercube system but may
be applied to other topologies with some
modifications. In the case of an N processor
hypercube configuration, balancing is performed
iteratively in each of the log N dimensions.
All processor pairs in the first dimension, those
processors whose addresses differ in only the least
significant bit, balance the load between themselves
Phase parallel [12]: The parallel program consists
of a number of super steps, and each super step has
two phases. A computational phase, in which,
multiple processes, each perform an independent
computation C. In the subsequent interaction phase,
the processors perform one or more synchronous
interaction operations, such as a barrier or blocking
communication.
This paradigm is also known as the loosely
synchronous paradigm and the a general paradigm. It
facilitates debugging and performance analysis, but
interaction is not overlapped with computation, and it
is difficult to maintain balanced workloads among the
processors. Suggested load balancing algorithm:
Initiation: event driven, with every synchronization
step.
Load balancer location: central or distributed
synchronous.
Information exchange:
� Decision-making: would be global to observe the
different loads.
� Communication: Global Randomized, as this is the
nature of the paradigm.
Load selection: processor matching and selection is
application dependent.

Fig. 2. Phase Parallel
 Divide and conquer [12]: In this a problem id
divided into small parts and then we start to conquer
it. In dynamic load balancing a parent process divides
its workload into several smaller pieces and assigns
them to a number of child processes. The child
processes then compute their workload in parallel and
the results are merged by the parent. This paradigm is
difficult to maintain balanced workloads among the
processors.
The parent is the one, which distributes the load
among its children, and accordingly it should be the
one to balance the load between them. Suggested
load balancing algorithm:
 Initiation: event driven, sender/receiver (child)
initiated.
 Load balancer location: distributed asynchronous.
Each parent is responsible to load balance its
children.
 Information exchange:
 Decision-making: would be local based on the
children only.
 Communication: Local Uniform, as the
children can only communicate to parents and their
children.
 Load selection: load is exchanged among the
children and selection of load is flexible according to
the application.

Fig. 3. Divide and conquer

Pipeline [12]: In this the output of one stage works
as an input for next stage, hence a pipe is seem to be
created called Virtual pipe. A number of processors

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 417

form a virtual pipe. A continuous data stream is fed
into the pipeline and the processes execute at
different pipeline stages simultaneously in an
overlapped fashion. The pipeline paradigm is the
basis for SPMD. Each processor runs the same code
with different data. Interface data is exchanged
between adjacent processors. Suggested load
balancing algorithm:
• Initiation: event driven, sender/receiver initiated.
• Load balancer location: Central/distributed.
Depends on the number
of the processors
involved in the synchronization. For scalability
reasons, a distributed asynchronous
strategy is suggested.
 Information exchange:
 Decision-making: Global/Local. Local is
recommended for scalability.
 Communication: Local Uniform, as the processors
only communicate with their neighbors.
 Load selection: load is exchanged among the
neighbors and selection of load is application
dependent.

Process Farm: This is a very common paradigm
shown in fig.5. A master process executes the
sequential part of the parallel part of the program and
spawns a number of slave processes to execute the
parallel workload. When a slave finishes its
workload, it informs the master which assigns a new
workload to the slave. This is a very simple
paradigm, but the master could become the
bottleneck.

Fig.5. Process farm

 Fig.4. Pipe Line

6. Conclusion and Future Work
 In the paper it has been illustrated how to suggest
new algorithms for different application paradigms.
The Classification is considered helpful for designers
to compare different load-balancing algorithms and
design new ones tailored for their needs.
In the future, we intend to develop a framework for
applications with load balancing that utilizes this
Classification and helps the designer tailor his own
algorithm. The framework would generate the
required libraries needed and the corresponding
coding that will facilitate the development of parallel
applications.

References
[1]M. Willeheek-LeMair and A. P. Reeves, “Region
growing on a hyper- cube multiprocessor,” in Proc. 3rd
Conf Hypercube Concurrent Comput. and Appl., 1988, pp.
1033- 1042.
[2] M. WiIIebeek-LeMair and A. P. Reeves, “A general
dynamic load balancing model for parallel computers,”
Tech: Rep. EE-CEG-89-I) Cornell School of Electrical
Engineering, 1989.
[3]T. L. Casavant and .I. G. Kuhl, “A taxonomy of
scheduling in general purpose distributed computing
systems,” IEEE‘ Trans. Software Eng., vol. 14, no. 2, pp.
141-154, Feb. 1988.
[4]Y.-T. Wang and R.I. T. Morris, “Load sharing in
distributed systems,” IEEE Trans. Cornput., vol. C-34, pp.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 418

204-211, Mar. 1985. M. J. Berger and S. H. Bokhari, “A
partitioning strategy for nonuniform problems on
multiprocessors,” IEEE Trans. Cornput., vol. C-36, pp.
570-580, May 1987.
[5] G. C. Fox, “A review of automatic load balancing and
decomposition methods for the hypercube,” California
Institute of Technology, C3P- 385, Nov. 1986.
[6] K. Ramamritham, I. A. Stankovic, and W. Zhao,
“Distributed scheduling of tasks with deadlines and
resource requirements,” IEEE Trans. Comput. pp. 1110-
1123, Aug. 1989.
[7] K. M. Baumgartner, R. M. Kling, and B. W. Wah,
“Implementation of GAMMON: An efficient load
balancing strategy for a local computer system,” in Proc.
1989 Int. Conf Parallel Processing, vol. 2, Aug. 1989, pp.
77-80.
[8] F. C. H. Lin and R. M. Keller, “The gradient model load
balancing method,” IEEE Tran. Software Eng., vol. 13, no.
1, pp. 32-38, Jan. 1987.
[9]. Casavant, T. L. and Kuhl, J. G.: A Taxonomy of
Scheduling in General-Purpose Distributed Computing
Systems. IEEE Trans. on Soft. Eng. 14 (1998) 141-154
[10]. Plastino, A., Ribeiro, C. C. and Rodriguez, N. R.:
Load Balancing Algorithms for SPMD Applications.
Submitted for publication (2001)
[11]. Hillis, W.D.: The Connection Machine. MIT press,
1985.
[12]. Fonlupt, C., Marquet, P. and Dekeyser, J.: Data-
parallel load-balancing strategies. Parallel Computing 24
(1998) 1665-1684.
[13]. Dekeyser, J. L., Fonlupt, C. and Marquet, P.: Analysis
of Synchronous Dynamic Load Balancing algorithms”,
Parallel Computing: State-of-the Art Perspective
(ParCo'95), volume 11 of Advances in Parallel Computing,
pages 455--462, Gent, Belgium (September 1995)
[14] V. A. Saletore, “A distrubuted and adaptive dynamic
load balancing scheme for parallel processing of medium-
grain tasks,” in Proc. Fifth Distributed kemorycomput.
?onf, Apr. 1990, pp. 995-999.
[15] K. G. Shin and Y.-C. Chang, “Load sharing in
distributed real time systems with state-change broadcasts,”
IEEE Trans. Cornput., pp . 1124-1142, Aug. 1989 .V. A.
Saletore, “A distr
[16]. Subramanian, R. and Scherson, I.: An Analysis of
Diffusive Load Balancing. Proceedings of Sixt h Annual

ACM Symposium on Parallel Algorithms and
Architectures, (June 1994) 220-225
[17]. Saletore, V. A.: A distributive and adaptive dynamic
load balancing scheme for parallel processing of medium-
grain tasks. Proceedings of the 5th Distributed Memory
Conference (April 1990) 995-999
[18] G. Cybenko, “Dynamic load balancing for distributed
memory multiprocessors,” J. Parallel and Distributed
Comput., vol. 7:279-301, October, 1989.
[19]D. P. Bertsekas and J. N. Tsitsiklis, Parallel and
Distributed Computation: Numerical Methods. Englewood
Cliffs, NJ: Prentice-Hall,
[20]. Willebeek- LeMair, M.H. and Reeves, A.P.:
Strategies for dynamic load balancing on highly parallel
computers. IEEE Trans. on parallel and distributed systems,
vol. 4, No. 9 (Sept. 1993)
[21]. Corradi, A., Leonardi, L. and Zambonelli, F.:
Diffusive load-balancing policies for dynamic applications.
IEEE Concurrency Parallel, Distributed and Mobile
Computing (January-March 1999) 22-31
[22]. Zaki, M. J., Li, W. and Parthasarathy, S.: Customized
dynamic load balancing for a network of workstations.
Proceedings of the 5th IEEE Int. Symp., HPDC (1996) 282-
291
[23]. Dietz, H. G., Cohen, W.E. and Grant, B. K.: Would
You Run it Here... or There? (AHS: Automatic
Heterogeneous Supercomputing. International Conference
on Parallel Processing, Volume II: Software (1993) 217-
221
[24]. Hamidzadeh, B., Lilja, D. J. and Atif, Y. : Dynamic
scheduling techniques for heterogeneous computing
systems. Concurrency: Practice and Experience, vol. 7
(1995) 633-652.
[25]S.Zhou, A Trace Driven Study Of Load balancing ,
IEEE Trans.On Software
Engineering,Vol.14,no.9,1988,pp,1327-1341.
[26]F. Ramme, Lastausgleichsverfahren in Vertileilten
Systemen, Master Thesis,University of Paderborn.1990.
[27]] F. C. H. Lin and R. M. Keller, “The gradient model
load balancing method,” IEEE Tran. Software Engineering
13, 1987,pp.32-38
[28] Powley, C., Ferguson, C. and Korf, R. E.: Depth-First
Heuristic Search on a SIMD Machine. Artificial
Intelligence, vol. 60 (1993) 199-242

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 419

