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Abstract 
Embedded block coding with optimized truncation (EBCOT) is 
an important feature of the latest digital still-image compression 
standard, JPEG2000; however, it consumes more than 50% of 
the computation time in the compression process. In this paper, 
we propose a new high speed VLSI implementation of the 
EBCOT algorithm. The main concept of the proposed 
architecture is based on parallel access to memories, and uses an 
efficient design of the context generator block. The proposed 
architecture is described in VHDL language, verified by 
simulation and successfully implemented in a Cyclone II and 
Stratix III FPGA. It provides a major reduction in memory access 
requirements, as well as a net increase of the processing speed as 
shown by the simulations. 
Keywords: JPEG20, EBCOT algorithm, VLSI architecture, 
FPGA implementation. 

1. Introduction 

JPEG2000 is the latest still image compression standard, 
developed by ISO/IEC JTC1/SC29/WG1 (commonly 
referred to as the Joint Photographic Experts Group JPEG) 
[1]. JPEG 2000 is not only a competitive compression 
performance, but also provides many new features for 
different types of still images [2]. It offers quality 
scalability, resolution scalability, region of interest (ROI) 
coding, and supports both lossless and lossy coding in the 
same framework. 
All these features are possible by adoption of the Discrete 
Wavelet Transform (DWT) and Embedded Block Coding 
with Optimal Truncation (EBCOT) originally proposed by 
Taubman [3]. Unfortunately, both algorithms are 
computation and memory intensive. 
The EBCOT is one of the main resources intensive 
components of JPEG 2000, it accounts for nearly 50% of 
the total computation time of encoding process [4,6], and 
then it represents the most critical part in the design and 
implementation of the JPEG2000 standard. Besides the 
intensive computation, EBCOT needs massive memory 
locations. In conventional architectures, the block coder 
requires at least 20K-bit memory [10]. In order to  
 

 
 
 
decrease the EBCOT algorithm time execution two main 
speedup methods have been suggested. Sample skipping 
(SS) and Group Of Column Skipping (GOCS) [4]. In the 
first, one skips no operating samples and in the second all 
non operating columns are skipped, i.e. all the four bits of 
the column are skipped. This last technique allows to save 
a clock cycle naturally wasted in the SS method when a 
complete column is empty. 
Many implementations of hardware architectures have 
been proposed and designed for EBCOT algorithm to 
improve the encoding speed, such as Andra’s state-
machine based bit plane encoder [ 9], which presents 
VLSI architecture for embedded bit-plane encoding in 
JPEG 2000 that reduces the number of memory accesses. 
This architecture has been implemented in VHDL and the 
estimated frequency of operation was 200 MHz. Chaing 
and al. [10] have proposed a Pass-Parallel Context 
Modeling (PPCM) to implement the EBCOT algorithm, 
this implementation can work at 180 MHz. They claimed 
that when compared with the previous context-modeling 
architectures, there solution improve the throughput rate 
up to 25%.  
In this paper we present an efficient VLSI architecture for 
EBCOT. It’s based on an optimized data organization and 
a new memory arrangement as well as a simple state 
machine and combinatorial logics of encoding part. Our 
proposed architecture makes the four bits to be processed 
and their neighbors available at one clock cycle and 
consequently a complete column is processed in only four 
clock cycles during each pass. This proposed architecture 
is implemented on FPGA without using any external 
memory. 
The following part of the paper is organized as follows. 
Section II reviews the EBCOT algorithm; Section III 
describes the analysis of bit plane coding algorithm. The 
proposed EBCOT architecture is presented in section IV; 
the hardware implementation performances and results 
discussion are described in section V, and section VI 
concludes the work. 
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2. EBCOT Algorithm  

As illustrated in Fig. 1, the encoding process in JPEG2000 
standard follows the typical still image encoding 
operations. The DWT block transfers the image 
information from spatial domain to frequency domain and 
removes the spatial correlation. The redundant information 
can be rejected by quantization process which is the 
mainly lossy block in JPEG2000 standard. After the 
quantization step, many coefficients become zero then the 
entropy coder can encode the quantized coefficients more 
efficiently and generates the compressed bit stream. The 
entropy coding and generation of compressed bit stream in 
JPEG2000 are two tiers coders, tier-1 is a context based 
adaptive arithmetic coder and tier-2 is a bit stream layer 
formation. 

 
Fig. 1 Functional block diagram of JPEG2000 standard. 

2.1Tier-1 coding: context based adaptative arithmetic 
coder 

2.1.1 Bit-plane coding:  

The key of JPEG2000 is the EBCOT algorithm. The DWT 
sub-bands are partitioned into relatively small blocks, 
called code-blocks (typically 64×64 or 32×32) [1, 2]. The 
code-blocks are encoded independently. Each code-block 
is decomposed into n bit-planes. Sequentially, they are 
encoded from the most significant bit-plane (MSB) to the 
least significant bit-plane (LSB). Each bit-plane is 
partitioned into a set of stripe, which spans the full width 
of the code block and consists of four rows. The stripes 
are scanned from the top to the bottom one by one. Within 
each stripe, the scan proceeds column by column, within a 
column, each sample location is scanned by a top-down 
manner, until all samples of the column have been visited 
as shown in Fig.  2. 
The encoding process is done by fractional bit-plane 
coding (BPC) mechanism to create a context and a binary 
decision value for each bit position. JPEG2000 uses the 
EBCOT algorithm for the BPC. 
This algorithm encodes each generated bit-plane in one of 
three coding passes [2, 3]: significant propagation pass 
(PASS-1), magnitude refinement pass (PASS-2), and 

cleanup pass (PASS-3).. For a bit-plane, these three passes 
are processed sequentially. The Pass-1 processes  
 
 
coefficients which are insignificant [3] and have at least 
one significant neighbour among its 8 immediate 
neighbours, Pass-2 processes all significant coefficients 
except those becoming significant in Pass-1, finally Pass-3 
processes all remaining coefficients not encoded in the 
Pass-1 and Pass-2.  According to the information 
contained in each bit, four coding primitives are used to 
generate its context:  zero coding (ZC), sign coding (SC), 
magnitude refinement (MR), and run-length coding (RLC) 
[3]. 

 
Fig. 2 The scanning order within a bit-plane. 

 
The generated contexts are based on the contextual 
information (the sign and significance states of the 8-
connect neighbors) of the sample scanned in current 
coding pass. A detailed description about these coding 
primitives can be found in references [3] and [11]. 

2.1.2 Arithmetic Coding:  

The BPC outputs are entropy encoded using a MQ-coder 
which is a derivative of the Q-coder [12]. According to the 
provided context, the coder chooses a probability for the 
bit to encode, among predetermined probability values 
supplied by the JPEG 2000 standard and stored in a look-
up table. From this probability the MQ-coder 
progressively generate the compressed code-words. These 
data are the output of the first tier, and send to Tier 2 for 
further selection to form the final JPEG2000 bitstream. 
2.2 Tier-2 coding: bit stream layer formation 
In this second step, each code-block is efficiently 
represented as a layer and block summary information [2]. 
A layer is a consecutive bit-plane coding passes from each 
code-block in a tile, including all sub-bands of all 
components in the tile. The block summary information 
consists of the length of compressed code words of the 
code-block and the truncation point between the bit-stream 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     553 

 

layers. The compressed code-words generated in the Tier-
1 coding step are encoded using a Tag Tree coding 
mechanism. 

3. Analysis of the algorithm  

Table 1 shows the complexity estimation for JPEG2000 
coding obtained by using the modified software 
implementation [13]. The run-time table uses a P-IV1.2G 
CPU, 256M RAM, and VC++6.0 with WINXP system. 
The size of the test image Lena is 512 x 512 pixels, and 
we use a configuration with the flowing parameters 
(lossless and lossy filter, 4 levels wavelet decomposition 
and one layer with spatial scalability). 
Our results (see table 1) as well as others works [5, 6] 
clearly show that the EBCOT algorithm takes the great 
part of the processing time compared to the others blocks, 
this is because EBCOT operations are bit-level processing 
as illustrated in Fig. 3, which requires important memory 
resources and several memory accesses. 

Table 1: execution time for JPEG2000 encoder using the 512 x 512 Lena 
image 

JPEG2000               Lossless                     Lossy  
blocks                compression             compression 

 

DWT                         11,4 %                       21,2 % 
EBCOT                     67,8 %                       61,3 % 
MQ-Coder                 18,2 %                       14,1 % 
Others                        2,6  %                        3,4  % 

 
Therefore, the key to increase the processing speed of 
JPEG2000 consists of both new researches and new 
developments of more efficient VLSI system architecture 
of EBCOT algorithm. 
In order to optimize the hardware design of EBCOT block, 
a detailed analysis of the algorithm is needed. Fig. 4 shows 
the analysis results obtained using a 512x512 Lena image 
which is decomposed by (5,3) filter with 4 levels 
decomposition for DWT block. Each bit in a bit-plane is 
encoded only in one of the three coding passes and 
skipped in the two others. 
At first, all samples of the first bit-plane (MSB) are 
insignificants and encoded in PASS-3 of the coding 
process, for the lower bit-plane, some samples with 
neighbouring significant bits will be encoded in Pass-1 
and bits which have been significant will be encoded in 
Pass-2. Therefore from Fig. 4 only a small number of 
coefficients are encoded by all three coding passes, so two 
speed-up methods have been proposed in order to 
accelerate the encoding process: sample skipping (SS) and 
group-of-column skipping (GOCS) [4, 7, 8]. The key idea 
of the SS method is to skip those no-operation samples in 
a single column. The SS is more efficient compared with 
the straightforward method, but a clock cycle is still 

wasted when a stripe column is “empty”, that means none 
of the samples of the stripe column belongs to the current 
coding pass. Therefore, the second speed-up method, 
GOCS, is designed to further improve the processing 
speed. It skips  
 
 
a group of “empty columns” simultaneously at the cost of 
an extra GOCS memory. Besides, the number of column 
in a group is a compromise between processing speed and 
area cost. 
 

 Fig. 3 The hierarchy of a code block. 

 
In this work we adopt a hierarchical scanning for a given 
code block ordered from lower level (bit) to upper level 
(bit-plane) as illustrated in Fig. 3.  If we can skip from 
upper level, several iterations will be saved. 
The bit-plane coding performs context selection by 
examining state information for the surrounding 
neighbours of a sample. Three state variables are 
necessary for the context formation algorithm 
(significance state variable, magnitude refinement state 
variable and visited state variable), as defined in [3] and 
[11]. These variables are stored in three memories and two 
others memories are needed to store the sign bit-plane and 
magnitude bit-plane. Each memory is 4K bits to support 
the maximum block size. Hence, it is essential to reduce 
internal memory by using the optimized memory saving 
algorithm [7]. 
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 Fig. 4  Coefficients distribution in 3 passes with 64×64 sub-band from 
512×512 Lena image. 

4. Proposed architecture 

In the proposed architecture, a complete column is 
processed in a single clock-cycle. The four bits to be 
encoded and their two neighbours are all available at the 
same time. Therefore to increase the speed of computation 
and reduce the memory requirement for EBCOT, we 
exploit the parallel access to memories and propose a new 
design of context generator for EBCOT tier-1 architecture. 
The key idea is to bypass the redundant coefficients-bits in 
each coding pass; it can be done by adopting a new 
method in the data organisation and memory arrangement. 
This method proves the efficiency of reducing both access 
number and memories bandwidth. 
The proposed hardware architecture of EBCOT algorithm 
is presented in Fig. 5. The architecture reads the DWT 
coefficients data (LL, LH, HL, and HH sub-bands) from 
the code blocks memories, carry out the discrete wavelet 
transform, and output the context and data. 
This architecture is based on an original register modules 
(data register module, and state variables register module) 
communicating through by using two controller blocks 
and working in parallel with a tight synchronization. 
The block diagram of Fig. 5 consists mainly of: 1) 
Memory blocks 2) Switches and counters 3) Context 
generator and data selector (mux).  All these blocks are 
controlled and synchronized by two state machines; one 
manages the pass of the algorithm and the second controls 
the columns processing in each pass, these blocks are 
described below. 
 

 Fig. 5 Block diagram of the proposed EBCOT hardware implementation. 

 

4.1 Data organization and memory arrangement 

In order to achieve an efficient data and state variables 
memories access and to reduce the required memory 
access clock cycle, we propose a new data arrangement 
and memory organization to implement the Bit-plane 
coding. As shown in Fig. 6 memory blocks are organized 
in six partitions. 

 
Fig. 6.  State variables memories. 

 

MEM0 to MEM5 contain the state variables data. The 
same organization is adopted for code block coefficients. 
In a single clock cycle they supply the four bits to be 
processed and their vertical neighbours at the same time 
(Fig. 7). 
By using this memory arrangement, we can: 

 Reduce the complexity of addressing. 
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 Perform read and write operations at the same 
clock cycle. 

 Prevent the operational conflicts (simultaneous 
read or write). 

Within this arrangement, samples of two nearby stripes, 
the previous and the next stripes, are loaded into the state 
variables register simultaneously in only one clock cycle. 
So, only a single clock cycle is spent by reading data from 
the six memories and shifting state variable register. 

 
Fig. 7 Code block lines and code block memories association. 

 

For the code block memories, we use a tile splitter block, 
which extracts the code blocks from each memory of 
wavelet coefficients sub-band.  The extracted data are 
stored in six memories, in each one; a line of code block is 
stored as shown in Fig.8.  The register blocks are 
implemented as two six parallel shift registers, one for 
code block coefficients and the second for state variables. 
The data shift from memories to registers column by 
column. 

 
Fig. 8 Code block memories. 

 

4.2 Switches and counter 

To manage the code block memories and state variable 
memories outputs, three switches are used according to the 
stripe witch is going to be processed. Therefore, there are 
four switching modes for each switch block. 
In this architecture we use one counter to count the 
columns and stripes of the code block to be processed, and 
generate the current pass bit plane to be encoded. This 
counter also allows detecting the position of the bit to be 
processed inside the code block. 

4.3 Context generator and mux 

The multiplexer chooses the context from the outputs of 
ZC(Zero Coding) context block, SC(Sign Coding) context 
block, MR(Magnitude Refinement)  context block, or the 
hard encoded RLC( Run Length Coding) contexts (17 or 
18 contexts). 

 
Fig. 9 Context information generator. 

 
For the three passes of EBCOT algorithm, we propose a 
code block processing model shown in Fig. 9. In this 
architecture all passes are merged into one component.  
The pass to be processed is selected by the “pass” signal. 
This block is managed by the pass-controller block, which 
is based only on five states, and the symbol is encoded in 
3 clock cycles.  To better improve the speed of the 
proposed EBCOT architecture, we use the by pass mode 
presented in [1]. 

5. Implementation and experimental results 

The proposed architecture was implemented in VHDL. 
The EBCOT algorithm was also developed using C 
language (ISO/IEC 15444-1 [1] compatibility) to validate 
the architecture by comparison with the hardware 
behavioral. 
When synthesized and target to an FPGA ALTERA 
Cyclone II and Stratix III [14, 15], our design performs at 
285 MHz. 
Table 2 gives the complete device usage summary. We 
can see that our design spent 1.5K gates and 40K bits of 
internal memory. 



IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 3, September 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     556 

 

5.1 Implementation Results 

The proposed EBCOT architecture is tested by encoding 
three test images: Baboon, Jet and Lena with size of 
512x512. The code block size is 64×64 or 32×32, and 
each coefficient can be represented by 12 bits of width. 

Table 2: synthesis results of EBCOT block implemented in a altera 
Cyclone II and stratix III. 

In table 3 we show a comparison between our results and 
those of the most recent work [4, 16]. It is clearly shown 
that our proposed architecture reduces the processing time 
by about 45%. This decrease in the processing time are 
mainly explained by the saving both the wasted clock 
cycle in the SS method and the required additional clock 
cycles for memory access in the GOCS architecture. 

Table 3: performance of proposed architecture compared with other 
techniques.  

Architecture                Area           Cycles            CLK 
                                    (cells)       /code-block      (MHz)   

 
Single Sample[8]          631             156590            51.7 
Sample-Skipping[14]    710               89170            38.6 
This work                     985               41250            285 

 
A high processing frequency is achieved with a suitable 
number of the cycles/codes-block, thus the proposed 
architecture is faster than SS [4] and GOCS [16] methods, 
with low number of the required clock cycles, it reduces 
the processing time by about 45% as shown in Fig. 10. 
This increasing in the speed of the EBCOT algorithm is 
mainly due to the minimization of the number of memory 
access by adopting an efficient memory architecture to 
store the state variables and the code block data. The 
proposed architecture not only overcomes the complexity 
of state machine, but also has faster computation than 
PPCM.  
However the proposed architecture needs some additional 
hardware resources, which is relatively low compared to 
the gain in the processing time, and represents a good 
compromise between speed and hardware resources for 
applications such as digital cinema. 
 

 
Fig. 10 Comparison of proposed architecture versus other techniques. 

 

5.2 Integration 

The proposed EBCOT architecture was first integrated in 
the JPEG 2000 encoder. It is designed for I-frames in 
standard definition television (SD, 720 x 480 30 fps) 
format at 54 MHz and supports high-definition television 
(HD720p, 1280 x 720 30 fps) format at 100 MHz. Our 
EBCOT architecture is capable of processing Motion 
JPEG2000 in real time with 12 bits Bitdepth, 4:4:4 video 
encoding and a compression ratio of 11. 

6. Conclusion 

We have proposed an efficient VLSI architecture to 
implement the Bit-plane coding. The design was 
implemented in VHDL, and synthesized and routed in an 
ALTERA Cyclone II and Stratix III FPGA. 
This new architecture is based on a parallel access to 
memories, and uses a new design of context generator 
block. A working frequency of 285 MHz is achieved, and 

                                        Cyclone II               Stratix III 

Total logic elements         1,501 (3%)               1,501 (1%) 
Total registers                    365                          234 
Total memory bits            40196 (11%)            40196 (5%) 
CLK(EBCOT)                   225 MHZ                 285 MHZ 
Operating voltage               1.8  V                        1.8 V 
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the number of the required clock cycles is reduced, which 
increase the processing speed, by comparison with 
previous works. 
The proposed EBCOT encoder is fully compatible with 
ISO/IEC 15444-1 [1], and can be adopted for supporting 
real-time applications rates. 
The system is secure because no external memory is used 
and the data flow is protected during the whole encoding 
process. So, it can be widely used in the application of the 
futur-generation digital cinema. 
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