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Abstract 
Brain Computer Interface (BCI) enables the capturing and 
processing of motor imagery related brain signals which can 
be interpreted by computers. BCI systems capture the motor 
imagery signals via Electroencephalogram or 
Electrocorticogram. The processing of the signal is usually 
attempted by extracting feature vectors in the frequency 
domain and using classification algorithms to interpret the 
motor imagery action.  

In this paper we investigate the motor imagery 
signals obtained from BCI competition dataset IVA using the 
Fast Hartley Transform (FHT) for feature vector extraction 
and feature reduction using support vector machine. The 
processed data is trained and classified using the Bayes Net. 
Keywords: Brain Computer Interface (BCI),Electroencephalogram 
(EEG), Fast Hartley Transform (FHT), Bayes Net (BN) 
 
1. Introduction 

 
A Brain Computer Interface [1], also known as Direct 

Neural Interface or a Brain Machine Interface, is a direct 
communication pathway between a human or animal brain (or 
brain cell culture) and an external device. BCIs are focused on 
assisting, augmenting or repairing human cognitive or 
sensory-motor functions. BCIs would act in two ways. In the 
case of one-way BCIs, computers either accept commands 
from the brain or send signals to it but not both. Two way 
BCIs allow brains and external devices to exchange 
information in both directions but it is not yet successful in the 
aspect of implantation. 
Brain-machine interfaces [2] help paralyzed patients by re-
routing movement-related signals around damaged parts of the 
nervous system. With recent advancement in technology and 
knowledge, the researchers now conceivably attempt to 
produce BCIs that augment human functions rather than 
simply restoring them.  
In this paper, the motor imagery signals obtained from BCI 
competition dataset IVA are investigated. They are further 
exposed to Fast Hartley Transform and Support Vector 

Machine for feature vector extraction and feature reduction 
respectively.  In this paper, Section I gives an introduction to 
BCI, Section II describes the dataset and EEG data, Section III 
and IV explain the feature vector extraction and feature 
reduction using FHT and SVM, Section V briefs about the 
classification using Bayes Net and is followed by the 
experimental results and conclusion.        

 
2. Data Set and EEG 

The IV A dataset used in the brain computer interface 
competition provided by Intelligent Data Analysis Group has 
been taken for investigation. It consists of recordings from 
five healthy subjects who sat in a chair with arms resting on 
armrests. Visual cues indicated for 3.5 s which of the 
following 3 motor imageries the subject should perform: (L) 
left hand, (R) right hand, (F) right foot. The presentation of 
target cues was intermitted by periods of random length, 1.75 
to 2.25 s, in which the subject could relax. Given are 
continuous signals of 118 EEG channels and markers that 
indicate the time points of 280 cues for each of the 5 subjects 
(aa, al, av, aw, ay). Subject aa was used in our study.  

 
The abnormalities related to electrical activity of the 

brain could be detected using a test called 
electroencephalogram (EEG) [3] which tracks and records 
brain wave patterns. Electrodes (Small metal discs with thin 
wires) are placed on the scalp, which send signals to a 
computer to record the results. A recognizable pattern of EEG 
is identified as a normal electrical activity in the brain. EEG is 
used to detect abnormal patterns of brains that indicate 
seizures and other problems. EEG is also performed to 
diagnose monitor seizure disorders, sleep disorders and other 
changes in behavior. It is also used to evaluate brain activity 
after a severe head injury or before heart or liver 
transplantation. 
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3. Feature Vector Extraction 

In this paper the feature vector extraction is 
performed on the dataset using Fast Hartley Transform (FHT). 
FHT [4] is a technique helps to extract the feature vector 
efficiently. A discrete Hartley transform (DHT) is a Fourier-
related transform of discrete, periodic data similar to the 
discrete Fourier transform (DFT), with analogous applications 
in signal processing and related fields. Its main distinction 
from the DFT is that it transforms real inputs to real outputs, 
with no intrinsic involvement of complex numbers. As the 
DFT is the discrete analogue of the continuous Fourier 
transform, the DHT is the discrete analogue of the continuous 
Hartley transform. 

Since there are fast algorithms for the DHT analogous to the 
fast Fourier transform (FFT), the DHT was proposed as a 
more efficient computational tool in the common case where 
the data are purely real. It was subsequently argued, however, 
that specialized FFT algorithms for real inputs or outputs can 
ordinarily be found with slightly fewer operations than any 
corresponding algorithm for the DHT. The DHT analogue of 
the Cooley-Tukey algorithm is commonly known as the Fast 
Hartley Transform (FHT) [5] algorithm. 

Discrete Hartley transform is an analogue of discrete Fourier 
transform for real data. The Hartley transform takes a real 
sequence as an input. The result is also a real sequence:  

 

It was considered, for sometime, that Hartley transform can be 
a faster alternative to the real Fourier transform, but later it 
was found out that there are FFT algorithms, which are a little 
more efficient than the corresponding FHT [6] algorithms. An 
integral transform which shares some features with the Fourier 
transform, but which (in the discrete case), multiplies the 
integral kernel by  

   (1) 

instead of  

          (2) 

The Hartley transform produces real output for a real input, 
and is its own inverse. It therefore can have computational 
advantages over the discrete Fourier transform, although 

analytic expressions are usually more complicated for the 
Hartley transform.  

The discrete version of the Hartley transform can be written 
explicitly as  

  (3) 
  

             (4) 
   

where denotes the Fourier transform. The Hartley transform 
obeys the convolution property  

 (5) 

where  

   (6) 

   (7) 

   (8) 

Like the fast Fourier transforms, there is a fast version of the 
Hartley transform. Decimation in time algorithm makes use of  

    (9) 

    (10) 

where denotes the sequence with elements  

   (11) 

Decimation in frequency algorithm makes use of  

   (12) 

   (13) 

The discrete Fourier transform  
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   (14) 

can be written  

  
                                                                                                                                         

 
 
So    
 
                         

      (15) 
 

 4. Feature Reduction 
 

A support vector machine (SVM) [7] is a concept in 
computer science for a set of related supervised learning 
methods that analyze data and recognize patterns, used for 
classification and regression analysis. The standard SVM 
takes a set of input data and predicts, for each given input, 
which of two possible classes the input is a member of, which 
makes the SVM a non-probabilistic binary linear classifier. 
Given a set of training examples, each marked as belonging to 
one of two categories, an SVM training algorithm builds a 
model that assigns new examples into one category or the 
other. An SVM model is a representation of the examples as 
points in space, mapped so that the examples of the separate 
categories are divided by a clear gap that is as wide as 
possible. New examples are then mapped into that same space 
and predicted to belong to a category based on which side of 
the gap they fall on. 

A support vector machine [8] constructs a hyperplane 
or set of hyperplanes in a high- or infinite- dimensional space, 
which can be used for classification, regression, or other tasks. 
Intuitively, a good separation is achieved by the hyperplane 
that has the largest distance to the nearest training data points 
of any class (so-called functional margin), since in general the 
larger the margin the lower the generalization error of the 
classifier. The original problem may be stated in a finite 
dimensional space; it often happens that the sets to 
discriminate are not linearly separable in that space. For this 
reason, it was proposed that the original finite-dimensional 
space be mapped into a much higher-dimensional space, 
presumably making the separation easier in that space.  

To keep the computational load reasonable, the 
mapping used by SVM [9] schemes are designed to ensure 
that dot products may be computed easily in terms of the 
variables in the original space, by defining them in terms of a 
kernel function K(x,y) selected to suit the problem. The 
hyperplanes in the higher dimensional space are defined as the 

set of points whose inner product with a vector in that space is 
constant. The vectors defining the hyperplanes can be chosen 
to be linear combinations with parameters α i of images of 
feature vectors that occur in the data base. With this choice of 
a hyperplane, the points x in the feature space that are mapped 
into the hyperplane are defined by the relation: 

∑ α iK(xi,x) = constant 
                                  i 

if K(x,y) becomes small as y grows further from x, each 
element in the sum measures the degree of closeness of the 
test point x to the corresponding data base point xi. In this 
way, the sum of kernels above can be used to measure the 
relative nearness of each test point to the data points 
originating in one or the other of the sets to be discriminated. 
The set of points x mapped into any hyperplane can be quite 
convoluted as a result allowing much more complex 
discrimination between sets which are not convex at all in the 
original space. 

 5. Classification Using Bayes Net 

Bayesian networks (BNs) [10], also known as belief 
networks (or Bayes nets for short), belong to the family of 
probabilistic graphical models (GMs). These graphical 
structures are used to represent knowledge about an uncertain 
domain. In particular, each node in the graph represents a 
random variable, while the edges between the nodes represent 
probabilistic dependencies among the corresponding random 
variables. These conditional dependencies in the graph are 
often estimated by using known statistical and computational 
methods. Hence, Bayesian Networks combine principles from 
graph theory, probability theory, computer science, and 
statistics. 

Graphical Models with undirected edges are 
generally called Markov random fields or Markov networks. 
These networks provide a simple definition of independence 
between any two distinct nodes based on the concept of a 
Markov blanket. Markov networks are popular in fields such 
as statistical physics and computer vision.  

BNs [11] correspond to another GM structure known 
as a directed acyclic graph (DAG) that is popular in the 
statistics, the machine learning, and the artificial intelligence 
societies. BNs are both mathematically rigorous and 
intuitively understandable. They enable an effective 
representation and computation of the joint probability 
distribution (JPD) over a set of random variables. 

The structure of a DAG is defined by two sets: the set 
of nodes (vertices) and the set of directed edges. 
The nodes represent random variables and are drawn as circles 
labeled by the variable names. The edges represent direct 
dependence among the variables and are drawn by arrows 
between nodes. In particular, an edge from node Xi to node Xj 
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represents a statistical dependence between the corresponding 
variables. Thus, the arrow indicates that a value taken by 
Variable Xj depends on the value taken by variable Xi, or 
roughly speaking that variable Xi “influences” Xj . Node Xi is 
then referred to as a parent of Xj and, similarly, Xj is referred 
to as the child of Xi.  

An extension of these genealogical terms is often 
used to define the sets of “descendants” – the set of nodes that 
can be reached on a direct path from the node, or “ancestor” 
nodes – the set of nodes from which the node can be reached 
on a direct path. The structure of the acyclic graph guarantees 
that there is no node that can be its own ancestor or its own 
descendent. Such a condition is of vital importance to the 
factorization of the joint probability of a collection of nodes as 
seen below. Note that although the arrows represent direct 
causal connection between the variables, the reasoning 
process can operate on BNs by propagating information in any 
direction. 

A BN [12] reflects a simple conditional independence 
statement. Namely that each variable is independent of its non 
descendents in the graph given the state of its parents. This 
property is used to reduce, sometimes significantly, the 
number of parameters that are required to characterize the JPD 
of the variables. This reduction provides an efficient way to 
compute the posterior probabilities given the evidence. 
In addition to the DAG structure, which is often considered as 
the “qualitative” part of the model, one needs to specify the 
“quantitative” parameters of the model.  

The parameters are described in a manner which is 
consistent with a Markovian property, where the conditional 
probability distribution (CPD) at each node depends only on 
its parents. For discrete random variables, this conditional 
probability is often represented by a table, listing the local 
probability that a child node takes on each of the feasible 
values – for each combination of values of its parents. The 
joint distribution of a collection of variables can be determined 
uniquely by these local conditional probability tables (CPTs). 

Bayesian networks are used to represent essential 
information in databases in a network structure. The network 
consists of edges and vertices, where the vertices are events 
and the edges relations between events. A simple Bayesian 
network is illustrated in figure where symptoms are dependent 
on a disease, and a disease is dependent on age, work and 
work environment. Bayesian networks are easy to interpret for 
humans, and are able to store causal relationships, that is, 
relations between causes and effects. The networks can be 
used to represent domain knowledge, and it is possible to 
control inference and produce explanations on a network.  

A simple usage of Bayesian networks is denoted 
naive Bayesian classification. These networks consist only of 
one parent and several child nodes. Classification is done by 
considering the parent node to be a hidden variable (H in the 

figure) stating which class (child node) each object in the 
database should belong to. An existing system using naive 
Bayesian classification is AutoClass.  

The theoretical foundation for Bayesian networks is 
Bayes rule, which states:  

 

where H is a hypothesis, and e an event. is 
the posterior probability, and P(H) is the prior probability. To 
give a formal definition of Bayesian networks, we introduce 
some terminology which is taken from:  

If a subset of Z nodes in a graph G intercepts all paths between 
the nodes X and Y (written ), then this 
corresponds to conditional independence between X and Y 
given Z:  

conversely:  

 

with respect to some dependency model M.  

A Directed, Acyclic Graph (DAG) D is said to be a I-
map of a dependency model M if for every three disjoint sets 
of vertices, X, Y and Z we have:  

                     

A DAG is a minimal I-map of M if none of its arrows 
can be deleted without destroying its I-mapness. Given a 
probability distribution P on a set of variables U, a DAG is 
called a Bayesian Network of P if and only if 
D is a minimal I-map of P.  

A Bayesian network is shown in Fig, representing the 
probability distribution P:  
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Fig. 1: A Bayesian Network Representing the Distribution P. 
6. Experimental Result 
 
Bayes Net 
 
=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances         103               61.3095 % 
Incorrectly Classified Instances        65               38.6905 % 
Kappa statistic                           0.2178 
Mean absolute error                 0.4364 
Root mean squared error             0.497  
Relative absolute error                       87.4669 % 
Root relative squared error                 99.5084 % 
Total Number of Instances                  168      
 
=== Detailed Accuracy By Class === 
 
TPRate FP Rate Precision Recall F-Measure ROC Area  Class 
  0.5        0.284      0.615       0.5       0.552        0.631         hand 
  0.716     0.5         0.612       0.716    0.66         0.631         foot 
Weighted Avg.    
  0.613     0.397      0.613      0.613    0.608        0.631 
 
=== Confusion Matrix === 
  a      b   <-- classified as 
 40      40 |  a = hand 
 25      63 |  b = foot 
 
7. Conclusion 

In this paper feature vector was extracted from the 
BCI competition IVA dataset using Fast Hartley Transform. 
Sub set selection of the obtained features after normalization 
was achieved using Support Vector Machine. Decision tree 
and logistic regression based on Bayes probability was used to 
train and classify the extracted sub features. Results show that 
the classification accuracy is over 60% in Bayesian Network. 
Further investigation has to be done to improve the 
classification accuracy on a small number of attributes 
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