
Aspect-Oriented Requirements Engineering for Advanced
Separation of Concerns: A Review

Narender Singh and Nasib Singh Gill

 Department of Computer Science and Applications
Maharshi Dayanand University, Rohtak - 124001, Haryana, India.

Abstract
Software engineering was introduced to cope with software crisis
with two fundamental principles: separation of concerns and
modularity. Many programming paradigms have been proposed
and used while considering the fundamental principles from the
early days. Complex software systems were successfully
modularized but complete separation of concerns is still
impossible to achieve using today’s most popular programming
paradigms such as object-oriented programming. There are some
concerns which could not be separated properly in a single class
or module due to their highly coupling with other classes or
modules’ behaviors. We call such unmodularized concerns as
crosscutting concerns and these are responsible for scattering and
tangling.

Aspects are the natural evolution of the object-oriented paradigm.
They provide a solution to some difficulties encountered with
object-oriented programming, sometimes scattering and tangling.
Hence, Aspect-Oriented Software Development (AOSD) is
another step towards achieving improved modularity during
software development. It gives emphasis to the separation of
crosscutting concerns i.e. advanced separation of concerns and
encapsulation of crosscutting concerns in separate modules,
known as aspects. It later uses composition mechanism to weave
them with other core modules at loading time, compilation time,
or run-time. Aspect-Oriented Requirements Engineering (AORE)
is an early phase in AOSD that supports separation of
crosscutting concerns at requirements level. It does not replace
but rather complements any of the existing requirements
methodologies.

Over the last few years, several research efforts have been
devoted to this area. Several techniques for crosscutting concern
identification have already been proposed. In this paper, an
attempt is made to review the existing approaches and understand
their contribution to requirements engineering.
Keywords: Separation of Concerns, Crosscutting
Concerns, Aspect-Oriented Software Development,
Aspect-Oriented Requirements Engineering.

1. Introduction

The term “Software Engineering” was introduced in the
NATO Working conference [1] on Software Engineering
in 1968 to cope with software crisis. A number of

approaches have been proposed to deal with the software
crisis. Developing the complex software systems became
easy. However, the progress in software engineering
concepts did not keep track with increasing complexity of
modern software systems. It is difficult to meet current and
future needs in software development using today’s most
popular programming paradigm such as object-oriented
programming.

According to the Standish Group in 1995 [2], only about
16% of software projects were successful, 53% were full
with problems (cost or budget overruns, content
deficiencies), and 31% were cancelled. The Standish
Group's just-released report, "CHAOS Summary 2009 [3]",
only 32% of all projects succeeding which are delivered on
time, on budget, with required features and functions" says
Jim Johnson, chairman of The Standish Group, "44% were
challenged which are late, over budget, and/or with less
than the required features and functions and 24% failed
which are cancelled prior to completion or delivered and
never used”. Evidence suggests that despite the
improvement from 1995 to 2009 the current situation in
software development is far from adequate.

Separation of concerns and modularity are the
fundamental principles that drive the research in software
engineering since the early days. The term “separation of
concerns” was introduced by Edsger Dijkstra, to refer the
ability of identifying, encapsulating and manipulating parts
of software that are crucial to a particular goal or purpose
in his book “A Discipline of Programming” [4]. The basic
idea behind separation of concerns is to handle one
property of a system at a time. In other words, a complex
problem that is hard to understand should be divided into a
series of smaller problems; those are less complex and
easier to handle by the designer. These smaller problems
may then be designed one at a time by different designers
and finally integrated to solve the big problem. Modularity
[5] [6] is the principle to structure software into modules
where modules are self-contained, cohesive building
blocks of software. A module is a device to implement a
concern and modularity is a consequence of separation of
concerns.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 288

Many programming paradigm have been proposed with
keeping the fundamental principles in mind. It becomes
possible to modularize the complex software systems. But,
it is still difficult to achieve complete separation of
concerns using today’s most popular programming
paradigm such as object-oriented programming. There are
some pieces of processing i.e. concerns that did not seem
to fit in any particular single classes. This is because they
are too tightly coupled to the behaviors in many other
classes or modules. These unmodularized concerns are
called as crosscutting concerns and are responsible for
scattering: the implementation of a concern is spread over
several program modules and tangling: a program module
implements multiple concerns. Several empirical studies
provide evidence that crosscutting concerns degrade code
quality because they negatively impact internal quality
metrics such as program size, coupling, and separation of
concerns [7].

Aspects are the natural evolution of the object-oriented
paradigm. They provide a solution to some difficulties
encountered with object-oriented programming, sometimes
scattering and tangling. AOSD [8] is another step towards
achieving improved modularity during software
development. It focuses on crosscutting concerns by
providing means for their systematic identification,
separation, representation and composition [9]. It
encapsulates crosscutting concerns in separate modules,
known as aspects. It later uses composition mechanism to
weave them with other core modules at loading time,
compilation time, or run-time [10].

AOSD was introduced first at programming level, with
Aspect-Oriented Programming, where aspects are handled
in code. A number of Aspect-Oriented Programming
approaches have been proposed. Work has also been
carried out incorporate aspects, and hence separation of
crosscutting concerns, at the design level mainly through
extensions to the UML metamodel [11] [12] [13].
However, crosscutting concerns are often present before
the solution domain, such as in Requirements Engineering
[14] [15] [16].

AORE [17] is still an emerging field with many open
research issues. Research in the early phases of software
development with aspect-oriented paradigm has been
increasing. Handling crosscutting concerns in the early
stages of software development is beneficial rather than
handling them in later stages of software development
because it not only makes the design simpler, but also
helps to reduce the cost and defects that occur in the later
stages of development. AORE focuses on identifying,
analyzing, specifying, verifying, and managing the
crosscutting concerns at the early stages of software

development. It does not replace but rather complements
any of the existing requirements methodologies.

In this section, an attempt is made to highlight the concept
of AORE for advanced separation of concerns i.e. AORE
for handling crosscutting concerns at the early stage of
software development. Section 2 reviews the existing
literature by many researchers. A roadmap to research is
discussed in section 3. Finally, we conclude in section 4.

2. Literature Review

The success of a software system depends on how well it
fits the needs of its users and its environment [18].
Software requirements comprise these needs, and
requirements engineering (RE) is the process by which the
requirements are determined [19]. Successful RE involves
understanding the needs of users, customers, and other
stakeholders; understanding the contexts in which the to-
be-developed software will be used; modelling, analyzing,
negotiating, and documenting the stakeholders’
requirements; validating that the documented requirements
match the negotiated requirements; and managing
requirements evolution [20]. Existing requirements
engineering approaches, such as use cases [21], viewpoints
[22], and goals [23] provide good support for identification
and treatment of some kinds of requirements. However,
these requirements approaches do not explicitly support
well broadly-scoped requirements, such as crosscutting
concerns, and do not explicitly support their composition.
Moreover, they all suffer from the “tyranny of the
dominant decomposition” [24]. AORE, therefore,
complements these approaches by providing systematic
means for handling such crosscutting concerns.

Over the last few years, several research efforts have been
devoted to developing AORE models that can help in
extracting, identifying, and modeling aspects in the early
phase of requirements analysis. In the following we
discuss briefly these efforts.

Grundy’s [25] proposed an approach called Aspect-
Oriented Component Requirements Engineering (AOCRE)
that focuses on identifying and specifying the functional
and non-functional requirements relating to key aspects of
a system each component provides or requires. In
component-based systems, applications are built from
discrete, inter-related software components, often
dynamically plugged into running applications and
reconfigured by end users or other components. Some
components may have many aspects and others a few.
Aspects may be decomposed into aspect details. Candidate
components are found from OOA diagrams, by reverse
engineering software components, or bottom-up

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 289

consideration of individual, reusable components. The
AOCRE process begins with identifying components’
aspects, where for each component, we identify aspects for
which the component provides services or requires
services from other components using possible stakeholder
requirements and object services. After identifying a
component’s aspects, we can reason about components
and aspects. Further, we can infer inter-component
relationships that allow engineers to reason about the
validity relationships and aspects specified. Aspect-
oriented component requirements also assist components
design and implementation. They provide a focused set of
functional and non-functional constraints for refining
design, and provide a specification that an implementation
can be tested against. AOCRE exhibit improved
reusability and extensibility, and systems built with these
components exhibit improved allocation of responsibility
for data and behaviour among both reused and application-
specific components. This approach is too specific for
component development, not showing evidence of its use
in software development in general. Besides, the
identification of aspects for each component is not clearly
defined and lacks tool support.

Rashid et al. [26] proposed a model for aspect-oriented
requirements engineering. The model supports separation
of crosscutting properties from early stages of the
development and identification of their mapping and
influence on later development stages. Now, it is possible
to identify conflicts, establish possible tradeoffs, and
promotes traceability throughout the system development
and its evolution. The early separation of crosscutting
concerns improves modularisation and hence, it is possible
to build flexible and adaptable systems that meet the needs
of volatile domains such as banking, telecommunications
and e-commerce. The model supports separation of
crosscutting properties from early stages of the
development and identification of their mapping and
influence on later development stages. But it lacks on
validation of aspects, their composition with other
requirements and resolution of possible conflicts resulting
from the composition process. It also lacks a notation to
describe aspects, their interactions and composition
relationships at the requirements level.

Baniassad and Clarke [27] proposed the theme approach
that provides support for aspect-oriented software
development at two different stages. Theme/Doc, which is
used for viewing and analyzing the requirements at
requirements phase; and Theme/UML, which allows a
developer to model features and aspects of a system, and
specifies how they should be combined at design phase. In
the theme approach, a theme is an element of design,
which is a collection of structures and behaviours that
represent one feature. Multiple themes can be combined or

integrated to form a system. Themes are further classified
as base themes, which may share some structure and
behaviour with other base themes, and crosscutting themes
which have behaviour that overlay the functionality of the
base themes. Crosscutting themes are known as aspects.
Action view is used to identify crosscutting behaviours. To
create an action view, two inputs are needed: a list of key
actions identified by the developer by looking at the
requirements document and picking out sensible verbs,
and the requirements as written in the original document.
Theme/Doc then performs lexical analysis of the text and
generates the action view. The theme approach involves
three main activities as finding themes, modeling and
composing themes, and checking Themes/UML. The
process begins with finding themes. Here, we identify
actions and generate an action view to examine their
relationships. After analysis of the view, we determine that
all of these actions will not be modelled as separate
themes. Instead, we determine the relationships between
the actions to decide how to group the actions into larger
themes. Here, we also determine which themes are
crosscutting and which are base. The next step in theme
process is modelling and composing themes. Here, the
theme view is used to drive the modelling and composition
semantics for design using Theme/UML. To ensure that
the developer carefully considers the order in which
crosscutting themes are composed with base themes,
Theme/UML allows only one crosscutting theme per
composition. We therefore needed to inspect the
crosscutting relationships to determine the order of
binding. For this we used the clipped action view. In this
view, the themes are positioned hierarchically, based on
whether they crosscut one another. Finally, we check the
validity of the design choices we made. This approach
supports effective aspect identification, requirements
coverage, traceability, and scalability of action views.
However, this approach is only applicable for structured
requirements document. As for the developers, they must
possess the domain knowledge. Hence they must go
through the whole requirements source document to
identify the crosscutting concerns. They have to manually
map the relationship between the themes and
requirements. It is costly and time consuming to handle
large amount of requirement sources.

Whittle et al. [28] proposed an approach to model
scenario-based requirements using aspect-oriented
paradigm. The main focus was on representing aspects
during use case modelling. The approach provides a way
to describe aspectual and non-aspectual scenarios
independently and then merge them together to validate
the complete set of scenarios. Aspectual scenarios, i.e.,
scenarios that crosscut other scenarios, are modeled as
interaction pattern specifications (IPSs) and non-aspectual
scenarios are modeled as UML sequence diagrams. Each

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 290

aspectual and non-aspectual scenario is then translated into
a set of state machines. The next stage of the process
composes the aspectual and non-aspectual state machine
for each entity. The result is an executable set of state
machines that completely describe the requirements and in
which aspectual and non-aspectual behaviour has been
merged. Validation of these state machines can now take
place using either a simulation harness or a code generator
and the results can be feedback into the overall process.
Composing (or weaving) aspectual and non-aspectual state
machines helps the requirements engineer grasp the full
picture. The approach supports better modularization and
traceability but it lacks to address scalability. The
developer must provide binding statements for each aspect
and for each scenario that the aspect crosscuts. It also not
proposed any systematic technique to aspectual scenarios
identification.

Jacobson et al. [29] proposed an approach called aspect-
oriented software development with use cases to handle
crosscutting concerns. This approach is an extension to the
traditional Use Case approach proposed by the same
author and introduced new concepts like use case slices,
extension use case, and pointcut. Here, a system is built
use case by use case. The process begins with identifying
use cases. Further, we need to specify each use case, to
analyze it, and to design use cases in terms of use case
slices and use case modules. Use case slices are used to
employ aspects. Use case modules are used to contain the
specifics of a use case over all system models. Extension
use cases are the special kind of use cases that contain
additional functionality of the use case. We implement and
compose them using a composition mechanism to weave
them at loading time, compilation time, or run-time to
form a complete system. The approach includes processes
like identifying, specifying, analyzing, designing, and
implementing use cases. The approach strongly related to
UML; but lacks in conflicts handling.

Moreira et al. [30] proposed an approach called concern-
oriented requirements engineering (CORE), which treats
each concerns uniformly. Here, a concern is any coherent
collection of requirements. They also not classified
concerns into viewpoints, use cases or aspects though their
concerns encapsulate the coherent sets of functional and
non-functional requirements. Concern space at the
requirements level is represented as a hypercube. Each
face of the hypercube represents a particular concern of
interest. The process begins with identifying and
specifying concerns using existing requirements elicitation
mechanisms such as such as viewpoints, use cases, and
goals. The identified concerns are specified using well-
defined templates. The second step is to identify coarse-
grained relationships among concerns by relating concerns
to each other through a matrix. These relationships are

identified using techniques such as domain analysis,
ethnography, and natural language processing. The third
step is to specify the possible projections of each concern
on other concerns, which is achieved through composition
rules. The fourth step is to identify and resolve conflicts (if
any) among the concerns. This is achieved by building a
contribution matrix, where each concern may contribute
positively or negatively to the others. Prioritisation
mechanism is used to solve conflicts and helping
negotiation and decision-making. The last activity is to
identify the dimensions of concerns. There are two
dimensions of a concern at requirements level, which are
mapping and influence. This approach supports multi-
dimensional separation of concerns, which treats each
concerns uniformly, hence, avoiding the dominant
decomposing. It also establishes early trade-offs and solve
conflicts that help negotiation and decision-making. But, it
does not focus on the exact kind of relationships between
two concerns, validation of proposed model with more
case studies, and setting the concern specific actions and
operators.

Araujo et al. [31] proposed an approach that incorporates
aspect-oriented concepts into agile software development
at requirements level. Agile software development aims at
fast communication and incremental delivering of software
artefacts. The aspect-oriented agile requirements approach
focuses on defining and modelling initial crosscutting
requirements as scenarios. Scenarios are descriptions of
desired or existing system behaviour. Scenarios are
commonly used in requirements engineering because they
are easily understood by all stakeholders. Scenarios may
crosscut other scenarios. Crosscutting scenarios are called
aspectual scenarios. First, we begin with identifying main
functionalities and refine those using scenarios. Secondly,
we need to identify aspectual scenarios. This is achieved
by analyzing all scenarios and observing some behaviour
that crosscut several scenarios. Third, we need to compose
aspectual and non-aspectual scenario definitions.
Compositions are specified through simple rules. Finally,
by analyzing the composition rules we may find
ambiguities, errors omissions and conflicts in our
scenarios. This analysis can be realized through
inspections. Also, the participation of the stakeholders is
crucial. Conflict identification can be accomplished by
adapting the existing mechanism. The final set of aspectual
and non aspectual scenarios plus composition rules are
used to implement users’ functionalities. The approach
lacks on complete composition mechanism, conflict
identification mechanism, validation, and tool support to
guarantee that the approach will be used in an agile
fashion.

Brito et al. [32] proposed an integrated approach for
aspectual requirements to handle separation,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 291

modularization, representation and composition of
concerns. The approach defines three main tasks, each one
divided in several subtasks. The first task is identifying
concerns, which aims at identifying the concerns of a
system. A concern can be defined as a set of coherent
requirements that the future system must have. This can be
accomplished by analyzing the initial requirements,
transcripts of stakeholders’ interviews, etc. The second
task is specifying concerns, which consists of many
subtasks such as collecting information about concerns,
specifying them using a template, and to design models
like UML use case, interaction and class diagrams. The
final task is composing concerns incrementally until the
whole system is obtained. Each composition takes place in
a match point in the form of a composition rule. A match
point tells us which concerns (crosscutting or non-
crosscutting) should be composed together. A composition
rule shows how a set of concerns can be weaved together
by means of some pre-defined operators. In order to
accomplish this, we need to identify crosscutting concerns.
The approach defined the main concepts as an extension of
the UML metamodel, which allows a developer to better
capture, analyze and understand the approach. The tool
facilitates the specification of concerns, identification of
crosscutting concerns, generation of the match point table
and definition of composition rules. The approach does not
define any method and tool with a reference model to
support forward and backward traceability.

Z. Jingjun et al. [33] proposed aspect-oriented
requirements modelling aiming to apply AOP paradigm at
requirements engineering stages of software development.
This approach supports separation of concerns both
functional and non-functional, and modelling them in
UML with class diagrams and state-chart diagrams
respectively. The process includes five activities as follow:
identifying and specifying concerns, analyzing concerns,
composing concerns, weaving concerns, and simulating
and validating requirements. First, identify both functional
and non-functional concerns from system requirements,
and then specify them in UML as OOP class and aspect
class. Second, analyze the relation among concerns by
detecting and removing the conflicts if any. Third,
compose concerns by describing the static structure of the
system. Next, during weaving concerns, the whole state-
chart diagram of the system is given, and then finishes the
weave process. Finally, simulate the system function with
the whole state chart, and validate the function whether it
meets the system requirements or not. If not, return to the
first activity, identify and specify concerns again. Or,
complete the model process. This model supports
separation and modelling of concerns. It also supports an
effective method to solve the mismatch among the aspects,
which reduces the complexity of the system and increases
software’s reusability and maintainability. It uses terms

functional and non-functional concerns as core and
crosscutting concerns respectively. But, a crosscutting
concern may be functional as well as non-functional. So,
this method does not clearly identify and specify
crosscutting concerns which are functional.

Chitchyan et al. [34] proposed Requirements Description
Language (RDL), which is a symmetric AORE approach.
It modularizes the requirements in symmetric fashion and
represents them using the same abstraction, i.e., a Concern,
to represent both crosscutting and non-crosscutting
elements. A concern may be simple i.e. containing only
requirements or composite i.e. containing requirements
and other concerns. Both concern and requirement can be
described as multi-sentence elements; where an element
can be a subject or an object or relationship. A subject is
described as an entity that undertakes actions and in RDL;
it corresponds to the grammatical subject in the clause. An
object is described as an entity that is affected by the
actions undertaken by the subject of the sentence. In RDL,
it corresponds to the grammatical object in the clause. A
relationship is described as the action performed by the
subject on or with regards to its object(s) and can be
expressed by any the verbs or verb phrases in natural
language. The main semantic load is carried by subject-
relationship-object structure. The subject and object denote
the entities of significance in it, whereas, the interactions
between these entities are reflected by relationships. In this
approach the relationship denotes the most central
function, as it defines the functionality and/or properties
that the subjects and objects provide. When specifying
requirements stakeholders often qualify how important or
significant a specific functionality or property is to them.
In the RDL such qualifications are represented by the
Degree element. Degree element depicts the strength of the
relationship between the subject and object. The RDL
elements discussed above are used for requirements
description. The next activity is element composition. The
assembling of separately defined requirements modules
aiming to ensure their desired interactions or addressing
undesired ones is termed as composition. Here, three sub-
elements of a composition element are constraint, base,
and outcome. A Constraint element specifies checks and
restrictions applied on a set of requirements, and the action
taken in imposing these constraints. Base element provides
a query for selecting the set of requirements that are
affected by some constraints; and the temporal or
conditional dependency between these requirements and
the constraints. The Outcome element defines how to treat
the imposition of constraints upon the base sets of
requirements. Composition specifications are written
based on these semantics rather than requirements syntax,
hence providing improved means for expressing the
intentionality of the composition, in turn facilitating
semantics-based reasoning about aspect influences and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 292

trade-offs. However, the approach requires a complete and
precise requirements document, which can’t be expected
before requirements elicitation and analysis. Also, to
validate this approach, it is still required to refine
requirements, identify and resolve conflicts and trade-offs.

Jing Zhang et al. [35] proposed an aspect-oriented
approach to supporting separation of crosscutting concerns
in activity modelling. Aspect-specific constructs have been
introduced as an extension to the activity models. Activity
modeling describes the behavioural aspects of a system
and is used to define a computational process as control
flow and data flow among its constituent actions. It
consists of many kinds of nodes and edges. The
sequencing of actions is controlled by control flow and
object flow edges. An activity node can be an action, an
object node or a control node. An object node holds data
that flow through the activity model. Control nodes are
responsible for routing control and data flows in an
activity. Activities can be divided into different partitions
that represent different kinds of activity groups for
identifying actions that have some characteristics in
common. Activity specifications grow with increasing
complexity of the system and require lifecycle
maintenance for the concerns that crosscut different
activity modules. Aspect-oriented paradigm provides a
solution to above problem by encapsulating crosscutting
concerns in specialized units called aspects. New concepts
like joinpoints, pointcut, and advice are introduced here. A
joinpoint specifies “where” the crosscutting concern
emerges in the activity model. A pointcut is defined as a
special construct containing a group of particular join
points, which defines a pattern to identify matching join
points. In activity modeling, the concern behaviour is
implemented using an activity model referenced by a
special action called advice, which specifies “what” (i.e.,
the behaviour) makes up the crosscutting concern. This
paper applies an aspect-oriented approach to supporting
separation of crosscutting concerns in activity modeling.
Aspect-specific constructs have been introduced as an
extension to the activity models. The current
implementation of the pointcut specification only allows
join point to be referred to action nodes. The approach
lacks on covering other kinds of activity nodes and
investigating more advanced pointcut selection patterns.

Budwell and Mitropoulos [36] proposed a methodology
called Structured Lexicon for Aspectual Identification
(SLAI) that is based upon the Language Extended Lexicon
(LEL) for capturing requirements. LEL is used for
vocabulary acquisition or understanding problem
language. LEL consists of three elements: signs, notions,
and behavioural responses. Signs represent any word or
phrase that has a special meaning within the Universe of
Discourse (UofD). Notions and behavioural responses help

to define the meaning of each sign. Notions define the
signs in the context of the UofD, whereas behavioural
responses define how the sign is used. The principle of
circularity and minimal vocabulary is used to define signs.
The process begins with clearly identifying and defining
aspects at the requirements phase of software
development. An aspect is a crosscutting concern or matter
of interest in a software system. A concern must be
derived from either functional or non-functional
requirements. The next step is to capture crosscutting
requirements (functional or non-functional) as aspects.
Functional requirements can be identified as aspects in the
form of UML use cases. A functional aspect is defined as a
crosscuts use case. This is a new type of use case in UML
after modifying extends and includes use cases. Non-
functional requirements are converted into
operationalizations and then into use cases. This
methodology is divided into two flows, functional
requirements flow and non-functional requirements flow.
In functional requirements flow, actors of the system are
identified first. Next, use cases are identified and detailed
them into use case steps. Later, the use case steps are
recorded in the SLAI. In non-functional requirements
flow, SIG graph is used where the roots of the SIG graph
represent non-functional requirements and leaf nodes for
each path represent operationalizations, which are either
operations or design constraints. Since design constraints
tend to be considerations that need to be addressed in the
design phase, they are not included in the SLAI. The use
case information is not enough to classify crosscuts use
cases as aspects. Thus, for each crosscuts use case, a table
is generated that lists each use case with which it
interfaces. For each of these use cases listed, the condition
of the extension, the composition rule operator, and the
affected point are defined. The approach supports the
identification of aspectual or crosscutting use cases from
both functional and non-functional requirements as well as
systematically identifying both aspects and potential
aspects by the use of a limited set of vocabulary for the
terms defining the requirements of the system. From the
study, it is observed that the methodology lacks on aspect
composition as well as conflict resolution.

Ali and Kashirun [37] developed a model to identify
crosscutting concern and designed an automated tool based
on the model. The model is based on the proposed
approach which is adapted from Theme/Doc and Early
Aspects Identification approaches. The model is fully
automated and involves non-collaborative processes unlike
conventional requirements engineering processes, which
are generally collaborative and iterative in nature. The
execution of processes in this model is sequential where
each process requires output of the previous process as
input for execution. The model consists of processes like
structuring requirements, removing redundancy, part-of-

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 293

speech (pos) analysis, semantic analysis, filter verbs
identification, map relationship view, refining the
relationship view, identifying dominating verb, and
modelling crosscutting influences. Structuring
requirements task involves numbering all the requirements
agreed by the stakeholders to identify and manipulate each
requirement uniquely in the next stages. Sometimes, same
requirements are specified many times by different
stakeholders. The redundant requirements are eliminated
during removing redundancy process. Verbs are extracted
from each requirement during POS analysis and they will
be used for modelling the relation with the requirements
and interdependency among other verbs. Semantic analysis
task utilizes semantic tagger to analyse the context of the
phrase in which the verb is used. This information is used
to identify verbs used to describe similar requirements.
Based on the semantic analysis performed, duplication of
the verbs in terms of the context is discarded during filter
verbs identification process. Next, we map the
requirements using a matrix during map relationship view
process. The requirements shared by more than one verb
and the scattered verbs are identified based on the
relationship view. Finally, identify the dominating verb in
the requirement, which are the candidate aspect and model
them to identify the crosscutting concern using Action
View Model as used in Theme/Doc approach. This paper
described a tool that provides automated support for
crosscutting concern identification at the requirements
level. The tool utilises natural language processing
technique to reason about properties of the concerns and
model their structure and relationship. But, this model
lacks on conflict resolution and implementation and
validation of the tool and tests it with case studies.

G. Mussbacher [38] proposed an approach Aspect-oriented
User Requirements Notation (AoURN) that extends the
User Requirements Notation (URN) with aspects. URN
contains two complementary modelling languages Goal-
oriented Requirement Language (GRL) and Use Case
Maps (UCMs) for goals and scenarios respectively. GRL
is a visual modelling notation and supports reasoning
about goals and non-functional requirements (NFRs).
UCM is a visual scenario notation that supports the
definition of scenarios. A scenario describes a specific
path through the UCM model where only one alternative at
any choice point is taken. Given a scenario definition, a
traversal mechanism can highlight the scenario path or
transform the scenario into a message sequence chart
(MSC). AoURN extends the URN by defining a joinpoint
model for the GRL and UCMs. All nodes of GRL graphs
or UCMs, which are optional to an actor or a component,
are considered as joinpoints. Pointcut expressions are used
for matching joinpoints in AoURN models to identify any
URN node, and are defined on pointcut diagrams. Pointcut
diagrams are standard URN diagrams that allow

requirements engineer to increase matching power by
using wildcards (“*”) and logical expressions (containing
“and”, “or”, and “not”). This approach extends URN with
aspects and thus unifies goal-oriented, scenario-based, and
aspect-oriented concepts in one framework. Minimal
changes to URN ensure that requirements engineers can
continue working with goal and scenario models expressed
in a familiar notation. At the same time, concerns in goal
and scenario models, regardless of whether these concerns
crosscut or not, can be managed across model types. But, it
uses flexible composition rules that are only limited by the
expressiveness of URN itself.

Iqbal and Allen [39] suggest a process modeling approach
that represents aspect from the initialization of software to
its implementation. It suggests the identification of aspects
in the Use Case Model and Sequence Diagrams of the
system. Use cases which involve multiple use cases like
included or extended use cases may be considered as
candidate aspects since they have the probability of
crosscutting representation in design as well as in
implementation. Similarly, the objects which have
communication with multiple objects and which are
represented in multiple sequence diagrams may also be
regarded as candidate aspects. Proper specification of the
candidate aspects can help identifying actual aspects. In
this approach, it is not mentioned how to identify aspects.
Also, it lacks on implementing the model and validation it
with some case studies.

Hamza and Darwish [40] proposed a new approach to
identify and model candidate aspects from functional and
non-functional requirements of the system, and propagate
them to the design phase. The approach needs problem
definition as input and produces EBT-NFR analysis model
as output. The EBT-NFR model identifies crosscutting
NFR and visually shows how they are scattered across the
various modules in the system. The process begins with
performing requirements and domain analysis. The
outcomes of this step are lists of: functional requirements
(FRs): non-functional requirements (NFRs), Enduring
Business Themes (EBTs), Business Objects (BOs), and
Industrial Objects (IOs). The next step is to develop and
document main use cases in the system using identified
FRs, EBTs, BOs, and IOs. After identifying the main use
cases, NFR Matching is performed where each identified
NFR in the system is matched with a set of use cases. The
next step is Concept Analysis step where, concepts within
the problem are discovered using use cases, EBTs, BOs,
and IOs. Here, classify the EBTs as concept EBTs (i.e
form a formal concept) and none-concept EBT. Next, we
need to identify candidate aspects by establishing and
understanding the relationships between different NFRs
and EBTs in the system. This is achieved by classifying
NFRs, and then developing an EBT-NFR model that

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 294

shows the relationships between EBTs and NFRs. An NFR
can be classified into one of three types: Localized-NFR
(L-NFR), Distributed-NFR (D-NFR), or an Aspect-EBT
(A-EBT). To classify a NFR, calculate Coupling Factor
(CF), which measures the coupling between a NFR and
each EBT in the system. Finally, develop the EBT-NFR
analysis model that visualizes the interaction between the
different NFRs and EBT modules in the system and can be
used as a link to the design phase. The approach uses
Formal Concept Analysis and EBTs that can be identified
using Software Stability Model to understand the
interaction between NFRs and FRs, and to identify
possible aspects in early stages of the development.
Further, the proposed approach is the only approach that
identifies crosscutting NFRs with respect to the structural
nature of the system. The approach lacks a tool to partially
automate the proposed approach and applicability of the
approach to several case-studies to validate the results.

Liu et al. [41] proposed a use case and non-functional
scenario template-based approach to identify aspects. This
approach consists of a sequence of activities. The process
begins with identifying and defining actors and use cases
and building an initial use case model. The next activity is
to refine use case model by identifying extensions and
inclusions of the use cases. After this, describe NFRs at
key association points in the use case model. Association
points are of many types as NFRs Association Points,
which are specific points of use cases where NFRs can be
associated; use case association points associate NFRs to
the described functionality, actor association points specify
NFRs related to external entities, actor-use case
association points represent NFRs related to interaction
between external entities and a functionality, and system
boundary association points define NFRs that are global in
nature. A concern can be identified with a set of
architectural policies, and each of these can be described
using specific dimensions that specify with more details
the NFRs in architectural terms in each use case. Hence,
describe architectural policies at platform-independent
level through Architectural Policy Scenarios. Finally,
identify aspects, where an aspect is a function that
influences more functions or more use cases. This
approach is based on use cases and described and map
non-functional requirements into function and
architectures through non-functional scenario template. It
not only improves modularity in the requirements which
make it possible to begin tackling the problem of tangling,
scattering of the requirement as early as in requirement
analysis phrase, but also improves traceability from
requirement analysis level to implement level, so it
achieves a smooth transition between the system analysis
and the design. It lacks on supporting the approach with
formal method and applying it in more case studies and
real systems.

3. A Roadmap to Research

Based on the above discussion, we present a roadmap to
our research. The focus of our research work will be
exactly on handling crosscutting concerns during
requirements phase and to propose a new requirements
engineering model for advanced separation of concerns
using aspect-oriented concepts having the following
challenges:

 Prevent the tyranny of dominant decomposition
symptom.

 Improve the ability to identify, specify and
compose both crosscutting and non-crosscutting
concerns.

 Handle conflicts that could emerge when two or
more crosscutting concerns affect each other.

4. Conclusion

Crosscutting concerns are the concerns which affect other
concerns. These concerns often cannot be clearly
decomposed from the rest of the system in both design and
implementation and hence result in scattering, tangling, or
both; that are difficult to understand and maintain. AOSD
is used to identify and specify such crosscutting concerns
in separate modules, known as aspects. This results in
better support for modularization hence reducing
development, maintenance and evolution costs.

AORE is a process that focuses on identifying, analyzing,
specifying, verifying, and managing the crosscutting
concerns at the early stages of software development. In
this literature review, we have discussed many AORE
approaches to deal with crosscutting concerns at early
stages of software development. As compared with
traditional approaches like use cases, viewpoints, and
goals; AORE approaches are too young and still need to
validate them with more case studies and avoid the tyranny
of dominant decomposition, improve the ability for
identifying both functional and non-functional crosscutting
concerns, offer an automatic mechanism for specifying
concern compositions, and to handle conflicts (if any).
Some work has been done in this area, but the
development of a complete methodology is needed.
Without the formulation of this methodology, the full
benefits of the aspect-oriented programming paradigm
cannot be realized.

References

[1] P. Naur and B. Randell, “Software Engineering: Report of the
Working Conference on Software Engineering”, Garmisch,
Germany, October 1968. NATO Science Committee, 1969.

[2] The Standish Group. Chaos Report. Technical report, Standish
Group International, 1995, http://www.it-

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 295

cortex.com/Stat_Failure_Rate.htm#The%20Chaos%20Report
%20(1995).

[3] The Standish Group, “CHAOS Summary 2009”, Technical
report, Standish Group International, Boston, Massachusetts,
April 23, 2009,
http://www1.standishgroup.com/newsroom/chaos_2009.php

[4] Dijkstra, E., “A Discipline of Programming”, 0-13-215871-X,
Prentice-Hall, 1976.

[5] D. L. Parnas, “A Technique for Software Module Specification
with Examples”, Communications of the ACM (CACM),
15(5):330–336, 1972.

[6] D. L. Parnas, “On the Criteria to be Used in Decomposing
Systems into Modules”, Communications of the ACM
(CACM), 15(12):1053–1058, 1972.

[7] Mark.E. et al., “Do Crosscutting Concerns Cause Defects?”,
IEEE Transactions On Software Engineering, Vol. 34, No. 4,
July/August 2008.

[8] ACM, "Special Issue on Aspect-Oriented Programming",
Communications of the ACM, 44 (10), 2001.

[9] Rashid, A., Moreira, A., Araújo, J., “Modularization and
Composition of Aspectual Requirements”, In 2nd Aspect-
Oriented Software Development Conference (AOSD'03),
Boston, USA, ACM Press. 11-20, 2003.

[10] Baniassad, E., Clements, P., Araújo, J., Moreira, A., Rashid,
A., Tekinerdogan, B., "Discovering Early Aspects", IEEE
Software Special Issue on Aspect-Oriented Programming.
23(1): 61-70, 2006.

[11] Suzuki, J., Yamamoto, Y., “Extending UML with Aspects:
Aspect Support in the Design Phase”, In Object-Oriented
Technology Workshop at 13th European Conference on
Object-Oriented Programming (ECOOP'99), Lisbon, Portugal,
1999.

[12] Clarke, S., Walker, R., “Composition Patterns: An Approach
to Designing Reusable Aspects”, In 23rd International
Conference on Software Engineering, (ICSE'01), Ontario,
Canada, ACM Press, 5-14, 2001.

[13] France, R., Ghosh, S., "A UML-Based Pattern Specification
Technique", IEEE Transactions on Software Engineering,
IEEE Computer Society, 30(3): 193-207, 2004.

[14] Moreira, A., Araújo, J., Brito, I., “Crosscutting Quality
Attributes for Requirements Engineering”, In 14th Software
Engineering and Knowledge Engineering Conference
(SEKE'02), Ischia, Italy, ACM Press. 167 – 174, 2002.

[15] Sutton Jr, S., Rouvellou, I., “Modeling of Software Concerns
in Cosmos”, In 1st Aspect-Oriented Software Development
Conference (AOSD'02), Enschede, Netherlands, ACM, 127-
133, 2002.

[16] Rashid, A., Moreira, A., Araújo, J., “Modularization and
Composition of Aspectual Requirements”, In 2nd Aspect-
Oriented Software Development Conference (AOSD'03),
Boston, USA, ACM Press, 11-20, 2003.

[17] Rashid A. et al., “Modularisation and Composition of
Aspectual Requirements”, AOSD 2003, ACM, pp. 11-20,
2003.

[18] Nuseibeh, B., Easterbrook, S.: Requirements engineering: a
roadmap. In: Proc. of the IEEE Int. Conf. on Soft. Eng.
(ICSE), pp. 35–46 (2000)

[19] Parnas, D.L.: Software engineering programmes are not
computer science programmes. Ann. Soft. Eng. 6(1), 19–37
(1999).

[20] Betty H.C. Cheng and Joanne M. Atlee, “Current and Future
Research Directions in Requirements Engineering”, Design
Requirements Workshop, LNBIP 14, pp. 11–43, Springer-
Verlag Berlin Heidelberg 2009.

[21] Jacobson, I., Chirsterson, M., Jonsson, P., Overgaard, G.,
“Object-Oriented Software Engineering - a Use Case Driven
Approach”. 978-0201544350. Addison-Wesley, 1992.

[22] Sommerville, I., Sawyer, P. (1997b), “Requirements
Engineering - A Good Practice Guide”, 978-0471974444.
John Wiley, 1997.

[23] VanLamsweerde, A. “Goal-Oriented Requirements
Engineering: A Guided Tour”, In 5th Requirements
Engineering Conference (RE'01), Toronto, Canada, IEEE
Computer Society. 249 – 262, 2001.

[24] M. Bruntink, A.V. Derusen, R.V. Engelen, T. Tourwe, “On the
Use of Clone Detection for Identifying Crosscutting Concern
Code”, IEEE Transactions on Software Engineering, Vol. 31,
No. 10, October 2005.

[25] J. Grundy, "Aspect-Oriented Requirements Engineering for
Component-based Software Systems", IEEE International
Symposium on Requirements Engineering, IEEE CS, pp. 84-
91, 1999.

[26] Rashid, A., Sawyer, P., Moreira, A., and Araújo, J. "Early
Aspects: a Model for Aspect-Oriented Requirements
Engineering", Proc. of Int. Conference on Requirements
Engineering (RE'02), 2002.

[27] E. Baniassad, S. Clarke, "Theme: An Approach for Aspect-
Oriented Analysis and Design", In Proceedings of the 26th Int.
Conf. on Software Engineering (ICSE04), 2004.

[28] Araújo, J. Whittle, and D-K. Kim, “Modeling And Composing
Scenario-Based Requirements With Aspects” In Proc. of the
12th IEEE International Requirements Engineering
Conference (RE 04), 2004.

[29] Jacobson, I.,” Aspect-Oriented Software Development with
Use Cases”, 978-0-321-26888-4, Addison-Wesley, 2004.

[30] A. Moreira, J. Araújo, A. Rashid, “A Concern-Oriented
Requirements Engineering Model”, Proc. Conference on
Advanced Information Systems Engineering, Portugal, LNCS
3520, pp. 293 – 308, Springer-Verlag Berlin Heidelberg 2005.

[31] J. Araujo and J. C. Ribeiro “Towards an Aspect-Oriented Agile
Requirements Approach”, Proceedings of the 2005 Eighth
International Workshop on Principles of Software Evolution
(IWPSE’05), IEEE 2005.

[32] Isabel Sofia Brito and Ana Moreira, “Towards an Integrated
Approach for Aspectual Requirements”, 14th IEEE
International Requirements Engineering Conference (RE'06),
IEEE 2006.

[33] Zhang Jingjun, Li Furong, and Zhang Yang, “Aspect-Oriented
Requirements Modeling”, Proceeding of the 31st IEEE
Software Engineering Workshop SEW-31 (SEW’07),
Baltimore, MD, USA, 2007.

[34] Chitchyan, R., Rashid, A., Rayson, P.,Waters, R., “Semantics-
Based Composition for Aspect-Oriented Requirements
Engineering”, In 6th Aspect-Oriented Software Development
Conference (AOSD'07), Vancouver, Canada, ACM Press. 36-
48, 2007.

[35] Jing Zhang, Yan Liu, Michael Jiang, and John Strassner, “An
Aspect-Oriented Approach to Handling Crosscutting Concerns
in Activity Modeling”, Proceedings of the International
MultiConference of Engineers and Computer Scientists 2008
Vol I, IMECS 2008, Hong Kong, 19-21 March, 2008.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 296

[36] Caroline C. Budwell and Frank J. Mitropoulos, “The SLAI
Methodology: An Aspect-Oriented Requirement Identification
Process”, 2008 International Conference on Computer Science
and Software Engineering, pp. 296-301, 978-0-7695-3336-
0/08, IEEE 2008.

[37] Busyairah Syd Ali and Zarinah Mohd. Kasirun,”Developing
Tool for Crosscutting Concern Identification using NLP”,
IEEE 2008.

[38] G. Mussbacher, “Aspect-Oriented User Requirements
Notation: Aspects in Goal and Scenario Models”, MoDELS
2007 Workshops, LNCS 5002, pp. 305–316, 2008, Springer-
Verlag Berlin Heidelberg 2008.

[39] S. Iqbal, and G. Allen, “Representing Aspects in Design",
presented at 2009 Third IEEE International Symposium on
Theoretical Aspects of Software Engineering, Tianjin, China ,
2009.

[40] S. Hamza and D. Darwish, “On the Discovery of Candidate
Aspects in Software Requirements”, Proc. Of Sixth
International Conference on Information Technology: New
Generations, 2009.

[41] Xiaojuan Zheng, Xiaomei Liu, and shulin Liu, “Use case And
Non-functional Scenario Template-Based Approach to Identify
Aspects”, Second International Conference on Computer
Engineering and Applications, 2010.

Narender Singh is an Assistant Professor in
Maharishi Markandeshwar University, Mullana-
Ambala, India and pursuing his PhD degree
from Department of Computer Science &
Applications, Maharshi Dayanand University,
Rohtak, India. He has earned his MCA and
M.Phil degrees from Department of Computer
Science & Applications, Kurukshetra
University, Kurukshetra, India in 2006 and 2008

respectively. He has published more than 5 research papers in national &
international journals & conference proceedings. His research interest
includes Aspect-Oriented Requirements Engineering and Software
Product Lines.

Nasib Singh Gill is Professor and Head,
Department of Computer Science &
Applications, Maharshi Dayanand University,
Rohtak, India. He has earned his Doctorate in
Computer Science in the year 1996 under the
supervision of a renowned academician and
researcher – Prof. P.S. Grover of Delhi
University and carried out his Post-Doctoral
research at Brunel University, West London

during 2001-2002. He has received Commonwealth Fellowship Award of
British Government for the Year 2001. He has published more than 145
research papers in national & international journals, conference
proceedings, bulletins, books, and newspapers. He has authored three
popular books, namely, ‘Software Engineering’, ‘Digital Design and
Computer Organisation’ and ‘Essentials of Computer and Network
Technology’. He is a fellow of several professional bodies including
IETE (The Institution of Electronics and Telecommunication Engineers).
He has been awarded with ‘Best Paper Award’ by Computer Society of
India in the year 1994 for contributing the best paper “A New Program
Complexity Measure” in their Journal. He is presently guiding
researchers in the areas - Measurement of Component-based Systems,
Complexity of Software Systems, Component-based Testing, Data mining
& Data warehousing, Aspect-Oriented Software Development, and NLP.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 297

