

Fault Localization for Java Programs Using Probabilistic Program
Dependence Graph

Abstract
Fault localization is a process to find the location of faults. It
determines the root cause of the failure. It identifies the
causes of abnormal behaviour of a faulty program. It
identifies exactly where the bugs are. Existing fault
localization techniques are Slice based technique, Program-
Spectrum based Technique, Statistics Based Technique,
Program State Based Technique, Machine learning based
Technique and Similarity Based Technique. In the proposed
method Model Based Fault Localization Technique is used,
which is called Probabilistic Program Dependence Graph .
Probabilistic Program Dependence Graph (PPDG) is an
innovative model that scans the internal behaviour of the
project. PPDG construction is enhanced by Program
Dependence Graph (PDG). PDG is achieved by the Control
Flow Graph (CFG). The PPDG construction augments the
structural dependences represented by a program dependence
graph with estimates of statistical dependences between node
states, which are computed from the test set. The PPDG is
based on the established framework of probabilistic graphical
models. This work presents algorithms for constructing
PPDGs and applying fault localization.

Keywords: Probabilistic Program Dependence Graph
(PPDG), Fault Localization, Program Dependence Graph
(PDG).

1. Introduction

In the software industry, developers usually rely on
testing to confirm that changes to the software achieve
their intentions and do not introduce unexpected side
effects. Typically, testing involves executing a large
number of test cases and thus is very time-consuming.
For instance, the industrial collaboration of Elbaum et
al. [12,14] reported that it costs seven weeks to execute
the entire test suite of one of their products.

To cope with the preceding situation, researchers have
proposed various techniques for fault localization
[3,5,9,10] to find the faults exactly where is. A fault is
nothing but the bugs. It is always challenging for
programmers to effectively and efficiently remove

bugs. Furthermore, to debug, programmers must first
be able to identify exactly where the bugs are, which is
known as fault localization.

Fault Localization is defined as the process of finding
the faults of any program. There are various techniques
for fault localization. Section 2 defines various existing
techniques. Section 3 explains about fault localization
using Statistical Bug Isolation (SBI). Section 4 defines
our approach. Section 5 gives the experimental results.
Section 6 defines the performance results between SBI
and PPDG and Section 7 concludes.

2. Related Work

Fault Localization is an intensively studied research
topic in regression testing. Techniques for fault
localization aim to improve the rate of fault detection.
In the literature, there are several lines of research on
fault localization. The first line of research is to study
techniques for fault localization.
First technique is program slicing. It is a commonly
used technique for debugging. Reduction of the
debugging search domain via slicing is based on the
idea that if a test case fails due to an incorrect variable
value at a statement, then the bug should be found in
the static slice associated with that variable-statement
pair [22]. Lyle & Weiser extended the above approach
by constructing a program dice to further reduce the
search domain for possible locations of a fault [15]. A
disadvantage of this technique is that it might generate
a dice with certain statements which should not be
included. Studies such as [2], [19], [31] use the
dynamic slicing concept to program debugging. An
alternative is to use execution slicing and dicing to
locate program bugs [24], where an execution slice
with respect to a given test case contains the set of
code executed by this test.

 A.Askarunisa1 , T. Manju2 and B. Giri Babu

 1 Computer Science and Engineering, Thiagarajar College Of Engineering,
Madurai, Tamilnadu, India

2 Computer Science and Engineering, Thiagarajar College Of Engineering,
Madurai, Tamilnadu, India

3Honeywell Technology Solutions Lab. Pvt. Ltd,
Madurai, Tamilnadu, India

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 224

Second technique is program-spectrum based
technique. A program spectrum records the execution
information of a program. When the execution fails,
such information can be used to identify suspicious
code that is responsible for the failure. Tarantula [10]
is a popular fault localization technique based on the
executable statement hit spectrum. It uses the
execution trace information in terms of how each test
covers the executable statements, and the
corresponding execution result (success or failure) to
compute the suspiciousness of each statement. One
problem with Tarantula is that it does not distinguish
the contribution of one failed test case from another, or
one successful test case from another. To overcome
this problem, Wong et al. [22] propose that, with
respect to a piece of code, the contribution of the nth
failed test in computing its suspiciousness is larger
than or equal to that of the (n+1)th failed test. Renieris
& Reiss [18] propose a program spectrum-based
technique such as nearest neighbor, which contrasts a
failed test with another successful test that is most
similar to the failed one in terms of the “distance”
between them. If a bug is in the difference set between
the failed execution and its most similar successful
execution, it is located. For a bug that is not contained
in the difference set, the technique continues by first
constructing a program dependence graph, and then
including and checking adjacent un-checked nodes in
the graph step by step until the bug is located.

Third is statistics based techniques. Several statistical
fault localization techniques have also been proposed,
such as Liblit05 [11], and SOBER [12], which rely on
the instrumentations and evaluations of predicates in
programs to produce a ranking of suspicious
predicates, which can be examined to find faults. They
are also limited to bugs located in predicates, and offer
no way to attribute a suspiciousness value to all
executable statements. Wong et al. propose a cross
tabulation (crosstab) based statistical technique which
uses only the coverage information of each executable
statement, and the execution result with respect to each
test case. It does not restrict itself to faults located only
in predicates. More precisely, a crosstab is constructed
for each statement with two column-wise categorical
variables of “covered,” and “not covered;” and two
row-wise categorical variables of “successful
execution,” and “failed execution”.

Fourth is Program state based technique. A program
state consists of variables, and their values at a
particular point during the execution. A general
approach for using program states in fault localization
is to modify the values of some variables to determine
which one is the cause of erroneous program
execution. Zeller, et al. propose a program state-based
debugging approach, delta debugging [5], to reduce the
causes of failures to a small set of variables by
contrasting program states between executions of a
successful test and a failed test via their memory

graphs. Based on delta debugging, Cleve & Zeller [6]
propose the cause transition technique to identify the
locations and times where the cause of failure changes
from one variable to another. A potential problem is
that the cost is relatively high. Another problem is that
the identified locations may not be where the bugs
reside. Gupta et al. [8] try to overcome these issues by
introducing the concept of failure inducing chops.
Predicate switching proposed by Zhang, et al. is
another program state-based fault localization
technique where program states are changed to
forcefully alter the executed branches in a failed
execution. A predicate whose switch can make the
program execute successfully is labeled as a critical
predicate. Wang & Roychoudhury [20] present a
technique that automatically analyzes the execution
path of a failed test, and alters the outcome of branches
in that path to produce a successful execution. The
branch statements whose outcomes have been changed
are recorded as bugs.

Fifth is Machine learning based technique. Machine
learning techniques are adaptive, and robust; and have
the ability to produce models based on data, with
limited human interaction. The problem at hand can be
expressed as trying to learn or deduce the location of a
fault based on input data such as statement coverage,
etc. Wong et al. [21] propose a fault localization
technique based on a back-propagation (BP) neural
network, which is one of the most popular neural
network models in practice. The statement coverage of
each test case, and the corresponding execution result,
are used to train a BP neural network. Then, the
coverage of a set of virtual test cases that each covers
only one statement in the program are input to the
trained BP network, and the outputs can be regarded as
the likelihood of the statements being faulty. Briand et
al. [4] use the C4.5 decision tree algorithm to construct
a set of rules that might classify test cases into various
partitions such that failed test cases in the same
partition most likely fail due to the same fault.

Other techniques involved are data mining-based (e.g.,
Cellier et al. [5] which discuss a combination of
association rules and Formal Concept Analysis (FCA)
to assist in fault localization), and model-based (e.g.,
[10]). Similarity-based coefficients such as Ochiai &
Jaccard.

In our paper, we study the problem of model based
fault localization. Our work differs from previous
research on fault localization as follows. First, the use
of PPDG for fault localization. Second, this paper
presents the first empirical comparison of techniques.
Our approach involves the fault localization for java
programs using PPDG.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 225

3. Fault Localization Using SBI

Liblit et al. [21] propose Statistical Bug Isolation (SBI)
for computing the suspiciousness of a predicate P in a
program, thus:

Failure(P) =
()

() ()
failed P

passed P failed P+

The function failed (passed, respectively) tallies the
number of test cases for which P is evaluated to be
false (true). For ease of comparison with other fault
localization techniques, Yu et al. [29] adapt the
equation to calculate the suspiciousness of a statement
s as follows:

suspiciousnessS(s) =
()

() ()
failed s

passed s failed s+

The function failed (passed, respectively) tallies the
number of test cases for which s is evaluated to be
false (true).

4. Our approach

In this paper, we study the problem of fault
localization using model based technique. Our research
differs from previous research on fault localization as
follows.

• The use of Probabilistic Program Graph for
fault localization.

• This work presents the how the fault
localization takes place in java programs
using this technique.

Fig. 1 Overall architecture for fault localization

Our approach involves the PPDG generation and fault
localization. PPDG is an innovative model of a
program’s internal behaviour over a set of test inputs.
It facilitates probabilistic analysis and reasoning about
uncertain program behaviour, particularly those
associated with faults. The PPDG is based on the
established framework of probabilistic graphical
models. It scans each and every state nodes for fault in
a program. Since it is a graphical representation testers
can easily find exactly where the fault is. PPDG is
nothing but transformed PDG. This transformation is

achieved by learning. For learning LearnParam
algorithm is used. This will transform the predicate
nodes and self loop nodes by adding additional node as
its parent.

LearnParam algorithm is used to generate the PPDG.
Fault localization is done by RankCP algorithm. It is
used to find the probabilistic distribution of each node.
It ranks each node using probability and the node
having less probability is considered to be most
suspicious.In LearnParam algorithm the execution
trace is taken as input and evaluates the probability for
each node based on the dependences to the node.

4.1 Decision Variables

 A probabilistic graphical model is an annotated graph
that captures the probabilistic relationships among a set
of random variables. The nodes in the graph represent
random variables and the edges represent conditional
dependences between the random variables.

4.2 Objective Function

To achieve the goal, we have to find the probability for
each node. It is categorized as

4.2.1 Node with no parents

For a node with no parents, our technique estimates the
probabilities (p(Xj = xji))of the nodes as given in
equation (1)

 p(Xj = xji) =
()

()
j ji

j

n X x
n X
=

 ------(1)

where n(Xj = xji) is the number of times node (Xj) is in
state xji across all node-state traces and n(Xj)is the
number of times the node Xj occurs across all node-
state trace.

4.2.1 Node with parents

For a node with parents, our technique estimates the
probabilities (p(Xj = xji |Pa(Xj) = paji))) of the node as
given in equation (2) below.

(| ())j ji j jiP X x Pa X pa= = =

(, ())
(())

j ji j ji

j ji

n X x Pa X pa
n Pa X pa
= =

=
 --- (2)

where n(Xj=xji, pa(Xj=paji))is the number of times
node Xj and its parents assume a specific state
configuration across all node-state traces and
n(pa(Xj=paji)) is the number of times pa(Xj=paji)
across all node-state traces. A state configuration is a
set of states assigned to a set of nodes in the PPDG.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 226

4.3 Constraint System

The constraint for finding the fault is to find the
conditional probability for each node. The node having
less probability is considered to be most suspicious
node and deemed to be a fault node. It is found by
using RankCP algorithm.

4.4 Fault Seeding

To evaluate the performance of fault localization, we
require the following approaches of faults seeding that
are classified

 1. Mutation
 2. Hand seeding.

4.4.1 Mutation

 Faults are inserted that are as realistic as
possible and that involved code deleted from, inserted
into, or modified in the versions. The following lists
of types of faults are considered.

• Faults associated with variables, such as with
definitions of variables, redefinitions of
variables, deletions of variables, or changes in
values of variables in assignment statements;

• Faults associated with control flow, such as
addition of new blocks of code, deletions of
paths, redefinitions of execution conditions,
removal of blocks, changes in order of
execution, new calls to external functions,
removal of calls to external functions,
addition of functions, or deletions of
functions;

• Faults associated with memory allocation,
such as not freeing allocated memory, failing
to initialize memory, or creating erroneous
pointers.

4.4.2 Hand Seeding

Faults are inserted that are as realistic as
possible and that involved code deleted from, inserted
into, or modified in the versions. The following lists of
types of faults are considered.

• Faults associated with variables, such as with
definitions of variables, redefinitions of
variables, deletions of variables, or changes in
values of variables in assignment statements;

• Faults associated with control flow, such as
addition of new blocks of code, deletions of
paths, redefinitions of execution conditions,
removal of blocks, changes in order of
execution, new calls to external functions,
removal of calls to external functions,
addition of functions, or deletions of
functions;

• Faults associated with memory allocation,
such as not freeing allocated memory, failing
to initialize memory, or creating erroneous
pointers.

The first approach would allow to generate a large
number of faults. The second approach cannot cost-
effectively produce a large number of faults. Thus, we
chose the first approach

4.5 PDG Generation

PDG is generated for a given java program which is to
be tested. It is the combination of both control flow
graph and data flow graph. Using the control flow
graph, we can informally define both control
dependence and data dependence. In a control flow
graph G, node n1 is control dependent on node n2 if n2
has outgoing edges e1 and e2 such that 1) every path in
G starting with e1 and ending with an exit node
contains n1 and 2) there is a path starting with e2 and
ending with an exit node that does not contain n1. A
probabilistic graphical model is an annotated graph
that captures the probabilistic relationships among a
set of random variables. The nodes in the graph
represent random variables and the edges represent
conditional dependences between the random
variables. The nodes in the PDG are labelled with the
line numbers of the corresponding statements in the
program. Solid edges represent control dependences
between nodes and dotted edges represent data
dependences between nodes. Labels on the control
dependence edges are either “T” for true or “F” for
false. Labels on the data dependence edges represent
the variables involved in the data flows between the
nodes.

 Fig. 2 Sample java Program

To illustrate the above considered an example program
that finds the line number of a java program, shown in
Fig. 2. Fig. 3 shows the control flow graph (CFG). In
the graph, each node is labelled with the number of the
program statement that it represents, and each edge

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 227

shows the flow of control between the corresponding
statements.

 Fig. 3 Control Flow Graph (CFG)

For example, node 1 represents the first statement in
the program and node 10 represents the last statement
in the program. For another example, node 8 has two
outgoing edges: Edge (8,9) is taken if the condition at
8 is true (i.e., the while loop is entered) and edge (8,
10) is taken if the condition at 8 is false. Using the
control flow graph, we can informally define both
control dependence and data dependence.
From the control flow graph generated, the PDG is
generated as shown in Fig. 4

PDG is generated with the combination of control flow
graph and data flow graph. In this PDG , the control
flow is derived from the previous step. The data flow ,
for example line 3 has a variable lnreader. It flows
across line 6,8 and 9 simultaneously. Thus PDG
includes both data flow and control flow.

4.6 PDG Transformation

PDG transformation it by structurally changing the
PDG and specifying states at nodes in the PDG, which
results in a transformed PDG. It structurally transforms
the PDG by adding nodes and edges to the predicate
nodes and self loop nodes. It is because while
calculating the conditional probability distribution of
each node the dependences between the nodes get
duplicated.

 Fig. 4 Program Dependence Graph (PDG).

During this step, our technique

1) structurally transforms the PDG by adding
nodes and edges to it and

2) specifies the states of the nodes.

We call the graph that results after transforming the
PDG the transformed PDG. The technique assigns to
each node in a program’s transformed PDG a finite set
of discrete abstract states, each of which represents a set of
related concrete states of the corresponding statement.
Hereafter, we use the term “state” to refer to an abstract state.

 Fig. 5 Transformed PDG (PPDG)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 228

The states of a node must be mutually exclusive. i.e., a
node cannot be in two different states at the same time.
The state of a PPDG node abstracts a part of the
program’s state that pertains to the node when the
program executes. There are different ways to model
this “local” concrete state. In this work, we model it in
one or both of two ways depending on whether the
node represents a branch predicate, a statement that
uses one or more variables, or both. These
characterizations are intended to reflect certain aspects
of a node’s concrete state that are relevant to
applications, such as fault localization.

Generally, the transformation is enhanced by adding
new nodes and edges to the predicate nodes and self
loop nodes. In the above example there is a predicate
node and not self loop node. Node 8 is the predicate
node(while loop) . So new node 11 is added to it and
edge labelled line is added to the node11.

4.7 Learning

Learning estimates the parameters of the PPDG from
the set of execution data generated by executing the
instrumented program with its test suite. Different
kinds of execution data (e.g., coverage or trace
information) might be used to estimate the parameters
of the PPDG. In this work, our technique uses node-
state traces. A node-state trace is a sequence of
executed nodes, along with their active states, in the
transformed PDG. Node-state traces is to estimate the
parameters of the PPDG. Each Dk £ D is a node state
trace. A node can appear multiple times in the trace,
and the states that the node assumes can be different.
In this work, we present a batch-learning algorithm
called LearnParam.

 Fig. 6 LearnParam Algorithm

LearnParam algorithm is used to estimate the
parameters. Learning the parameters of the PPDG
consists of estimating conditional probability
distributions, which are represented as tables called

conditional probability tables (CPTs), because the
states of the nodes in the transformed PDG are
discrete. It gets each data trace as input and calculates
the probability for each node. Different kinds of
execution data might be used to estimate the
parameters of the PPDG. The output will be PPDG.

For the above example, using the LearnParam
algorithm probability is calculated. The probability for
each node is calculated and given in the Table 1.

Table 1: Conditional Probability Calculation

4.8 Fault Localization

The performance of fault localization is encountered
by the RankCP algorithm.

 Fig. 7 RankCP Algorithm

RankCP algorithm analyzes a single failed execution at
a time, and ranks nodes in the PPDG. RankCP ranks
nodes based on the conditional probabilities of nodes
given the states of their parent nodes which reflect how
the parents influence their children. Our hypothesis is
that RankCP will often detect the first place in a failing
execution, where a node (Xj) assumes an unusual state,
given the states of its parents, thus indicating a
possible cause of the failure. RankCP ranks a node Xj

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 229

that a state whose probability is low, given the states of
Xj’s parents, as highly suspicious. Our choice of this
conditional probability as an inverse measure of
suspiciousness is based on preliminary studies we
conducted that showed that faults tend to be associated
with low probability nodes.

For a given program, RankCP inputs its
PPDG and a node-state trace generated by a failing
execution, and it returns a list of nodes ranked from
most suspicious to least suspicious. Each node is also
associated with a node-parent state configuration.
RankCP processes a trace from beginning to end. As it
processes the trace , it computes the conditional
probability of a node’s current state (xji) given the
current state configuration (paji) of its parents . Then,
RankCP records for each node the lowest value
lowest_prob of this probability (lines 3 and 4).
RankCP also keeps track of the index of a node in the
trace in the index variable (line 5). RankCP associates
a node-parent state configuration with a node using
the configuration variable (line 6). After RankCP has
processed the trace, it ranks the nodes by their
lowest_prob values, and if two nodes have the same
lowest_prob values, the algorithm ranks the node with
the lower index value higher (line 9). The algorithm
returns the ranked nodes with their associated state
configurations In the above example , node 10 has the
lowest probability 0.4. So it is considered to be the
fault node.

5. Experiments

In our experiments, we study the effectiveness of the
reduction strategies by evaluating their fault detection
rate. A program under test can be assessed by
counting and classifying the discovered faults.

Subject application and Test suites : We used 21 Java
programs and have generated test cases by calculating
the cyclomatic complexity , which gives the upper
bound for the maximum number of test cases. The
details of the various application programs and their
corresponding metrices are shown in Table 3. The
programs Aes, Fiestel, Playfair, Sdes, Trans,Des, Hill
cipher, Rc4, Mono alphabetic substitution, Caesar
cipher, Diffie Hell man are all programs related to
network security algorithms. All the other programs
are simple programs done by our students. We have
designed a tool to calculate the various OO metrices
namely Lines of Code (LOC), Weighted methods per
class (WMC), Depth of Inheritance tree (DIT),
Coupling between object classes (CBO), Response for
a class(RFC), Lack of cohesion in methods(LCOM),
Total lines of code (TLOC), Executable Lines of Code
(ELOC), Number of operands (OPn) , Number of

Operators (OPr) etc. These metrics help the test
manager to determine the quality of the programs.

Evaluation Metrics: For evaluating the reduction
techniques, we have injected hand seeded faults into
our programs. We have included faults like arithmetic
operator faults, logical operator faults and relational
faults. In our example we injected 13 faults and
identified which test case identifies which faults as
shown in Table 5.

From the result we have noticed that our proposed
work has less faults than the previous technique
Statistical Bug Isolation(SBI)[3]. The Comparative
table is shown in Table.5

Table2:EvaluationMeasures

 Table 3: Performance Analysis

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 230

-

 Fig.8 Comparison between SBI and PPDG

The Performance Analysis measure is shown in the fig
6.1. Consider for example a java program Hill Cipher.
In this program the number faults identified by SBI is
25. But for the same program PPDG identifies 28
faults. Thus we can confirm that PPDG is efficient
than SBI.

7. Conclusion and future work

This project proposes an efficient fault localization
tool. This tool presents an innovative model for any
java program. It scans every internal node and locates
where the fault is. PPDG gives a graphical
representation of a program. The probabilistic
conditional distribution of each node will gives the
dependency between the statements in the program.
RankCP algorithm ranks the state nodes and the node
having less probability will be considered to be most
suspicious. In previous work fault localization is done
for methods in C programs, PHP, etc. In the proposed
work, fault localization is applied for Java programs.

PPDG captures the statistical dependences among
program elements and enables the use of probabilistic
reasoning to analyze program behaviours. We have
used an algorithm for fault localization of the PPDG:
RankCP. The result of the study shows the potential
usefulness of the PPDG for fault localization. The
results also show that the PPDG can be an effective
approximate model for representing behaviours of a
program for fault diagnosis, eliminating the need to
store large amounts of execution information during
debugging. Our studies show that, in many cases,
RankCP is effective for fault localization. However,
the algorithm is not effective in localizing faults in
some failing executions. One reason for this
ineffectiveness is that RankCP ranks nodes in the
PPDG using the conditional probabilities of nodes and
their parents. Thus, the algorithm may not localize

faults whose effects transcend node-parent state
configurations.

We are currently investigating new algorithms that
consider local and global effects of faults. Our studies
also show that RankCP can be accurate, depending on
the context associated with the fault. In practice, it will
be beneficial to harness the effectiveness of ranking
approaches. One critical part of our PPDG construction
is the execution information, which is used to estimate
the parameters of the PPDG. In our experiments, we
used only passing executions to estimate probability
distributions at the nodes in the PPDG. However, we
intend to investigate the usefulness of learning PPDG
distributions using a combination of passing and
failing executions.

8. References

[1] Peifeng Hu, Zhenyu Zhang, W.K. Chan, T.H. Tse,
“Fault Localization with Non-parametric Program
Behavior Model”, International Conference on Quality
Software, 2008.
[2] William D.Fischer, Geo_rey G. Xie, Joel D.Young,
“Cross-Domain Fault Localization: A Case For a
Graph Digest Approach”, International conference on
computer science and software engineering,2008.
[3] Bo Jiang, Zhenyu Zhang, T.H. Tse, T.Y. Chen,
“How Well Do Test Case Prioritization Technique
Support Statistical Fault Localization”, International
Computer Software and Applications Conference,
2009.
[4] Shay Artzi, Julian Dolby, Frank Tip, Marco Pistoia,
“Directed Test Generation For Effective Fault
Localization”, ISSTA - ACM ,2010.
[5] Eric Wong, Vidroha Debroy, “ Software Fault
Localization” W. IEEE Annual Technology Report,
2009.
[6] Xiaoxia Ren, Ophelia C. Chesley, Barbara G.
Ryder, “Identifying Failure Causes In Java Programs:
An Application Of Change Impact Analysis”, IEEE
Transactions of Software Engineering, September
2006.
[7] Wes Masri, Andy Podgurski, David Leon, “An
Emprical Study Of Test Case Filtering Techniques
Based On Exercising Information Flows”, IEEE
Transactions on Software Engineering, July 2007.
[8] Chao Liu, Xiangyug Zhang, Jiawei Han, “A
Systematic Study Of Failure Proximity”, IEEE
Transactions on Software Engineering,
November/December 2008.
[9] George K. Baah, Andy Podgurski, Mary Jean
Harrold, “The Probabilistic Program Dependence
Graph And Its Application To Fault Diagnosis”,
IEEE Transactions on Software Engineering,
July/August 2010.
[10] Sun Ji-Rong, Ni Jian-Cheng, Li Bao-Lin,
“Dichotomy Method In Testing Based Fault
Localization”, International Journal Of Mathematical
Models and Methods in Applied Sciences, 2007.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 231

[11] Zhenyu Zhang, Bo Jiang, W.K. Chan, T.H. Tse,
and Xinming Wang, “Fault Localization Through
Evaluation Sequences”, Journal Of System and
Software, 2009.
[12] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, Arjan
J.C. van Gemund, “A Practical Evaluation Of
Spectrum-Based Fault Localization”, The Journal of
Systems and Software, 2009.
[13] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han,
Samuel P. Midki, “Statistical Debugging: A
Hypothesis Testing-Based Approach”, IEEE
Transactions on Software Engineering, OCTOBER
2006.
[14] Dan Hao, Tao Xie, Lu Zhang, XiaoyinWang,
Jiasu Sun, Hong Mei, “ Test Input Reduction For
Result Inspection To Facilitate Fault Localization”,
Journal of Automatic software Engineering, August
2009.
[15] Joseph R. Ruthru_, Margaret Burnett, Gregg
Rothermal, “Interactive Fault Localization Techniques
in a Spread Sheet Environment”, IEEE Transactions
On Software Engineering, 2006.
[16] H. Cleve and A. Zeller, “Locating Causes of
Program Failures,” Proc. 27th Int’l Conf. Software
Eng., pp. 342-351, May 2005.
[17] J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The
Program Dependence Graph and Its Use in
Optimization,” ACM Trans. Programming Languages
and Systems, vol. 9, no. 3, pp. 319-349, July 1987.
[18] J.W. Laski and B. Korel, “A Data Flow Oriented
Program Testing Strategy,” IEEE Trans. Software
Eng., vol. 9, no. 3, pp. 347-354, May 1983.
[19] C. Liu, X. Yan, L. Fei, J. Han, and S.P. Midkiff,
“SOBER: Statistical Model-Based Bug Localization,”
Proc. European Software Eng. Conf. and ACM
SIGSOFT Symp. Foundations of Software Eng., pp.
286-295, Sept. 2005.
[20] W. Masri and A. Podgurski, “An Empirical Study
of the Strength of Information Flows in Programs,”
Proc. 2006 Int’l Workshop Dynamic Systems
Analysis, pp. 73-80, 2006.
[21] A. Podgurski and L.A. Clarke, “A Formal Model
of Program Dependences and Its Implications for
Software Testing, Debugging, and Maintenance,”
IEEE Trans. Software Eng., vol. 16, no. 9, pp. 965-
979, Sept. 1990.
[22] J.W. Laski and B. Korel, “A Data Flow Oriented
Program Testing Strategy,” IEEE Trans. Software
Eng., vol. 9, no. 3, pp. 347-354, May 1983

A.Askarunisa (Dr.) is currently
working as assistant professor in the
Department of Computer Science at
Thiagarajar College of Engineering ,
Madurai. She has published number
of papers in referred National/
International Journal.

T. Manju has received her B.E
degree from Vins Christian college
of Engineering, Nagercoil affiliated
by Anna University, Chennai. Now
a post graduate student in the
Department of Computer Science at
Thiagarajar College of Engineering,
Madurai.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 232

