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Abstract 

Image restoration from corrupted image is a classical problem in 
the field of image processing. Additive random noise can easily 
be removed using simple threshold methods with linear and non-
linear filtering techniques. De-noising of natural images 
corrupted by Gaussian noise using wavelet techniques is very 
effective because of its ability to capture the energy of a signal 
in few energy transform values. The wavelet de-noising scheme 
thresholds the wavelet coefficients arising from the standard 
discrete wavelet transform. In this paper, it is proposed to 
investigate the suitability of different wavelet bases and the 
decomposition levels on the performance of image de-noising 
algorithms in terms of peak signal -to- noise ratio. 
Keywords: Image, De-noising, Wavelet Transform 
 
1. Introduction 
 
Image restoration is the removal or reduction of 
degradations that are incurred while the image is being 
obtained. Degradation comes from blurring as well as 
noise due to electronic and photometric sources. In 
addition to blurring the image is often corrupted by noise 
during its acquisition and transmission. For example, in 
the image acquisition, the performance of imaging sensors 
is affected by a variety of factors, such as, environmental 
conditions and by the quality of the sensing elements 
themselves. For instance, in acquiring images with a CCD 
camera, light levels and sensor temperature are major 
factors affecting the amount of noise in the resulting 
image. Images are also corrupted during transmission, due 
to interference in the channel used for transmission. The 
main objective of de-noising techniques for random noise 
removal is to suppress the noise while preserving the 
original image details. Statistical filters like Average filter 
[5], [6], Median filter [7] can be used for removing such 
noises but the wavelet based de-noising techniques 
proved better results than these filters. In general, image  
de-noising imposes a compromise between noise 
reduction and preserving significant image details. To 
achieve a good performance in this respect, a de-noising 

algorithm has to adapt to image discontinuities. It 
compresses essential information in a signal into 
relatively few, large coefficients, which represent image 
details at different resolution scales. In recent years there 
has been a fair amount of research on wavelet 
thresholding and threshold selection for signal and image 
de-noising [2] because wavelet provides an appropriate 
basis for separating noisy signal from image signal. Many 
wavelet based thresholding techniques like VisuShrink, 
SureShrink have proved better efficiency in image 
denoising. We describe here an efficient thresholding 
technique for denoising by analyzing the statistical 
parameters of the wavelet coefficients. The threshold is 
estimated and the coefficients are killed or remain 
unchanged or shrinked, depending on the type of 
thresholding (i.e. hard or soft). The first method estimates 
the threshold level by a median estimator, which 
implements the noise standard deviation from the 
coefficients of the diagonal subband of the first level (i.e. 
HH) and is called global. The second method refers to a 
median estimator, which is applied on all the detail 
coefficients of each level, so is level dependent. 
Eventually, the third approach employs a median 
estimator which is applied on the horizontal-vertical-
diagonal detail coefficients of each subband, so is detail 
dependent. This paper is organized as follows. Section 2 
is a brief review of the discrete wavelet transform. In 
section 3, the concept of wavelet thresholding is 
developed. Section 4 explains the proposed method of de-
noising based on wavelet decomposition. Experimental 
evaluation is performed in section 5 and finally 
conclusions are given in section 6.  
 
 
2. Discrete Wavelet Transform      
   (DWT) 
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The mathematical approach to the discrete wavelet 
transform (DWT) is based on the fact that a function f (t) 
can be linearly represented as: 
  f(t) = )(ta k

k
kψ∑                                                       (1)                                                                                                                       

where a
k 

are the analysis coefficients and ψ
k 

the analyzing 

functions, which are called basis functions, if the above 
analysis is unique. If the basis functions are orthogonal, 
that is,  
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the coefficients can be estimated from the following 
equation: 
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where f(t) is given from (1).  In general, a 2-D signal may 
be transformed by DWT as: 
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where α
j,k 

and ψ
j,k 

are the transform coefficients and basis 

functions respectively. Equation (4) is the inverse 
transform, given by α

j,k 
and ψ

j,k
. Therefore, a function f(t) 

may be represented by transform coefficients, which are 
estimated from the internal product of that function with 
an orthogonal basis function. Inversely, the desired 
function may be reconstructed from these coefficients and 
the basis function. These basis functions are called 
wavelets [1], [3]. 
Another consideration of the wavelets is the subband 
coding theory or multiresolution analysis [4]. The first 
component to multiresolution analysis is vector spaces. 
For each vector space, there is another vector space of 
higher resolution until you get to the final image. The 
basis of each of these vector spaces is the scale function 
for the wavelet. We can consider an image a vector space 
such as Vj would be perfectly normal image and V j-1 
would be that image at a lower resolution until we get Vo 
where there is only one pixel in the entire image. For such 
vector space Vj there is an orthogonal compliment called 
Wj and the basis function for this vector space is the 
wavelet. If the function Vox ∈)(φ   such that the set of 
functions of )(xφ and its integer translates 
{ zkkx ∈− /)(φ } forms a basis for space Vo which is 
termed as scaling function or father function. The 
subspace Vj are nested which implies Vj ϵ Vj+1. It is 
possible to decompose Vj+1 in Vj and Wj. 

1+=⊕ jjj VWV                                                           (5)                          
Also, Wj ∈Vj                                                          (6)      
Ψ (x) ∈  Wo obeys translation property such that Ψ(x-k) 
∈  Wo, k ∈  z [11] . form a basis function for space Wo 
which is termed as wavelet function or mother function. 
DWT scaling function for 2-D DWT can be obtained by 

multiplying two 1-D scaling functions: 
)()(),( yxyx φφφ = . Wavelet function for 2-D DWT 

can be obtained by multiplying two wavelet functions. 
For 2-D case there exists three wavelet functions that scan 
details in horizontal Ψ (x, y) = Ψ (x) )(yφ  , vertical Ψ (x, 
y) = )(xφ Ψ (y) and diagonal direction Ψ (x, y) = Ψ (x) Ψ 
(y). As a result, there are three types of detailed images 
for such resolution: horizontal, vertical and diagonal. 

                                                        

 

 

            Fig 1: Two- level decomposition 

3. Wavelet Thresholding 
 
Let f= {fij, i, j=1, 2 ...M} denotes a M x M matrix of 
original image to be recovered and M is some integer 
power of 2. During the transmission, the signal f is 
corrupted by independent and identically distributed zero 
mean, white Gaussian noise nij with standard deviation σ 
i.e. nij ~ N (0, σ2) and at the receiver end, the noisy 
observation gij=fij+nij is obtained. The goal is to estimate 
the signal f from the noisy observations gij such that the 
Mean Square Error (MSE) is minimum. To achieve this 
gij is transformed into wavelet domain, which 
decomposes the gij into many subbands, which separates 
the signal into so many frequency bands. The small 
coefficients in the subbands are dominated by noise, 
while coefficients with large absolute value carry more 
signal information than noise. Replacing noisy 
coefficients (small coefficients below certain value) by 
zero and an inverse wavelet transform may lead to 
reconstruction that has lesser noise. Normally Hard 
Thresholding and Soft Thresholding techniques are used 
for such denoising process. Hard and Soft thresholding 
[14] with threshold λ are defined as follows. The hard 
thresholding operator is defined as: 
( ) λλ <= UallforUUD ,                                  (7) 

                 = 0 otherwise 
The soft thresholding operator on the other hand is 
defined as: 
D (U, λ)=sign(U)*max(0,|U|-λ)                                      (8)    
 
4.  De-noising Algorithm 
 

1. Transform the noisy image into orthogonal domain by 
discrete 2D wavelet transform.  
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2. Apply hard or soft thresholding the noisy detail 
coefficients of the wavelet transform.  

3. Perform inverse discrete wavelet transform to obtain 
the de-noised image. 
  
Here, the threshold plays an important role in the de-
noising process. Normally, hard thresholding and soft 
thresholding techniques are used for such de-noising 
process. Hard thresholding is a keep or kill rule whereas 
soft thresholding shrinks the coefficients [13] above the 
threshold in absolute value. It is a shrink or kill rule. The 
following are the methods of threshold selection for 
image de-noising based on wavelet transform: 
 
4.1 Visushrink 
  
 It is the de-noising technique introduced by Donoho [12], 
[8] , it uses the threshold value t that is proportional to 
standard deviation of noise follows “Hard Thresholding 
Rule”. The universal rule for threshold T can be 
calculated using the formulae, 
T=σ√2logn                                                                      (9)                                                                                              
This method performs well under a number of 
applications because wavelet transform has the 
compaction property of having only a small number of 
large coefficients. All the rest wavelet coefficients are 
very small. This algorithm offers the advantages of 
smoothness and adaptation. However, it exhibits visual 
artifacts. 
 
4.2 Sureshrink 
  
 A threshold chooser based on Stein’s Unbiased Risk 
Estimator (SURE) was proposed by Donoho and 
Johnstone and is called as SureShrink. It is a combination 
of the universal threshold and the SURE threshold. This 
method specifies a threshold value tj for each resolution 
level j in the wavelet transform which is referred to as 
level dependent thresholding. The goal of SureShrink is to 
minimize the mean squared error, defined as  

MSE=1/MN 2

1 1
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M

y

N

x
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−                  (10)                                                                                                                              

where I ' (x,y) is the estimate of the signal while I(x,y) is 
the original signal without noise. The SureShrink 
suppresses noise by thresholding the empirical wavelet 
coefficients. The SureShrink threshold t* is defined as: 
 t*=min(t,σ2logn)                                                          (11)                                                                        
where t denotes the value that minimizes Stein’s Unbiased 
Risk Estimator, σ is the noise variance computed from 
Equation (11), and n is the size of the image. The 
Sureshrink method follows the soft thresholding rule. The 
thresholding employed here is adaptive, i.e., a threshold 
level is assigned to each dyadic resolution level by the 

principle of minimizing the Stein’s Unbiased Risk 
Estimator for threshold estimates. It is smoothness 
adaptive, which means that if the unknown function 
contains abrupt changes or boundaries in the image, the 
reconstructed image also does. 
 
4.3 Bayesshrink 
 
 BayesShrink was proposed by Chang, Yu and Vetterli 
[10]. The goal of this method is to minimize the Bayesian 
risk, and hence its name, BayesShrink. It uses soft 
thresholding and is subband-dependent, which means that 
thresholding is done at each band of resolution in the 
wavelet decomposition. Like the SureShrink procedure, it 
is smoothness adaptive. The Bayes threshold, tB, is 
defined:  
tB=σ 2 /σs                                                                       (12)                                                                      
where σ 2  is the noise variance and σ is the signal 
variance without noise. The noise variance 2σ is 
estimated from the subband HH1 by the median 
estimator. From the definition of additive noise we have 
 w(x,y)=s(x,y)+n(x,y).                                                  (13)                                                                             
Since the noise and the signal are independent of each 
other, it can be stated that 

222 σσσ += sw                                                 (14)                                                                               

σ 2
W  can be computed as shown below:   

∑
−

=
n

yx
w yxwn

1,

222 ),(/1σ                                     (15) 

 The variance of the signal 2
Sσ  is computed as: 

  )0,max( 22 σσσ −= ws                                       (16)  

 
5. EXPERIMENTAL RESULTS  
 
 The above said methods are evaluated using the quality 
measure Peak Signal to Noise ratio which is calculated 
using the formulae, 
 PSNR=10*log 10 (255) 2 /MSE(db)                              (17)                                                        

where MSE is the mean squared error between the 
original image and the reconstructed de-noised image.  
Quantitatively assessing the performance in practical 
application is complicated issue because the ideal image 
is normally unknown at the receiver end. So this paper 
uses the following method for experiments. One original 
image is applied with Gaussian noise with variance value 
0.001. In this paper, different wavelet bases are used in all 
methods. For taking the wavelet transform of the image, 
readily available MATLAB routines are taken. In each 
sub-band, individual pixels of the image are shrinked 
based on the threshold selection. A de-noised wavelet 
transform is created by shrinking pixels. The inverse 
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wavelet transform is the de-noised image. In this paper 
three images of different sizes are denoised by applying 
the techniques discussed above. The simulation results are 
shown below of three images: “imde1.jpg”,”imde2.jpg”, 
“imde3.jpg” with its original image, noise corrupted 
image with Gaussian noise at variance 0.001 and its 
denoised image. 
 

 
 

Fig.2:“imde1.jpg”with its original, noisy and denoised pattern 

 
 

Fig.3:“imde2.jpg”with its original, noisy and denoised pattern 

 

Fig.4:“imde2.jpg”with its original, noisy and denoised pattern 

Table 1: signal-to-noise ratios of the thresholding techniques compared 
to weiner filter 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Throughout the text, we tried to present numerous 
original interpretations, pictorial explanations and 
discussions broadening our viewpoints on this topic. The 
use of the localized context-dependent hard and soft 
thresholding operators have resulted in some 
improvement in the performance of the various standard 
wavelet thresholding methods studied in this paper. 
For the above mentioned three methods, image de-noising 
is performed using wavelets for the second level 
decomposition and the results are shown in figure1, 
figure2 and figure3 along with the table formulated for 
noise variance 0.001. Along with the comparison to the 
Weiner Filter “Sureshrink” gave the best possible results. 

6. CONCLUSION 

In this paper, the image de-noising using discrete wavelet 
transform is analyzed. The experiments were conducted to 
study the suitability of different wavelet bases and also 
different window sizes. Among all discrete wavelet bases, 
coiflet performs well in image de-noising. For Gaussian 
noise (0, 0.09) – PSNR improves by the use of Hard 
Thresholding technique. Experimental results also show 
that Sureshrink gives better result than Visushrink and 
Bayesshrink as compared to Weiner filter. 

Wavelet Image Figure1 Figure2 Figure3 

 Median 31.6 35.2 33.5 

haar Visushrink 29.2 32.8 30.8 

Sureshrink 31.8 35.0 32.8 

Bayeshrink 30.0 33.3 31.4 

Db16 Visushrink 30.4 33.4 31.4 

Sureshrink 32.8 36.4 33.7 

Bayeshrink 29.0 33.3 30.4 

Coif5 Visushrink 30.5 33.8 31.5 

Sureshrink 33.0 36.2 34.0 

Bayeshrink 29.9 33.4 30.4 

Sym8 Visushrink 30.5 33.5 31.6 

Sureshrink 32.9 36.0 33.8 

Bayeshrink 30.0 34.0 32.2 
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