

 Search content via Cloud Storage System

HAYTHAM AL FEEL1, MOHAMED KHAFAGY2

 1 Information system Department, Fayoum University
Egypt

2 Computer Science Department, Fayoum University
Egypt

Abstract

With cloud computing growing in IT Enterprise. the importance
of storing and searching files on the cloud increase . cloud
storage is defined as a set of scalable data servers or chunk
servers that provide computing and storage services to clients.
Our research concern with searching in the file content throw
cloud storage system Our research using ontology approach that
can be store and retrieve files in the cloud based on its content to
resolves the weaknesses that existed in Google File System that
depends on metadata and searching only using file name Our
new architecture was tested on Cloud Storage Simulator and the
result shows that the new architecture has better scalability, fault
tolerance and performance for searching for file content in cloud
storage system.
Keywords: Ontology-Cloud-Performance-Storage File System-
searching file content

1. Introduction

Cloud computing is a paradigm that changes the idea of
local computers to a cloud of computers that contains
server pool providing different services to many clients at
the same time. In cloud computing there are multiple
copies from the same application, all copies are updated
regularly. Clients can share not only the software but also
the hardware without being aware of the sharing methods
and techniques. In addition to that cloud computing
services can be varying between small to very heavy loads
of applications. In addition to that the linearly scalable
characteristic which is the breakdown of different
workloads into pieces in different chunk servers. So we
can conclude that the cloud computing refers to the
application delivered via the internet (Saas) via an
infrastructure as a service (Iaas) and platform as a service
(Paas). This paper will focus on the storage service
supplied by the cloud.

There are cloud systems have similar architecture for
storage, such as GFS [1] , Elastic Cloud of Amazon[2] and
Blue Cloud of IBM[3] which can be concluded in a central
entity to index or handle the distributed data storage
entities.
All these architectures concern in searching for files in the
cloud but ignore searching in the file content. In addition
to that the central server may become a bottleneck
according to the regular requests to master index which can
cause a single point of
 failure. According to this point of failure, these
architectures developed different techniques of backup and
recovery to avoid system failure.
The objective of this study is to identify the weaknesses
that existed in Google File System architecture [4]. In
addition to that conquer the bottleneck resulting from the
central master used for indexing. Reaching a new
architecture for cloud storage system that replaces the
master index that depends on metadata by an ontology
which enhances the searching time via the master server
and facilitates the searching inside the file content.
Rest of the paper is organized as follows: Section 2
introduces Google File System architecture; While Section
3 describes the architecture of the Ontology Cloud Storage
System (OCSS). Section 4, presents the benchmarks used
to test this work and the experimental results. Finally,
Section 5 concludes this paper and suggests the future
work.

2. Google File System

The first point in the cloud computing term is Google's
Eric Schmidt in 2006[5]. As shown in figure 1 Google
cloud infrastructure has four systems which are
independent of and linked to each other. They are Google
File System for distributed file storage, Map Reduce

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 233

program model for parallel Google applications [6],
Chubby for distributed lock mechanism [7] and Bitable for
Google large-scale distributed database [8]. Google File
System is considered a distributed file system which
enables the host computer to access different files allocated
on other computers or servers in the same network
[9].Files in Google File System divided into multi a chunk
with fixed size. Each chunk is replicated three times at
minimum in different chunk servers inside the network.
There is a master server contains metadata in an index file
contains the location of each chunk and its copies. When
an application needs to access a chunk, this application
will request the file from the master server. The master
server will retrieve the file name associated with the
location of that chunk. The application will go to the
location of that chunk at the chunk server. The process of
updating is slightly different than the reading process.
Permissions for any modification to any chunk and agree
of that modification is one of the responsibilities of the
master server. The application will request a modification
to a specific file from the master server. The master server
will guide the application to the primary chunk server that
have this file and will prevent any changes to the chunks
associated to this file in another chunk server. When the
modification finished and the master server agree or
acknowledge of that changes. Updated versions of the file
and its chunks will be replicated in the replica servers. The
master server is the coordinator of all processes inside this
architecture which can cause a bottleneck to the master
server which can cause a single point of failure [10]

Figure 1 Architecture of Google File System[11]

3. Ontology Cloud Storage System OCSS

3.1 Ontology
Ontology is considered as one of the main components of
the Semantic Web, used to represent, acquire and utilize of
knowledge [12, 13] to help machines understand the
meaning of content of different web resources that increase

the opportunities of automated information processing [14].
Ontology provide a well defined vocabulary that define
different heterogeneous data resources or files including
structured, semi-structure, and unstructured files [15]
enabling a new generation of applications especially that
merge the idea of the Semantic Web and Cloud Computing.

There are different methods for building or reusing of
ontologies such as Cyc method [17], Uschold and King's
method [18] and Gruninger and Fox's method [19].

There are different ontology languages, but the reason for
choosing OWL as the language for building ontologies
related to documents and resources in the cloud computing
in our architecture; instead of metadata such as Dublin
core which is a vocabulary used to describe online content
return to the expressiveness of OWL [20] especially with
prosperities. [20] In addition to its ability to provide
restrictions on the behavior of properties which are not
available in the Resource Description Framework (RDF)
and its schema. All mentioned before are not all reasons,
but still the main reason for using OWL is the ability of
this ontology language to be extended in the future
according to the needs of clients as a W3C recommended
vocabulary on February 2004 (W3C) and represent
different semantic relations [21]

What we need form the ontology at this state are:
• Identification of the resource : describes the
domain, name and subject of the resource, In addition to
the author, and the keywords

• Recourse Structure: describes the relation between
different components inside the resource.

Administration: This will have the authorization and
rights to modify documents. In addition to the document's
version number
 The methodology used for building ontology in
this paper is a result of studying different methodologies
such as Cyc Method [17], Uschold and King's Method[18]
and Gruninger & Fox's Method [19]. The methodology
consists of five main phases. The first phase is called the
“Specification Phase” which describes the goals, scope,
domain and limitation of the ontology. The second phase is
called the “Conceptual Phase” which is responsible for
designing and organizing different classes, instances and
relations. The third phase is the “Implementation Phase”
which uses protégé-OWL 3.4 to implement the ontology
that contains about 93 classes including chunk servers,
replica, users and files classes, in addition to different
properties including data types and objects properties such
as the file creator, privileges, place of replica and
modification dates etc.. The fourth phase is the “Reasoning

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 234

Phase” which is tested using Pellete reasoner to check
class hierarchy and inconsistency. While the last phase is
the “Evaluation Phase” which evaluates the ontology
according to simplicity, compatibility, interoperability,
versioning, lifecycle and expressivity. The ontology
created in this project is tested and satisfies all the criteria
of the Evaluation Phase we find sample of ontology classes
in Figure 2

Figure 2 sample of ontology classes

3.2 Architecture

Figure 3 Cloud Storage Based on ontology

Figure 3 shows OCSS architecture that replaces the master
metadata index in the cloud by an ontology which
facilitates the searching inside the file content and increase
the speed of search.

3.3 Read Operation

1. Client sends a request to the Ontology. Containing the

logic identifier or the keywords related to the file
content.

2. The location of the file which contains the matching
keyword will be determined with its Replicas

3. The OCSS will select the chunk server which contains
latest version number, if there are more than one
candidate, the OCSS will select the nearest node by
comparing the IP address of the client and the data
server, then return the best address to the client.

4. When the client gets the best address, it will then send
its request to the address of the chunk server which
contains the data block. Now the chunk server acts as
a data provider as the traditional cloud storage
platform does.

@prefix xsd:
<http://www.w3.org/2001/XMLSchema <#.

@prefix xsp: <http://www.owl-
ontologies.com/2005/08/07/xsp.owl <#.

@prefix swrl: <http://www.w3.org/2003/11/swrl <#.
@prefix default: <http://www.owl-

ontologies.com/Ontology1314469453.owl <#
@prefix swrlb: <http://www.w3.org/2003/11/swrlb <#.

@prefix protege:
<http://protege.stanford.edu/plugins/owl/protege <#.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema <#.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns <#.

@prefix owl: <http://www.w3.org/2002/07/owl <#.
default:ReplicaServers_2

 a default:ReplicaServers ;
 default:replicaHasIp

 "192.162.1.1"^^xsd:string .
default:ChunkServers_1

 a default:ChunkServers ;
 default:chunkServerhasIp

 ""^^xsd:string ;
 default:isTheChunkServerOfFile

 default:XML_21 .
default:web1

 a default:Html ;
 default:creatingDate

 "2011-08-02T16:47:00"^^xsd:dateTime ;
 default:first_Modification_Date

 "2011-08-28T16:48:05"^^xsd:dateTime ;

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 235

3.4 Write Operation
1. Client sends a request for a data block with logic

identifier and new Keyword to the Ontology.
2. The location of the file which contains the matching

keyword will be determined with its Replicas
3. The Ontology updated with new information and new

Keywords if there is exists
4. The OCSS will select the chunk server which contains

latest version number, if there are more than one
candidate, the OCSS will select the nearest node by
comparing the IP address of the client and the data
server, then return the best address to the client.

5. The OCSS will lock the selected chunk server and its
replicas.

6. Then the write process will begin on the chunk server
and its replicas.

7. After the updating of each replica, the version number
also will be updated and the locked are released.

3.5 Replication
The main problem facing cloud computing is the
increasing of the availability of storage system which be
solved here in the OCSS by using the agent-scheduling
routine replication technique [22].

4. BENCHMARK
A benchmark developed here using C#.NET to simulate
and test the GFS and OCSS including the number of chunk
servers, clients, operation types (read/write) and number of
operations are entered as parameters to the system. Also
we used OWL,RDF,XML for building Ontology.

4.1 Hardware Platform
The chunk servers run on an Intel 2.2 GHz Dual core CPU
with 4GB RAM, and a Maxtor 160GB 5,400rpm disk
drive. A number of 2 GHz Intel machines run the client
emulation software. We must have enough client emulation
machines to be sure that the clients do not become a
bottleneck in any of our experiments. All machines have
connected through a switched 10/100Mbps Ethernet LAN
and the server connected with 10/1000 Ethernet LAN.

5. EXPERIMENTS RESULTS
The simulator was fed by various numbers of clients in
order to test both response time and throughput.

Figure 4:average response time in write operation

Figure 4 demonstrates that with increasing number of
clients, GFS shows highest response time due to the bottle-
neck resulted from the centralized architecture, whereas
OCSS has best response time in write operation because of
using ontology instead of metadata.

Figure 5: average throughput: during write operation

Figure 5 shows that OCSS has a higher number of write
operations due to replication procedure used to maintain
consistencies among replicas, compared with GFS.

Figure 6 average response time during read operation

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 236

Figure 6 demonstrates that with increasing number of
clients, OCSS shows lowest response time during read
mode compared with GFS

Figure 8: average throughput: during read operation

Figure 8 illustrates that all architectures show
approximately similar results for the number of read
because OCSS search in the file content.

6. CONCLUSIONS
The experimental results confirm that OCSS shows better
results compared to GFS architecture in terms of response
time and throughput with write operation according to the
using of ontology instead of metadata. On other hand, in
response time and throughput in read operation the results
are approximately similar. But OCSS has another
advantage which is the ability to search in the file content
rather than GFS. Our test environment was composed of 5
servers accommodating 50 files distributed randomly and
the numbers of clients were entered as a parameter ranging
as 10, 50, 100, 200 & 400 where all clients each accessed
10 files applying both read/write operations.

7. REFERENCES
1. Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud

computing. IBM White Paper, 2007.
2. S.G hemawat, H.Gobioff,and S'Leung. The Google file

system, In proceedings of the 19th ACM podium on
operating systems principles, pages 29-43,2003

3. Amazon Elastic compute cloud (URL) :http:
//aws.amazon.com/ec2/, access on Jan 2011

4. IBM Blue cloud project (URL) :
http:www.03.ibm.com//press/uslen/phessrelease22613. wss/,
access on Jan 2011

5. Ghemawat S, Gobioff H, Leung ST. The Google file system.
In: Proc. of the 19th ACM Symp. On Operating Systems
Principles. New York: ACM Press, 2003. 29_43.

6. Francesco Maria Aymerich,Gianni and Simon Surcis. An
approach to a cloud computing network.

7. Dean J, Ghemawat S. MapReduce: Simplified data
processing on large clusters. In: Proc. of the 6th Symp. On
Operating System Design and Implementation. Berkeley:
USENIX Association, 2004. 137_150.

8. Burrows M. The chubby lock service for loosely-coupled
distributed systems. In: Proc. of the 7th USENIX Symp. On
Operating Systems Design and Implementation. Berkeley:
USENIX Association, 2006. PP 335-350.

9. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA,
Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A
distributed storage system for structured data. In: Proc. of the
7th USENIX Symp. On Operating Systems Design and
Implementation. Berkeley: USENIX Association, 2006. PP
205-218.

10. Fesehaye, Debessay,Malik,Rahul,Nahrstedt and Klara. A
Scalable Distributed File System for cloud computing

11. Barroso LA, Dean J, Hölzle U. Web search for a planet: The
Google cluster architecture. IEEE Micro, 2003, 23(2):22_28.

12. Li Qin and Vijayalakshmi Atluri, An ontology Guided
Approach to change Detection of the Semantic Web Data

13. Amit Sheth. From Semantic Search Integration to Analytics.
Dagstuhl on Seminar Interoperability and Integration,
September 19-24, 2004.
http://www.dagstuhl.de/04391,Materials

14. Lixin Han, Guihai Chen and Lixie. A Method of Acquiring
Ontology Information from web Documents.

15. John Davies. Applications of Semantic Technology IEEE
Intelligent systems, January / February 2008.
www.computer.org/intelligent

16. A.Sheth, Semantic Meta Data for Enterprise Information
Integration DM, Review, July 2003

17. D. Lenat and R. Guha, Building Larger Knowledge Based
Systems Representation and Inference in the Cyc Project.
Boston, Massachusetts: Addison-Wesley, 1990.

18. M. Uschold and M. King, "Towards a methodology for
building ontologies," in Workshop on Basic Ontological
Issues in Knowledge Sharing in IJCAI Montreal, Canada,
1995.

19. G.-Perez, M. F. Lopez, and O. Corcho, Ontological
Engineering. London Springer Verlag Limited, 2004.

20. Yalan Yan, Jinlong Zhang, Miya. ontology Modeling for
Contract: Uusing OWL to ExpressS Relations. Proceedings
of the l0th IEEE International Enterprise Distributed Object
Computing Conference (E Doc'ot IEEE computer society

21. http://www.w3.org/TR/owl-features/
22. E. Sarhan, A. Ghalwash, M.Khafagy, “Agent Based

Replication for Scaling Back-End Databases of Dynamic
Content Web Sites”, 12th WSEAS International Conference
on OMPUTERS, Heraklion, Greece, 2008. PP 867-862

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 2, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 237

http://www.computer.org/intelligent

