
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 551

Fast FPGA Implementation of EBCOT block in JPEG2000
Standard

Anass Mansouri, Ali Ahaitouf, and Farid Abdi

UFR SSC, LSSC, Electrical Engineering Department Faculty of sciences & technology BP: 2202 FES MOROCCO
Phone: +212 35 61 13 26, Fax: +212 35 60 82 14, web site: http://www.fst-usmba.ac.ma

Abstract
Embedded block coding with optimized truncation (EBCOT) is
an important feature of the latest digital still-image compression
standard, JPEG2000; however, it consumes more than 50% of
the computation time in the compression process. In this paper,
we propose a new high speed VLSI implementation of the
EBCOT algorithm. The main concept of the proposed
architecture is based on parallel access to memories, and uses an
efficient design of the context generator block. The proposed
architecture is described in VHDL language, verified by
simulation and successfully implemented in a Cyclone II and
Stratix III FPGA. It provides a major reduction in memory access
requirements, as well as a net increase of the processing speed as
shown by the simulations.
Keywords: JPEG20, EBCOT algorithm, VLSI architecture,
FPGA implementation.

1. Introduction

JPEG2000 is the latest still image compression standard,
developed by ISO/IEC JTC1/SC29/WG1 (commonly
referred to as the Joint Photographic Experts Group JPEG)
[1]. JPEG 2000 is not only a competitive compression
performance, but also provides many new features for
different types of still images [2]. It offers quality
scalability, resolution scalability, region of interest (ROI)
coding, and supports both lossless and lossy coding in the
same framework.
All these features are possible by adoption of the Discrete
Wavelet Transform (DWT) and Embedded Block Coding
with Optimal Truncation (EBCOT) originally proposed by
Taubman [3]. Unfortunately, both algorithms are
computation and memory intensive.
The EBCOT is one of the main resources intensive
components of JPEG 2000, it accounts for nearly 50% of
the total computation time of encoding process [4,6], and
then it represents the most critical part in the design and
implementation of the JPEG2000 standard. Besides the
intensive computation, EBCOT needs massive memory
locations. In conventional architectures, the block coder
requires at least 20K-bit memory [10]. In order to

decrease the EBCOT algorithm time execution two main
speedup methods have been suggested. Sample skipping
(SS) and Group Of Column Skipping (GOCS) [4]. In the
first, one skips no operating samples and in the second all
non operating columns are skipped, i.e. all the four bits of
the column are skipped. This last technique allows to save
a clock cycle naturally wasted in the SS method when a
complete column is empty.
Many implementations of hardware architectures have
been proposed and designed for EBCOT algorithm to
improve the encoding speed, such as Andra’s state-
machine based bit plane encoder [9], which presents
VLSI architecture for embedded bit-plane encoding in
JPEG 2000 that reduces the number of memory accesses.
This architecture has been implemented in VHDL and the
estimated frequency of operation was 200 MHz. Chaing
and al. [10] have proposed a Pass-Parallel Context
Modeling (PPCM) to implement the EBCOT algorithm,
this implementation can work at 180 MHz. They claimed
that when compared with the previous context-modeling
architectures, there solution improve the throughput rate
up to 25%.
In this paper we present an efficient VLSI architecture for
EBCOT. It’s based on an optimized data organization and
a new memory arrangement as well as a simple state
machine and combinatorial logics of encoding part. Our
proposed architecture makes the four bits to be processed
and their neighbors available at one clock cycle and
consequently a complete column is processed in only four
clock cycles during each pass. This proposed architecture
is implemented on FPGA without using any external
memory.
The following part of the paper is organized as follows.
Section II reviews the EBCOT algorithm; Section III
describes the analysis of bit plane coding algorithm. The
proposed EBCOT architecture is presented in section IV;
the hardware implementation performances and results
discussion are described in section V, and section VI
concludes the work.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 552

2. EBCOT Algorithm

As illustrated in Fig. 1, the encoding process in JPEG2000
standard follows the typical still image encoding
operations. The DWT block transfers the image
information from spatial domain to frequency domain and
removes the spatial correlation. The redundant information
can be rejected by quantization process which is the
mainly lossy block in JPEG2000 standard. After the
quantization step, many coefficients become zero then the
entropy coder can encode the quantized coefficients more
efficiently and generates the compressed bit stream. The
entropy coding and generation of compressed bit stream in
JPEG2000 are two tiers coders, tier-1 is a context based
adaptive arithmetic coder and tier-2 is a bit stream layer
formation.

Fig. 1 Functional block diagram of JPEG2000 standard.

2.1Tier-1 coding: context based adaptative arithmetic
coder

2.1.1 Bit-plane coding:

The key of JPEG2000 is the EBCOT algorithm. The DWT
sub-bands are partitioned into relatively small blocks,
called code-blocks (typically 64×64 or 32×32) [1, 2]. The
code-blocks are encoded independently. Each code-block
is decomposed into n bit-planes. Sequentially, they are
encoded from the most significant bit-plane (MSB) to the
least significant bit-plane (LSB). Each bit-plane is
partitioned into a set of stripe, which spans the full width
of the code block and consists of four rows. The stripes
are scanned from the top to the bottom one by one. Within
each stripe, the scan proceeds column by column, within a
column, each sample location is scanned by a top-down
manner, until all samples of the column have been visited
as shown in Fig. 2.
The encoding process is done by fractional bit-plane
coding (BPC) mechanism to create a context and a binary
decision value for each bit position. JPEG2000 uses the
EBCOT algorithm for the BPC.
This algorithm encodes each generated bit-plane in one of
three coding passes [2, 3]: significant propagation pass
(PASS-1), magnitude refinement pass (PASS-2), and

cleanup pass (PASS-3).. For a bit-plane, these three passes
are processed sequentially. The Pass-1 processes

coefficients which are insignificant [3] and have at least
one significant neighbour among its 8 immediate
neighbours, Pass-2 processes all significant coefficients
except those becoming significant in Pass-1, finally Pass-3
processes all remaining coefficients not encoded in the
Pass-1 and Pass-2. According to the information
contained in each bit, four coding primitives are used to
generate its context: zero coding (ZC), sign coding (SC),
magnitude refinement (MR), and run-length coding (RLC)
[3].

Fig. 2 The scanning order within a bit-plane.

The generated contexts are based on the contextual
information (the sign and significance states of the 8-
connect neighbors) of the sample scanned in current
coding pass. A detailed description about these coding
primitives can be found in references [3] and [11].

2.1.2 Arithmetic Coding:

The BPC outputs are entropy encoded using a MQ-coder
which is a derivative of the Q-coder [12]. According to the
provided context, the coder chooses a probability for the
bit to encode, among predetermined probability values
supplied by the JPEG 2000 standard and stored in a look-
up table. From this probability the MQ-coder
progressively generate the compressed code-words. These
data are the output of the first tier, and send to Tier 2 for
further selection to form the final JPEG2000 bitstream.
2.2 Tier-2 coding: bit stream layer formation
In this second step, each code-block is efficiently
represented as a layer and block summary information [2].
A layer is a consecutive bit-plane coding passes from each
code-block in a tile, including all sub-bands of all
components in the tile. The block summary information
consists of the length of compressed code words of the
code-block and the truncation point between the bit-stream

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 553

layers. The compressed code-words generated in the Tier-
1 coding step are encoded using a Tag Tree coding
mechanism.

3. Analysis of the algorithm

Table 1 shows the complexity estimation for JPEG2000
coding obtained by using the modified software
implementation [13]. The run-time table uses a P-IV1.2G
CPU, 256M RAM, and VC++6.0 with WINXP system.
The size of the test image Lena is 512 x 512 pixels, and
we use a configuration with the flowing parameters
(lossless and lossy filter, 4 levels wavelet decomposition
and one layer with spatial scalability).
Our results (see table 1) as well as others works [5, 6]
clearly show that the EBCOT algorithm takes the great
part of the processing time compared to the others blocks,
this is because EBCOT operations are bit-level processing
as illustrated in Fig. 3, which requires important memory
resources and several memory accesses.

Table 1: execution time for JPEG2000 encoder using the 512 x 512 Lena
image

JPEG2000 Lossless Lossy
blocks compression compression

DWT 11,4 % 21,2 %
EBCOT 67,8 % 61,3 %
MQ-Coder 18,2 % 14,1 %
Others 2,6 % 3,4 %

Therefore, the key to increase the processing speed of
JPEG2000 consists of both new researches and new
developments of more efficient VLSI system architecture
of EBCOT algorithm.
In order to optimize the hardware design of EBCOT block,
a detailed analysis of the algorithm is needed. Fig. 4 shows
the analysis results obtained using a 512x512 Lena image
which is decomposed by (5,3) filter with 4 levels
decomposition for DWT block. Each bit in a bit-plane is
encoded only in one of the three coding passes and
skipped in the two others.
At first, all samples of the first bit-plane (MSB) are
insignificants and encoded in PASS-3 of the coding
process, for the lower bit-plane, some samples with
neighbouring significant bits will be encoded in Pass-1
and bits which have been significant will be encoded in
Pass-2. Therefore from Fig. 4 only a small number of
coefficients are encoded by all three coding passes, so two
speed-up methods have been proposed in order to
accelerate the encoding process: sample skipping (SS) and
group-of-column skipping (GOCS) [4, 7, 8]. The key idea
of the SS method is to skip those no-operation samples in
a single column. The SS is more efficient compared with
the straightforward method, but a clock cycle is still

wasted when a stripe column is “empty”, that means none
of the samples of the stripe column belongs to the current
coding pass. Therefore, the second speed-up method,
GOCS, is designed to further improve the processing
speed. It skips

a group of “empty columns” simultaneously at the cost of
an extra GOCS memory. Besides, the number of column
in a group is a compromise between processing speed and
area cost.

 Fig. 3 The hierarchy of a code block.

In this work we adopt a hierarchical scanning for a given
code block ordered from lower level (bit) to upper level
(bit-plane) as illustrated in Fig. 3. If we can skip from
upper level, several iterations will be saved.
The bit-plane coding performs context selection by
examining state information for the surrounding
neighbours of a sample. Three state variables are
necessary for the context formation algorithm
(significance state variable, magnitude refinement state
variable and visited state variable), as defined in [3] and
[11]. These variables are stored in three memories and two
others memories are needed to store the sign bit-plane and
magnitude bit-plane. Each memory is 4K bits to support
the maximum block size. Hence, it is essential to reduce
internal memory by using the optimized memory saving
algorithm [7].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 554

6 5 4 3 2 1 0
0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u

m
b

er
 o

f
co

ef
fi

ci
en

ts

Bit-plane number

 Pass-1
 Pass-2
 Pass-3

 Fig. 4 Coefficients distribution in 3 passes with 64×64 sub-band from
512×512 Lena image.

4. Proposed architecture

In the proposed architecture, a complete column is
processed in a single clock-cycle. The four bits to be
encoded and their two neighbours are all available at the
same time. Therefore to increase the speed of computation
and reduce the memory requirement for EBCOT, we
exploit the parallel access to memories and propose a new
design of context generator for EBCOT tier-1 architecture.
The key idea is to bypass the redundant coefficients-bits in
each coding pass; it can be done by adopting a new
method in the data organisation and memory arrangement.
This method proves the efficiency of reducing both access
number and memories bandwidth.
The proposed hardware architecture of EBCOT algorithm
is presented in Fig. 5. The architecture reads the DWT
coefficients data (LL, LH, HL, and HH sub-bands) from
the code blocks memories, carry out the discrete wavelet
transform, and output the context and data.
This architecture is based on an original register modules
(data register module, and state variables register module)
communicating through by using two controller blocks
and working in parallel with a tight synchronization.
The block diagram of Fig. 5 consists mainly of: 1)
Memory blocks 2) Switches and counters 3) Context
generator and data selector (mux). All these blocks are
controlled and synchronized by two state machines; one
manages the pass of the algorithm and the second controls
the columns processing in each pass, these blocks are
described below.

 Fig. 5 Block diagram of the proposed EBCOT hardware implementation.

4.1 Data organization and memory arrangement

In order to achieve an efficient data and state variables
memories access and to reduce the required memory
access clock cycle, we propose a new data arrangement
and memory organization to implement the Bit-plane
coding. As shown in Fig. 6 memory blocks are organized
in six partitions.

Fig. 6. State variables memories.

MEM0 to MEM5 contain the state variables data. The
same organization is adopted for code block coefficients.
In a single clock cycle they supply the four bits to be
processed and their vertical neighbours at the same time
(Fig. 7).
By using this memory arrangement, we can:

 Reduce the complexity of addressing.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 555

 Perform read and write operations at the same
clock cycle.

 Prevent the operational conflicts (simultaneous
read or write).

Within this arrangement, samples of two nearby stripes,
the previous and the next stripes, are loaded into the state
variables register simultaneously in only one clock cycle.
So, only a single clock cycle is spent by reading data from
the six memories and shifting state variable register.

Fig. 7 Code block lines and code block memories association.

For the code block memories, we use a tile splitter block,
which extracts the code blocks from each memory of
wavelet coefficients sub-band. The extracted data are
stored in six memories, in each one; a line of code block is
stored as shown in Fig.8. The register blocks are
implemented as two six parallel shift registers, one for
code block coefficients and the second for state variables.
The data shift from memories to registers column by
column.

Fig. 8 Code block memories.

4.2 Switches and counter

To manage the code block memories and state variable
memories outputs, three switches are used according to the
stripe witch is going to be processed. Therefore, there are
four switching modes for each switch block.
In this architecture we use one counter to count the
columns and stripes of the code block to be processed, and
generate the current pass bit plane to be encoded. This
counter also allows detecting the position of the bit to be
processed inside the code block.

4.3 Context generator and mux

The multiplexer chooses the context from the outputs of
ZC(Zero Coding) context block, SC(Sign Coding) context
block, MR(Magnitude Refinement) context block, or the
hard encoded RLC(Run Length Coding) contexts (17 or
18 contexts).

Fig. 9 Context information generator.

For the three passes of EBCOT algorithm, we propose a
code block processing model shown in Fig. 9. In this
architecture all passes are merged into one component.
The pass to be processed is selected by the “pass” signal.
This block is managed by the pass-controller block, which
is based only on five states, and the symbol is encoded in
3 clock cycles. To better improve the speed of the
proposed EBCOT architecture, we use the by pass mode
presented in [1].

5. Implementation and experimental results

The proposed architecture was implemented in VHDL.
The EBCOT algorithm was also developed using C
language (ISO/IEC 15444-1 [1] compatibility) to validate
the architecture by comparison with the hardware
behavioral.
When synthesized and target to an FPGA ALTERA
Cyclone II and Stratix III [14, 15], our design performs at
285 MHz.
Table 2 gives the complete device usage summary. We
can see that our design spent 1.5K gates and 40K bits of
internal memory.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 556

5.1 Implementation Results

The proposed EBCOT architecture is tested by encoding
three test images: Baboon, Jet and Lena with size of
512x512. The code block size is 64×64 or 32×32, and
each coefficient can be represented by 12 bits of width.

Table 2: synthesis results of EBCOT block implemented in a altera
Cyclone II and stratix III.

In table 3 we show a comparison between our results and
those of the most recent work [4, 16]. It is clearly shown
that our proposed architecture reduces the processing time
by about 45%. This decrease in the processing time are
mainly explained by the saving both the wasted clock
cycle in the SS method and the required additional clock
cycles for memory access in the GOCS architecture.

Table 3: performance of proposed architecture compared with other
techniques.

Architecture Area Cycles CLK
 (cells) /code-block (MHz)

Single Sample[8] 631 156590 51.7
Sample-Skipping[14] 710 89170 38.6
This work 985 41250 285

A high processing frequency is achieved with a suitable
number of the cycles/codes-block, thus the proposed
architecture is faster than SS [4] and GOCS [16] methods,
with low number of the required clock cycles, it reduces
the processing time by about 45% as shown in Fig. 10.
This increasing in the speed of the EBCOT algorithm is
mainly due to the minimization of the number of memory
access by adopting an efficient memory architecture to
store the state variables and the code block data. The
proposed architecture not only overcomes the complexity
of state machine, but also has faster computation than
PPCM.
However the proposed architecture needs some additional
hardware resources, which is relatively low compared to
the gain in the processing time, and represents a good
compromise between speed and hardware resources for
applications such as digital cinema.

Fig. 10 Comparison of proposed architecture versus other techniques.

5.2 Integration

The proposed EBCOT architecture was first integrated in
the JPEG 2000 encoder. It is designed for I-frames in
standard definition television (SD, 720 x 480 30 fps)
format at 54 MHz and supports high-definition television
(HD720p, 1280 x 720 30 fps) format at 100 MHz. Our
EBCOT architecture is capable of processing Motion
JPEG2000 in real time with 12 bits Bitdepth, 4:4:4 video
encoding and a compression ratio of 11.

6. Conclusion

We have proposed an efficient VLSI architecture to
implement the Bit-plane coding. The design was
implemented in VHDL, and synthesized and routed in an
ALTERA Cyclone II and Stratix III FPGA.
This new architecture is based on a parallel access to
memories, and uses a new design of context generator
block. A working frequency of 285 MHz is achieved, and

 Cyclone II Stratix III

Total logic elements 1,501 (3%) 1,501 (1%)
Total registers 365 234
Total memory bits 40196 (11%) 40196 (5%)
CLK(EBCOT) 225 MHZ 285 MHZ
Operating voltage 1.8 V 1.8 V

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 557

the number of the required clock cycles is reduced, which
increase the processing speed, by comparison with
previous works.
The proposed EBCOT encoder is fully compatible with
ISO/IEC 15444-1 [1], and can be adopted for supporting
real-time applications rates.
The system is secure because no external memory is used
and the data flow is protected during the whole encoding
process. So, it can be widely used in the application of the
futur-generation digital cinema.

References
[1] ISO/IEC 15444-1: Information Technology-JPEG 2000

image coding system-Part 1: Core coding system, 2000.
[2] D. S. Taubman and M. W. Marcellin, JPEG2000: Image

Compression Fundamentals, Standards and Practice.
Norwell, MA: Kluwer, 2002.

[3] D. Taubman, “High Performance Scalable Image
Compression with EBCOT”, IEEE Transactions on Image
Processing, Vol. 9, No. 7, July 2000, pp. 1158-1170.

[4] M. D. Adams and F. Kossentini, “Jasper: a software-based
JPEG-2000 codec implementation,” Proc. IEEE Int. Conf.
Image Processing, vol. 2, pp. 53-56, Sep. 2000.

[5] M. Rabbani, and R. Joshi, “An Overview of the JPEG2000
Still Image Compression Standard”, Signal Processing:
Image Communication Journal, Vol. 17, No. 1, October
2001.

[6] M. Dyer, D. Taubman, and S. Nooshabadi, “improved
throughput arithmetic coder for JPEG 2000,” accepted in
IEEE Int, Conf. Image Processing, pp.2817-2820, 2004.

[7] K.-F. Chen, C.-J. Lian, H.-H. Chen, and L.-G. Chen,
“Analysis and architecture design of EBCOT for
JPEG2000,” Proc. IEEE Int. Symp. Circuits and Systems,
vol. 2, pp. 765-768, May 2001.

[8] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “
Analysis and architecture design of block-coding engine for
EBCOT in JPEG 2000,” IEEE Trans. Circuits and Systems
for Video Technology, vol. 13, pp. 219-230, March 2003.

[9] Paul R. Schumacher, “An Efficient JPEG2000 Tier-1 Coder
Hardware Implementation for Real-Time Video
Processing”, IEEE Transactions on Consumer
Electronics,Vol. 49, No. 4, November 2003.

[10] Kishore Andra, Chaitali Chakrabarti and Tinku Acharya, “A
High Performance JPEG2000 Architecture”, IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 3, pp 209-218, March 2003.

[11] ISO/IEC JTC 1/SC 29/WG 1 WG1N1878, JPEG 2000
Verification Model 8.5 (Technical description), September
13, 2000.

[12] Cyclone-II platform FPGAs: Complete Data Sheet.
ALTERA. [Online]. Available: http://www.altera.com.

[13] Stratix-III platform FPGAs: Complete Data Sheet.
ALTERA. [Online]. Available: http://www.altera.com.

[14] Y. Li, R.E. Aly, B. Wilson and M.A. Bayoumi, “Analysis
and enhancements for EBCOT in high speed JPEG2000
architectures,” Mid-west Symp. on Ckts. And Systems,
vol.2, pp.207-210, Aug. 2002.

[15] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee and Chein-Wei
Jen, “High-Speed Memory-Saving Architecture for the

Embedded Block Coding in JPEG2000”, IEEE International
Symposium on Circuits and Systems, Vol. 5, pp 133-136,
May 2002.

Anass MANSOURI received M.S. and Ph.D degrees in
Microelectronics and Telecommunication from Faculty of sciences
& technology, Fes, MOROCCO, in 2005 and 2009, respectively.
He is a Assistant Professor in National School of Applied Sciences,
Fes.
His major research interests include VLSI and embedded
architectures design, video and image Processing.

Ali AHAITOUF received the Ph.D. degrees in electronics from the
Metz University in France 1992. He is a Professor in electrical
engineering department at Faculty of sciences & techniques, Fes,
MOROCCO, when he obtained the Doctor Title in Physics at 1998.
His major research interests include Digital and Analog VLSI
architecture, EMC Simulation and Physics of Semiconductor
Components. He is managing the Microelectronics and
Components research group.

Farid ABDI received the Ph.D. degrees in Physics from the Metz
University in France 1992. He is a Professor in electrical
engineering department at Faculty of sciences & techniques, Fes,
MOROCCO.
His major research interests include Optical Components, Image,
Audio and video processing. He is managing the optical research
group.

