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Abstract 
 
In recent years, many algorithms based on kernel principal 
component analysis (KPCA) have been proposed including 
kernel principal component regression (KPCR).  KPCR can 
be viewed as a non-linearization of principal component 
regression (PCR) which uses the ordinary least squares 
(OLS) for estimating its regression coefficients. We use PCR 
to dispose the negative effects of multicollinearity in 
regression models. However, it is well known that the main 
disadvantage of OLS is its sensitiveness to the presence of 
outliers. Therefore, KPCR can be inappropriate to be used 
for data set containing outliers. In this paper, we propose a 
novel nonlinear robust technique using hybridization of 
KPCA and R-estimators. The proposed technique is 
compared to KPCR and gives better results than KPCR. 
Keywords: Kernel principal component analysis, kernel 
principal component regression, robustness, nonlinear 
robust regression, R-estimators.  

1. Introduction 

Kernel principal component analysis (KPCA) has been 
proposed to be used for nonlinear systems by mapping 
an original input space into a higher-dimensional 
feature space, see [3, 9, 17, 18] for the detailed 
discussion, and becomes an attractive algorithm 
because it does not involve nonlinear optimization, it is 
as simple as the principal component analysis (PCA) 
and it does not need to specify the number of principal 
components prior to modeling compared to other 
nonlinear methods. In recent years, many nonlinear 
algorithms based on KPCA have been proposed 
including kernel principal component regression 
(KPCR) which can be viewed as a non-linearization of  
principal component regression (PCR) and  dispose 
the effects of multicollinearity in regression models [6, 
8, 14, 15, 16, 22]. However, KPCR was constructed 
based on the ordinary least squares (OLS) for 
estimating its regression coefficients which was 
sensitive to the presence of outliers. An observation is 
called outlier if it does not follow the OLS based linear 

regression model. When we use OLS to estimate 
regression coefficients then outliers have a large 
influence to the prediction values since squaring 
residuals magnifies the effect of the outliers. Therefore, 
KPCR can be inappropriate to be used when outliers 
are present. 
 
In previous years, several techniques have been 
developed to overcome the negative effects of outliers 
such as R-estimators which was a robust method based 
on the ranks of the residuals [7, 11]. However, the 
previous works applied it for tackling the effect of 
outliers in the linear regression model. We should 
notice that the estimate of regression coefficients using 
R-estimators is obtained through solving a nonlinear 
optimization problem. To obtain the estimate of 
regression coefficients, we can use several techniques 
for solving this nonlinear optimization problems such 
as genetic algorithms (GAs), simulated annealing and 
particle swarm optimization [2, 4, 5, 12, 13, 21, 23]. 
However, applying R-estimators in the ordinary 
regression still yields linear models which have 
limitations in applications. 
 
In this paper, we propose a novel robust technique 
using hybridization of KPCA and R-estimators to 
overcome the limitation of KPCR and R-estimators in 
the linear regression. We use KPCA to dispose the 
effects of multicollinearity in regression and to 
construct nonlinearity of prediction model by 
transforming original data into a higher-dimensional 
feature space and perform a kernel trick to have a 
multiple linear regression in this space. Then, we 
perform R-estimators in this linear regression and solve 
the optimization problems of the R-estimators for 
obtaining a nonlinear robust regression. We refer the 
proposed method as the robust kernel principal 
component R regression (R-KPCRR). 
 
We organize the rest of manuscript as follows: Section 
2, we review theories and methods of R-estimators and 
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KPCA, followed by R-KPCRR and its algorithm. In 
Section 3, we compare the performance of the 
proposed method using several data sets. Finally, 
conclusions are given in Section 4. 

2. Theories and Methods  

2.1 R-Estimators  
 
The ordinary multiple linear regression model is given 
by 
 

)1.2(eXβy +=  
 

where 
( ) ( ) ,~ , 2121

pN
N

NT
Nyyy ×∈=∈= RxxxXRy 

( ) ( ) )1(
21

~, +×∈=∈= pN
N

pT
iNiii xxx RX1X Rx 

with N1  is 1×N  vector with all elements equal to one, 

( ) 1
10

+∈= pT
p Rβ βββ   is a vector of regression 

coefficients, ( ) NT
Neee Re ∈= 21  is vector of 

residuals and  R is the set of real numbers and i = 1, 2, 
…, N.  
 
When we use OLS to find the estimate of ,β say ,β̂  
then the estimate is found by minimizing 
 

)2.2(,
1

2∑
=

N

i
ie  

 
where βxT

ii i
ye −=  and ( )TT

ii
xx 1= . The solution 

can be found by solving the following linear equation 
 

)3.2(ˆ yXβXX TT =  
 

However, it is well known that the prediction of the 
OLS based regression will be distorted when outliers 
are present. To overcome the presence of outliers, we 
can use R-estimators which minimize 
 

( ) )4.2(
1
∑
=

N

i
iiN eRa  

 
where iR  is the rank of ie  and ( )iaN  is a score 

function which is monotone and satisfies ( ) .0
1
∑
=

=
N

i
N ia  

The common choice of ( )iaN  are 
 

( ) )5.2(2/)1( aNiia N +−=  

 
and 
 

( ) ( )( ) )5.2(1/1 bNiia N +Θ= −  
 

which are called the Wilcoxon and  Van der Waerden 
scores, respectively, with 1−Θ   is the inverse of 
cumulative normal distribution function. 
 
2.2 KPCA 
 
Assume that we have a function FR →p:ψ , where F is 
the feature space which it is an Euclidean space with 
dimension Fp ).( ppF ≥  Then, we define the matrices 

( ) FF PPTN ×∈= RC ΨΨ/1 and NNT ×∈= RK ΨΨ where =Ψ  
( ) ( ) ( )( ) FpNT

N
×∈Rxxx ψψψ ...21 and assume that 

( ) .
1

0x =∑
=

N

i
iψ  The relation of eigenvalues and 

eigenvectors of the matrices C and K were studied by 
Scholkopf et al. [18] .  
 
Let Fp̂  be the rank of Ψ  where ),min(ˆ

FF pNp ≤  which 
implies that both rank(K) and rank( ΨΨT ) are equal to 

.ˆ
Fp It is evident that the eigenvalues of K are 

nonnegative real numbers since the matrix K is 
symmetric and positive semidefinite [1]. 
Let 1ˆˆ1~~21 ... ++ >≥≥≥≥≥≥

FF pprr λλλλλλ   

0=== Nλ  be the eigenvalues of K and 
( )NbbbB ...21=  be the matrix of the 

corresponding normalized eigenvectors sb (s =1, 2, …, 

N) of K. Then, let lll λbα = and l
T

l αa Ψ=  for l = 
1,  2, …, Fp̂ .  The eigenvectors la , however, cannot be 
found explicitly since we do not know ΨΨT  explicitly. 
However, we can obtain the principal component of 
( )xψ  corresponding to nonzero eigenvalues of ΨΨT  

by using a kernel trick. The l-th principal component of 
( )xψ   (l = 1,  2, …,  Fp̂ ) as given as follows: 

 

( ) ( ) ( ) )6.2( ai
T

N

i
lil

T xxax ψψαψ ∑
=

=  

 
where  liα  is the i-th element of  lα . According to 
Mercer Theorem, if we choose a continuous, symmetric 
and positive semidefinite kernel RRR →× PP:κ  then 
there exists FR →P:ϕ  such that 

)()(),( j
T

iji xxxx ϕϕκ =  [10, 17]. Instead of choosing 
ψ  explicitly, we choose a kernel κ and employ the 
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corresponding function ϕ  as .ψ  Let ),( jiijK xxκ=  
then K  and lα ( l = 1,  2, …, Fp̂ ) are explicitly known 
now. Therefore, Eq. (2.6a) is also explicitly known and 
can be written as 
 

( ) )6.2(),( bi

N

i
lil

T xxax καψ ∑
=

=  

2.3   Nonlinear Robust Regression Using KPCA and 
R-Estimators 
 
The centered multiple linear regression in the feature 
space is given by 
 

)7.2(~
0 ey += γΨ  

 
where ( )T

FP21 γ...γγ=γ is a vector of regression 

coefficients in the feature space, e~  is a vector of 
random errors and ( )( )y11Iy T

NNN N/10 −=  where NI is 
the NN× identity matrix.   
 
Since the rank of ΨΨT  is equal to Fp̂ , then the 
remaining )ˆ( FF pp − eigenvalues of ΨΨT are zero. Let 

kλ  ),...,2ˆ,1ˆ( FFF pppk ++= be the zero eigenvalues of 
ΨΨT and ka be the normalized eigenvectors of 
ΨΨT corresponding to .kλ Furthermore, we define 
( )....21 FpaaaA =  It is evident that A is an 

orthogonal matrix, that is, AT = A-1. It is not difficult to 
verify that 
 

DAA =ΨΨTT  
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and O is a zero matrix. By using ,

Fp
T IAA =  we can 

rewrite the model (2.7) as 
 

)8.2(~
0 eUy += ϑ  

 
where AU Ψ=  and .γϑ TA=  Let 
 

( ) ( )( )
FFF ppp ˆˆ −= UUU  and ( )TT

pp
T
p FFF )ˆ()ˆ( −= ϑϑϑ , 

 
where sizes of )ˆ( FpU , )ˆ( FF pp −U , )ˆ( Fpϑ  and )ˆ( FF pp −ϑ are FpN ˆ×  

, )ˆ( FF ppN −× , 1ˆ ×Fp and 1)ˆ( ×− FF pp , respectively. 
The model (3.3) can be written as 
 

( ) ( ) ( ) ( ) )9.2(.~
ˆˆˆˆ0 eUUy ++= −− FFFFFF pppppp ϑϑ  

It is easy to verify that 0)( )ˆ()ˆ()ˆ()ˆ( =−−−− FFFFFFFF pppp
T

pppp ϑϑ UU  

which implies )ˆ()ˆ( FFFF pppp −− ϑU  is equal to 0. 
Consequently, the model (2.9) reduces to 

 
( ) ( ) )10.2(.~

ˆˆ0 eUy +=
FF pp ϑ  

 
where 

( ) ( ) ( )FFFp pp ˆˆˆ
ΓΨ KAU ==  and ( ) ).,,,( 21ˆ FF pp ααα =Γ  

It is evident that the elements of ( )Fp̂U  are the principal 

components  of  ( )ixψ  for i = 1, 2, …, N. Then, if we 
only use the first r̂  ( )Fp̂≤  vectors of ,, 21 αα  

,, ˆ Fpα model (2.10) becomes 
 

( ) ( ) )11.2(,ˆˆ0 εUy += rr ϑ  
 

where T
N ),,,( 21 εεε= ε  is a vector of residuals 

influenced by dropping the term ( ) ( )FFFF pppp ˆˆ −− ϑU  in model 
(2.11), respectively. We usually dispose of the term 

( ) ( )FFFF pppp ˆˆ −− ϑU  for tackling the effects of multicollinearity 

on the PCA based regressions where the number r̂  is 
called the retained number of nonlinear principal 
components (PCs) for the KPCR.  We can use the ratio 

1λλl  ( l = 1,  2, …, Fp̂ )  for detecting the presence of 
multicollinearity on ( ).r̂U  If 1λλl is smaller than, say < 
1/1000, then we consider that multicollinearity exists 
on ( )r̂U  [11].  
 
Let us consider model (2.11) again. We can see that 
model (2.11) has the same structure with model (2.1) 
which implies that we can directly apply R-estimators 
in model (2.11). For this purpose, we define  

( ) 21ˆ ( uuU =r
rNT

N
ˆ) ×∈Ru  and obtain  

=ε i ( )r
T
ioiy ˆϑu− . Then, we minimize   

 

( ) )15.2(,~
1
∑
=

N

i
iiN Ra ε  

 
To find the estimators of ( )r̂ϑ , where  iR~  is the rank of 

iε , by using a nonlinear optimization solver .  

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 77



 

 

 
Let ( )

*ˆ
rϑ be the estimator of ( )r̂ϑ  using the above R-

estimators. Then, the prediction value of y  with the 
first r̂  vectors of 

Fp̂21 ,,, ααα   using R-estimators, say 

,~y  is given by 
 

( ) ( ) )16.2(ˆ~ *
ˆˆ rrNy ϑΓK1y +=  

 
and the residual between y  and y~   is given by 
 

)17.2(.~~ yy −=ε  
 
The prediction of the R-KPCRR with the first r̂  
vectors of 

Fp̂21 ,,, ααα  is given by 

 

( ) ( ) ( ) )18.2(,
1

ˆ ∑
=

+=
N

i
iir dyg xxx κ  

 
where ( ) ( ) ( )

*
ˆˆ21

ˆ
rr

T
Nddd ϑΓ=  and ( )rg ˆ  is a 

function from NR into .R  
 
We summarize the above procedures of the R-KPCRR 
as follows: 
 
1 . Given ( )iNiii xxxy 21  for   i =1, 2, . . . , N. 
2.  Calculate ( ) y1T

NNy 1=  and ( )( ) ./10 y11Iy T
NNN N−=  

3. Choose a kernel RRR →× PP:κ  and a function 
.: RR →Na  

4.  Construct ),( jiijK xxκ=  and ( ).ijK=K  
5.  Diagonalize .K  

 Let rank(K) 
= Fp̂ and >≥≥≥≥≥≥ + Fprr ˆ1~~21 ... λλλλλ   

0...1ˆ ===+ NFp λλ  be the eigenvalues of K and 

Nbbb ...21  be the corresponding normalized 
eigenvectors sb (s =1, 2, …,N) of K. 

6. Choose r̂ ( )Fp̂≤  and construct  lll λbα =  for l = 
1,  2, …, r̂ .  Then, define ( ) ).,,,( ˆ21ˆ rr ααα =Γ  

7. Calculate  ( ) ( )rr ˆˆ ΓKU =  and let =ε i ( ).r̂
T
ioiy ϑu−   

8. Let iR~  be the rank of .iε  
9. Solve problem (2.15) using a nonlinear optimization 

solver  and let ( )
*ˆ
rϑ  be solution of (2.15). 

10. Calculate ( ) ( ) ( ).ˆ *
ˆˆ21 rr

T
Nddd ϑΓ=  

11. Given a vector ,pRx∈  the prediction of the R-
KPCRR with the first r̂  vectors of 

Fp̂21 ,,, ααα  is given by 

( ) ( ) ( ).,
1

ˆ ∑
=

+=
N

i
iir dyg xxx κ  

 
We should note that this algorithm works under the 

assumption ( ) .
1

0x =∑
=

N

i
iψ  When ( ) 0x ≠∑

=

N

i
i

1

ψ , we 

replace K by KN = K−EK−KE+EKE in Step 4, where 
E is the N × N matrix with all elements equal to 1/N.  

 
 
 

Table 1: Growth of the  Son of the Count de 
Montheillard. 

Age (yr, 
mth [day]) 

Height 
(cm) 

Age (yr, 
mth [day]) 

Height 
(cm) 

0 51.4 9,0 137.0 
0,6 65.0 9,7[12] 140.1 
1,0 73.1 10,0 141.6 
1,6 81.2 11,6 141.9 
2,0 90.0 12,0 149.9 
2,6 92.8 12,8 154.1 
3,0 98.8 13,0 155.3 
3,6 100.4 13,6 158.6 
4,0 105.2 14,0 162.9 
4,7 109.5 14,6[10] 169.2 
5,0 111.7 15,0[2] 175.0 
5,7 111.7 15,6[8] 177.5 
6,0 117.8 16,3[8] 181.4 

6,6[19] 122.9 16,6[6] 183.3 
7,0 124.3 17,0[2] 184.6 
7,3 127.0 17,1[9] 185.4 
7,6 128.9 17,5[5] 186.5 
8,0 130.8 17,7[4] 186.8 
8,6 134.3   

 
3.  Case Studies 
 
3.1 Data Sets 
 
We generated data sets from a trigonometric function 
and sinc function to test the performances of KPCR 
and R-KPCRR. The generated data from the 
trigonometric function and sinc function are given as 
follows: 
 

)1.3(),cos(5.2)2sin(5.4)( xxxf +=  
 

with [ ]ππ 2:15.0:2−∈ix  and  [ ]ππ 2:2.0:2−∈tjx ; 
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0 xif
5

)sin(5
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
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xx
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with [ ]8:25.0:8−∈ix  and [ ],6:3.0:6−∈tjx respectively. 
The notation [ ]zlz ::−  stands for [ ]zlzlzz ,,2,, ++−  
where l is a real number. 
 
Generally, the generated data from the those functions 
can be written as ( ) iii exfy +=  i where i = 1, 2,· · ·, N. 
We also generate ( ) tjtjtj exfy +=  where j = 1, 2, · · ·,Nt; 
where Nt  is a positif integer. The random noises ie  and 

tje  are real numbers generated by a normally 
distributed random with zero mean and standard 
deviation 1σ  and ,2σ respectively, with [ ].1,0, 21 ∈σσ  
For shake of comparisons, we set 1σ  and 2σ  equal to 
0.2 and 0.3, and call the set of  { }),( ii yx   and { }),( tjtj yx  
the training data set and the testing data set, 
respectively. In addition, we also used a subset of the 
famous set of observation taken on the height of the 
son of the Count de Montbeillard between 1959 and 
1977 [19]. Only the first ten years of data were used in 
this analysis. The growth of son data are given in the 
Table 1. In these data, we artificially generate the 
testing data by the relation jx(1)1.0 +×= randxjt  and 

jy(1)25.0 +×= randy jt  where rand(1) generates a 
random number which is uniformly distributed in the 
interval (0,1). 
 
Then, we compare the performance of the above 
methods using the three data sets with and without 
outliers. For this purpose, we generated 200 sets of the 
training data and 200 sets of the testing data. 
Furthermore, we use the mean absolute error (MAE) to 
estimate the prediction error for the training data set 
which is given by 
 

( ) )3.3(.~1MAE
1
∑
=

−=
N

i
ii yyN  

 
The MAE is also used to prediction error of the testing 
data sets and denoted by MAEt.  
 
In this case studies, outliers are created artificially by 
moving some s),( ii yx  and s),( tjtj yx away from 
designated locations. We generate eight potential 
outliers for each of the first, second and third data sets 
where the positions of outliers in x -direction and tx -
direction are chosen randomly in the domain of ix and 
domain of ,tjx   respectively. The positions of outliers 

in y -direction and ty -direction are randomly selected 
in interval [−20, 20] from the correct positions of iy  

and ,tjy  respectively. 
 
3.2  Results 
 
In these case studies, we used the Wilcoxon and Van 
der Waerden scores for R-estimators and the standard 
genetic algorithm (GA) for solving the optimization 
problem of R-estimators. Then, we used the Gaussian 
kernel ( )ρκ zxzx −−= exp),(  with parameter ρ  is 
equal to five for both KPCR and R-KPCRR. We 
involved the estimate of  

( )r̂
ϑ  by using KPCR, say 

( )
,ˆ

r̂
ϑ  in the initial population of GA. In the intial 
population, the i-th gene of the other chromosomes (or 
candidate solutions of 

( )
)

r̂
ϑ  is  randomly chosen by the 

formulae 
 

( )( ) )4.3(15)1(30ˆ −×+ rand
irϑ  

 
where ( )( )

irϑ̂  is the i-th element of ( )rϑ̂  and i = 1, 2, …, 
.̂r  For the sake of comparisons, the numbers of 

population, maximum iterations, mutation rate and 
selection rate are 50, 1000, 0.2 and 0.5, respectively. 
For each chromosome in any population we sort iε in 
the descending order, say [ ]iε  and  [ ] [ ] [ ] ,21 Nε≥≥ε≥ε   
to determine its rank. Then, we define 

 [ ]Nkkc ××ε= 2.0  
where k=1, 2, 3, 4 and rank iε  is given by 
 

)5.3(

.if 
if 
if 
if 
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34
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i
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≤


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
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
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As the results, the three plots of the predictions of 
KPCR and R-KPCRR corresponding to the three data 
sets are presented in Figure 1, Figure 2 and Figure 3, 
respectively. We can see that the predictions of R-
KPCRR are less distorted by the presence of outliers 
compared to KPCR. Table 2 illustrates the prediction 
errors of KPCR and R-KPCRR. In the case of data with 
outliers, R-KPCRR with Wilcoxon and Van der 
Waeden scores give lower MAEs and MAEts 
compared to KPCR. The MAEs’ R-KPCRR with 
Wilcoxon scores for the trigometric, sinc and growth of 
son are 1.4527, 1.4250 and 4.8730 whereas the 
corresponding MAEts are 1.1363, 1.6742 and 6.5350, 
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respectively. The MAEs’ R-KPCRR with Van der 
Waeden score for the trigometric, sinc and growth of 
son are 1.4774, 1.4609 and 4.9876 whereas the 
corresponding MAEts are 1.1257, 1.7709 and 6.5776, 
respectively. Table 2 summarizes MAEs and MAEts of 
the three data sets without outliers. In this case, we can 
see that both KPCR and R-KPCRR perform well. 
 
 
Table 2: MAE and MAEt for KPCR and R-KPCRR 
with outliers (Wilc=Wilcoxon, VDW=Van der 
Waerden). 
Data Method MAE MAEt 

 
Trigono- 
Metric 

)10ˆ( =r  

KPCR 1.8804 1.6970 
R-KPCRR Wilc 1.4527 1.1363 
R-KPCRR 
VDW 

1.4774 1.1257 

Sinc 
)13ˆ( =r  

KPCR 2.3831 3.3284 
R-KPCRR Wilc 1.4250 1.6742 
R-KPCRR 
VDW 

1.4609 1.7709 

Growth of 
Son 

)14ˆ( =r  

KPCR 5.0125 7.0113 
R-KPCRR Wilc 4.8730 6.5350 
R-KPCRR 
VDW 

4.9876 6.5776 

 
 
Table 3: MAE and MAEt for KPCR and R-KPCRR 
without outliers (Wilc=Wilcoxon, VDW=Van der 
Waerden). 
Data Method MAE MAEt 

 
Trigono- 
Metric 

)10ˆ( =r  

KPCR 0.0822 0.0823 
R-KPCRR Wilc 0.0821 0.0829 
R-KPCRR VDW 0.0814 0.0823 

Sinc 
)13ˆ( =r  

KPCR 0.0725 0.0610 
R-KPCRR Wilc 0.0733 0.0613 
R-KPCRR VDW 0.0729 0.0614 

Growth of 
Son 

)14ˆ( =r  

KPCR 0.9663 0.9840 
R-KPCRR Wilc 0.9172 0.9305 
R-KPCRR VDW 0.9229 0.9379 

4. Conclusions 

We have proposed a novel robust regression using the 
hybridization of KPCA and R-estimators. Our method 
yields a nonlinear robust prediction and can dispose the 
effects of multicollinearity in regression model. The 
proposed method was performed by transforming 
original data into a higher dimensional feature space 
and creating a multiple linear regression in the feature 
space. After that, we performed a kernel trick to have 

an explicit multiple linear regression and used R-
estimators on this linear model to have a robust 
regression. Then, we solved the optimization problem 
of R-estimators using GA for obtaining the estimate of 
regression coefficients. In this paper, we used 
Wilcoxon and Van der Waerden scores on R-estimators.  
 
We summarized several important points relating to 
our cases studies. First, the predictions of R-KPCRR 
are less distorted and give smaller MAEs and MAEts 
compared to KPCR when outliers are present in thedata. 
Second, without outliers, both R-KPCRR and KPCR 
perform equally well. 
 
 
 

 
Figure 1: KPCR (Black) and R-KPCRR (red) using 
Wilcoxon scores with ρ  and r̂  equal to 5 and 10, 
respectively. The black circles are trigonometric data 
with random noises: (a) training data, (b) testing data. 
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Figure 2: KPCR (Black) and R-KPCRR (red) using 
Van der Waerden scores with ρ  and r̂  equal to 5 and 
13, respectively. The black circles are sinc data with 
random noises: (a) training data, (b) testing data. 
 
 

 
Figure 3: KPCR (Black) and R-KPCRR (red) using 
Wilcoxon scores with ρ  and r̂  equal to 5 and 13, 
respectively. The black circles are the growth of son 
data with random noises: (a) training data, (b) testing 
data. 
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