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Abstract 

In 1967, Wee introduced the concept of fuzzy 
automata, using Zadeh’s concept of fuzzy sets. A group 
semiautomaton has been extensively studied by Fong and 
Clay .This group semiautomaton was fuzzified by Das and 
he introduced fuzzy semiautomaton, fuzzy kernel and fuzzy 
subsemiautomaton over finite group. Fuzzy subgroup with 
thresholds was defined by Yuan et. al. In this paper, we 
introduce the idea of fuzzy kernel and fuzzy 
subsemiautomaton with thresholds. Further, we discuss 
some results concerning them. 
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1. Introduction 

Lofti A. Zadeh introduced fuzzy sets in 1965. 
Rosenfeld defined fuzzy subgroups in 1971. Anthony 
and Sherwood replaced “min” in Rosenfeld axiom by 
t-norm and introduced        T-Fuzzy subgroup. 
Bhakat and Das introduced (∈, ∈Vq)-fuzzy normal, 
quasinormal and maximal subgroup in 1992.Also in 
1997 they introduced fuzzy kernel and fuzzy 
subsemiautomaton of a fuzzy semiautomaton over a 
finite group using the notions of a fuzzy normal 
subgroup and a fuzzy subgroup of a group. In the 
year 1999 Sung-jin Cho et al. introduced the notion 

of T-fuzzy semiautomata, T-fuzzy kernel, and T-
fuzzy subsemiautomata over a finite group. In 2003, 
Yuan et. al defined fuzzy subgroup with thresholds 
which is a generalization of Rosenfeld’s fuzzy 
subgroup and Bhakat and Das’s fuzzy subgroup. This 
paper defines fuzzy kernel with thresholds, fuzzy 
subsemiautomaton with thresholds and discusses 
some results concerning them. 

2. Preliminaries 

In this section we summarize some preliminary 
definitions and results which are required for 
developing main results. 

Let ( ),G ∗ denote a group. We sometimes write G

for ( ),G ∗ when the operation ∗ is understood. 

2.1 Definition [7]  
Let X be a nonempty set. A fuzzy set A in X is 
characterized by its membership function 

[ ]: 0,1A X → and ( )A x is interpreted as the 

degree of membership of element x in fuzzy set A
for each x X∈ . 
 
2.2 Definition [4] 

 A fuzzy subset λ  of a group G  is a fuzzy subgroup 
of G if for all ,x y G∈  
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(i) ( ) ( ) ( )x y x yλ λ λ∗ ≥ ∧  

(ii) ( ) ( )1x xλ λ− ≥  

2.3 Definition [4] 

 A fuzzy subgroup λ  of G  is called a fuzzy normal 

subgroup of G  if ( ) ( )1x y x yλ λ−∗ ∗ ≥  for all

,x y G∈ . 

2.4 Definition [6]  

Let [ ], 0,1λ µ∈
 
and λ µ< .Let A  be a fuzzy 

subset of a group G . Then A  is called a fuzzy 
subgroup with thresholds of G  if for all ,x y G∈  

(i) ( ) ( ) ( )A x y A x A yλ µ∗ ∨ ≥ ∧ ∧  

(ii) ( ) ( )1A x A xλ µ− ∨ ≥ ∧  

2.5 Definition [2] 

 Let [ ], 0,1α β ∈  and α < β . Let µ  be a fuzzy 

subset of a group G . Then µ   is called a fuzzy 
normal subgroup with thresholds of G if 

( ) ( )1 , , .y x y x x y Gµ α µ β− ∗ ∗ ∨ > ∧ ∀ ∈
 
 

2.6 Definition [4] 

 A fuzzy semiautomaton over a finite group ( ),Q ∗ is 

a triple ( ), ,Q X µ where X is a finite set and µ is 

a fuzzy subset of Q X Q× × . 

2.7 Definition [4] 

 Let ( ), ,S Q X µ= be a fuzzy semiautomaton over 

a finite group G . A fuzzy subset λ of Q is called 

fuzzy kernel of S if the following conditions hold. 
For all , , , ,p q r k Q x X∈ ∈  

(i) λ  is a fuzzy normal subgroup of Q  

(ii) ( ) ( ) ( ) ( )1 , , , ,p r q k x p q x r kλ µ µ λ−∗ ≥ ∗ ∧ ∧

     

2.8 Definition [4] 

Let ( ), ,S Q X µ= be a fuzzy semiautomaton over 

a finite group G. A fuzzy subset λ of Q is called 

fuzzy subsemiautomaton of S if the following 
conditions hold: 

(i) λ is a fuzzy subgroup of Q  

(ii) 
( ) ( ) ( ), ,

, , .
p q x p q

for all p q Q x X
λ µ λ≥ ∧

∈ ∈
 

2.9 Definition [4] 

 Let andλ µ be fuzzy subsets of G . The product 

λ µ∗ of λ and µ is defined by

( )( ) ( ) ( ){ }/ ,x y z y z G suchthat x y zλ µ λ µ∗ = ∨ ∧ ∈ = ∗
 

3. Main Results 

3.1 Definition  

Let ( ), ,S Q X µ= be a fuzzy semiautomaton over 

a finite Group. A fuzzy subset λ of Q is called a 

fuzzy kernel of S with thresholds if 

(i) λ  is a fuzzy normal subgroup of Q with 
thresholds 

(ii)

( )( ) ( ) ( ) ( )1 , , , ,p r q k x p q x r kλ α µ µ λ β−∗ ∨ ≥ ∗ ∧ ∧ ∧

 for all , , ,p q r k Q∈  

3.2 Definition  

Let ( ), ,S Q X µ= be a fuzzy semiautomaton over 

a finite Group. A fuzzy subset λ of Q  is called a 
fuzzy subsemiautomaton of S with thresholds if the 
following conditions hold 
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(i) λ  is a fuzzy subgroup of Q with 
thresholds 

(ii) ( )( ) ( ) ( ), ,p q x p qλ α µ λ β∨ ≥ ∧ ∧  
for all ,p q Q and x X∈ ∈ .

 

3.3 Definition  

Let λ and µ be fuzzy subsets of G with thresholds

,α β . The product λ µ∗ is defined by  

( )( )( ) ( ) ( ) /
,

y z
x

y z G suchthat x y z
λ µ β

λ µ α
∧ ∧  ∗ ∨ = ∨  

∈ = ∗  
 

Note 

Let ( ), ,S Q X µ= be a fuzzy semiautomaton over 

a finite group in the remaining of the results. The 

element ' 'e be the identity of ( ), .Q ∗  

3.4 Proposition  

 Let [ ], 0,1α β ∈ and α β< . Let λ be a fuzzy 

kernel of ( ), ,S Q X µ= with thresholds ,α β . 

Then λ is a fuzzy subsemiautomaton of S with 
thresholds ,α β  if and only if 

( )( ) ( ) ( ), ,p e x p eλ α µ λ β∨ ≥ ∧ ∧  for all 

,p Q x X∈ ∈  

Proof: We have ( )( ) ( )1p p r rλ α λ α−∨ = ∗ ∗ ∨  

                                             

( ) ( )1p r rλ λ β−≥ ∗ ∧ ∧  (By definition 2.2) 

                                             

( ) ( )( )1p r rλ λ β α−≥ ∗ ∧ ∧ ∨
  

                                             

( )( ) ( )1p r rµ α λ β−= ∗ ∨ ∧ ∧
     

                                             

( ) ( ) ( )( ) ( ), , , , ,q x p e x r q rµ µ λ β λ β≥ ∧ ∧ ∧ ∧ ∧
 (By definition 3.1) 

                                            

( ) ( ) ( ) ( )( ), , , ,q x p e x r e qµ µ λ λ β≥ ∧ ∧ ∧ ∧                                                                      

      
      
      

 Since ( ) ( ) ( ), ,r e x r eλ µ λ≥ ∧ by given 

condition 

                                             

( ) ( ) ( ), , , ,q x p e x r qµ µ λ β≥ ∧ ∧ ∧   

Since  ( ) ( )e qλ λ≥   

                                             

( ) ( ), ,q x p qµ λ β≥ ∧ ∧
 

3.5 Proposition  

Let [ ], 0,1α β ∈ and α β< . Let λ be a fuzzy 

kernel of ( ), ,S Q X µ=  with thresholds ,α β  and 

ν be a fuzzy subsemiautomaton of S with thresholds
,α β . Thenλ ν∗  is a fuzzy subsemiautomaton of S 

with thresholds ,α β . 

Proof: Since λ  is a fuzzy normal sub group with 
thresholds andν  is a fuzzy sub group with thresholds 
of Q , it follows thatλ ν∗  is a fuzzy sub group of Q  

with thresholds ,α β  

                                

( )( )( ) ( )( )( )1p p r rλ ν α λ ν α−∗ ∨ = ∗ ∗ ∗ ∨  , 

By definition 3.3 

                                                           

( ) ( )( )1p r rλ ν β−≥ ∗ ∧ ∧  
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( ) ( )( )( )1p r rλ ν α β−≥ ∗ ∧ ∨ ∧  

                                                                                        
Using Lemma 2.1 in [2]                                                                                                                            

                                                          

( )( ) ( )( )1 ,p r rλ α ν α β−= ∗ ∨ ∧ ∨ ∧
 
since ∨

is distributive.
                

                                            

( ) ( ) ( )( )
( ) ( )( )

, , , ,

, ,

a b x p a x r b

a x r a

µ µ λ β

µ ν β β

≥ ∗ ∧ ∧ ∧ ∧

∧ ∧ ∧
 

                                                           

( ) ( ) ( ), ,a b x p b aµ λ ν β= ∗ ∧ ∧ ∧  

                            

( )( )( ) ( ) ( ) ( ), , /
, ,
a b x p b a

p
a b Q a b q

µ λ ν β
λ ν α

∗ ∧ ∧ ∧  ∗ ∨ ≥ ∨  
∀ ∈ ∗ =    

                                                               

( ) ( ) ( ) /
, ,

, ,
b a

q x p
a b q a b Q
λ ν β

µ
 ∧ ∧  = ∧ ∨   ∗ = ∀ ∈     

                                                               

( ) ( )( ), ,q x p qµ λ ν α= ∧ ∗ ∨
 

                                                               

( ) ( )( ), ,q x p qµ λ ν β> ∧ ∗ ∧
 

                                                                

( ) ( )( ), ,q x p qµ λ ν β≥ ∧ ∗ ∧  

3.6 Proposition  

 Let [ ], 0,1α β ∈ and α β<  .If λ  and ν   are 

fuzzy kernels of  S  with thresholds ,α β  then 

λ ν∗  is a fuzzy kernel of S  with thresholds ,α β . 

Proof: Since λ  and ν  are fuzzy normal subgroups 
of  Q  with thresholds then λ ν∗  is also fuzzy 

normal sub group of  Q   with thresholds  

( )( )( ) ( )( )1 1 1p r p q q rλ ν α λ ν α− − −∗ ∗ ∨ ≥ ∗ ∗ ∗ ∗ ∨
 

                        

( ) ( )1 1p q q rλ ν β− −≥ ∗ ∧ ∗ ∧
      (By normal 

subgroup definition) 

                                     

    

                                    

( )( ) ( )( )1 1p q q rλ α ν α β− −= ∗ ∨ ∧ ∗ ∨ ∧
 

Using Lemma 2.1 in[2] 

                                     

( ) ( ) ( )( )
( ) ( ) ( )( )

, , , ,

, , , ,

a b c x p a b x q c

a b x q a x r b

µ µ λ β

µ µ ν β β

≥ ∗ ∗ ∧ ∗ ∧ ∧ ∧

∗ ∧ ∧ ∧ ∧
 (By definition 3.1) 

                                     

( ) ( ) ( ), ,a b c x p c bµ λ ν β= ∗ ∗ ∧ ∧ ∧  

                                                                                             

( ) ( )( )Since , , , ,a b c x p a b x pµ µ∗ ∗ ≤ ∗ ∗
 

( )( )
( ) ( )
( ) ( )1

, , , ,

/
, ,

q b c x p q x r

p r c b
b c Q b c k

µ µ

λ ν α λ ν β−

∗ ∗ ∧ 
 

∗ ∗ ∨ ≥ ∨ ∧ ∧ ∧ 
 ∈ ∗ = 

( ) ( ) ( ) ( ) /
, , , ,

, ,
c b

q k x p q x r
b c k b c Q
λ ν β

µ µ
 ∧ ∧  = ∗ ∧ ∧ ∨   ∗ = ∈   
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( ) ( ) ( )( ), , , ,q k x p q x r kµ µ λ µ α= ∗ ∧ ∧ ∗ ∨
 

( ) ( ) ( )( ), , , ,q k x p q x r kµ µ λ µ β> ∗ ∧ ∧ ∗ ∧                                              
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