

Implementation of MDA Method into SOA Environment for
Enterprise Integration

Wiranto Herry Utomo

 Faculty of Information Technology, Satya Wacana Christian University
Salatiga, Central Java, Indonesia

Abstract
Even though SOA provides real contribution, it is not adequate to
implement enterprise integration. There are still problems in the
implementation of enterprise integration in SOA environment,
they are 1) the absence of modeling language support, 2) the
absence of guideline of the services implementation produced by
services identification, and 3) service orchestration that uses only
Web Services. Based on the consideration and comparison of
some integration methods, MDA method from OMG is chosen as
a method to help dealing with SOA weaknesses. Model-driven
based MDA method enables business level functionality to be
modeled by UML language modeling that is separated from low
level implementation (code level). Therefore, SOA used in
MDA approach can be expressed using UML modeling language.
This study proves that SOA-MDA method has been successfully
used to perform analysis, design and implement of enterprise
integration.

Keywords: SOA, MDA, UML, Web Services, Integration.

1. Introduction

SOA is a framework in company architecture and aims at
achieving the same business’ goals: minimize ownership
costs and create flexible business solutions that improve
business’ stability, reduce time to the market and provide
support for global expansion. SOA substantially impacts
the whole key aspects of enterprise architecture. Business
service proposed by SOA forms the basic of business
architecture and process architecture.

SOA forms business architecture because business’
functions are exposed as services that can be divided and
reused. Business process, services and event are converted
to appropriate application services that create and support
services architecture. Services alone form application
architecture, whereas information architecture is achieved
through data standardization and data availability through
interface services [17]

SOA is a software architecture designed based on service
oriented design principles [3][15][5][8][13][7], whereas

service orientation is a concept in software engineering
that represents different approaches to separate interest.

According to Erl [3], in general, software that does not use
SOA can be divided into two main layers, Application
Layer where application runs and Business Process Layer
that describes how business process in a company runs.
Organization business process will be defined in
application along with technical program code. In SOA
implementation, service oriented process is implemented
in a layer between Business Process and Application Layer
where both are parts of logic enterprise. The layer is called
Service Interface Layer and can be seen in Figure 1.

This layer is to wrap the logic in Application Logic along
with the business process in Business Logic. Through this
approach, application can be more modularized with more
varied technology.

Fig 1. Service Interface Layer in SOA method [3]

Services analyses and identification can be done through
this SOA method [3]. The services achieved then mapped
to Service Interface Layer, which are Application Layer,
Business Process Layer and Service Interface Layer
(Figure 1).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 10

Even though SOA [3] provides real contribution, it is not
adequate to implement enterprise integration. There are
still problems in the implementation of enterprise
integration in SOA environment, they are 1) the absence of
modeling language support, 2) the absence of guideline of
the services implementation produced by services
identification, and 3) service orchestration that uses only
Web Services.

Orchestration using Web Services has two weaknesses, in
terms of scalability and the inability to deal with protocol
and data discrepancy. To deal with this, Web Services
orchestration with ESB has now been developed. ESB is
an infrastructure for SOA service connection and message
exchange. ESB main functionality is to do routing,
protocol transformation and message or data
transformation. Protocol and data discrepancy can be
overcome by the protocol and data transformation in ESB.
ESB eases connection and mediation, simplifies
integration and eases the reuse of service components that
lead to a high scalability integration.

Other strengths of Web Services orchestration with ESB is
that it enables business layer and information system to
have a closer relation because Web Services orchestration is
presented in high abstraction level called business process
by hiding middleware traditional object used to support
business to business interaction. Aside from that, business
requirements can be directly translated into business
process application through Web Services composition.
That is why SOA method alone is not yet optimal to
implement enterprise integration. Thus, other methods that
are able to deal with the method’s weaknesses are required.

Based on the consideration and comparison of some
integration methods, MDA method from OMG is chosen
as a method to help dealing with SOA weaknesses. The
decision to choose MDA method to be combined with
SOA method is based on: 1) MDA method is a model-
driven method based on the use of platform independent
technology model, 2) this method can be used to transform
high level business process model to low level one (code),
3) the existence of standard modeling language, 4) this
method has used ESB as midleware infrastructure, 5) the
phases of the process in this method use system
development life cycle.

Model-driven based MDA method [9][4] enables business
level functionality to be modeled by UML language
modeling that is separated from low level implementation
(code level). Therefore, SOA used in MDA approach can
be expressed using UML modeling language.

By combining MDA and SOA methods, two completing
each other advantages will be gained. SOA provides an

infrastructure that reduces complexity in the services reuse
and integrates all kinds of technology, protocol, and
application whereas MDA is used in High Level Business
Process Model transformation to platform independent low
level one (programming code). The integration of SOA
and MDA methods will be a complete method for
enterprise integration..

2. Related Works

Rafe et al [12] stated that the goal of their research are to
provide a successful and usable conjunction between these
two technologies. They have tried to provide a simple yet
effective process which can be viewed as a framework. In
the vision inspired by this framework, SOA is the product
and MDA makes its production line. During this process,
input model is provided via XMI standard and with a high
level of abstraction. Proposed framework analyses the
elements and their relations within the given model and
tries to recognize the SOA components. In two phases
(Figure 2), the input model is first transformed into a SOA
profile based model and then into a middleware
independent code. Middleware transparency is achieved
via the concept of Aspect. The final phase of framework is
to transform middleware transparent code into an
executable code based on one of known middlewares for
SOA. Jini middleware and pre-process weaving is used in
the last phase.

Fig 2. Framework Components [12]

The phase of PIM to PSM can be considered as the most
important and complex part of the framework. In this step,
the platform independent model - based on UML standard
profile - is transformed to the platform specific model -
based on proposed SOA profile. Although we have tried to
apply MDA to SOA for simpler model, the approach taken
here has more capabilities and can handle relatively more
complex cases.

In this approach, the input model (PIM) has no direct
information about SOA. Obviously using such an abstract
input - based on standard UML - requirements a more
autonomous model transformer. By autonomous we mean

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 11

a model transformer which tried to depend on the
specification of model rather than human guidelines. Such
a model transformation is beyond what we expect from an
MDA based model transformer and also beyond most of
the current frameworks.

Model-Driven Architecture (MDA) is proposed by the
Object Management Group (OMG) as a reference to
achieve wide integration of enterprise models and software
applications. MDA is a best choice to address how SOA
should be designed, developed and integrated. MDA
provides specifications for an open architecture
appropriate for the integration of systems at different
levels of abstraction and through the entire information
systems’ life-cycle. The MDA comprises three main layers:
Computation-Independent Model (CIM), Platform-
Independent Model (PIM), Platform Specific Model
(PSM) . MDA lies in separating the enterprise model from
the technology infrastructure, making a clear division
between the business functions and the implementation
details.

The Computation Independent Model (CIM) cares about
the requirements for the systems by describing the
situation in which the system will be used. Such a model is
sometimes called a domain model or a business model and
hides information about the use of automated data
processing systems.

The Platform-Independent Model (PIM) describes the
operation of a system while hiding the details necessary
for a particular platform. The model focus on
specifications that are not changing from one platform to
another e.g. BPMN (independent from Workflow engine)
or UML (independent of computing platform).

A Platform-Specific Model (PSM) combines the
specifications in the PIM with the details that specify how
theses systems are using a specific type of platform.

There are three levels, CIM, PIM and PSM, in MDA
method according to OMG. In the research conducted by
Rafe et al [12], CIM level is not used but is directly
jumped to PIM-PSM level. Aside from that, in Rafe et al
research [12], SOA is used after modeling of the PIM-
PSM level. Therefore, therefore two differences of this
research and Rafe et al research [12] : 1) this research
used three complete MDA levels, CIM, PIM and PSM, 2)
SOA is combined in CIM level to MDA in order to decide
business process and identify services, MDA modeling in
the next level, PIM and PSM, is done after the services
found.

3. SOA – MDA Methods

The integration OF SOA and MDA complete each other
and cover each other weaknesses. Actually, the use of
‘integration’ term is not appropriate. The more appropriate
term is MDA ‘implementation’ into SOA environment.
The application of model driven method in SOA
environment is phases of high level Business Process
model into executable services and can be orchestrated
into the integration of services. Phases or processes of the
integration method refer to Object Oriented System
Development Life Cycle that refers to Solamo [14]. Phases
of SOA-MDA method can be seen in Figure 3.

New method as a result of integration proposes service
oriented approach for integration by determining two
factors:
• Business Perspective focuses on business features and

requirements from the application that will be
constructed.

• System Perspective focuses on functionality and
process requirements to be implemented in the
application to satisfy business requirements.

Business Process
Model

Use Case ModelAbstraction Layer
Model

Sequence ModelClass Model

WSDL Model BPEL Model

Computation
Independent
Model

Platform
Independent
Model

Platform
Specific
Model

Business
Perspective

Systems
Perspective

SOAD MDA - OOAD

Component Model

Composite Model

Fig. 3 New method of the integration of SOA and MDA method

This integration method provides a series of concepts
required for modeling of the two perspectives. All
concepts can be seen in Figure 3 that represents the two
methods, SOA and MDA. The concepts related to business
perspective explain the attached elements in business and
are represented in CIM Model through Business Process
Model. The concepts related to system perspective are
elements used to describe system functionality and process
and are represented in PIM dan PSM Model, with Use
Case Model, Class Model, Sequence Model, Component
Model, WSDL Model, BPEL Model and Composite
Model.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 12

Some barriers in the selection of programming language,
hardware, network typology, communication protocol,
infrastructure, etc occur in software development. Each
element is considered as a part of the platform solution.
CIM approach helps to focus on essential part of the
solution designed, separated from platform details. CIM
does not show structure details of the system. CIM plays
important roles in bridging the gap between domain expert
and its requirements, as well as the experts who constructs
artifacts who work side by side to fulfill the domain
requirements. CIM is referred as business domain model
that explains the knowledge of business domain, which is
free from business process or particular software used
[1][16][6][10].

In CIM level, which is business analysts oriented, this
method uses Business Process Model by adopting BPMN
notation that is in fact the standard of business process
modeling. However, the business process modeling also
uses Activity diagram beside BPMN notation. Business
Process Model is used to define identification guideline
and business concept representation. This Business
Process Model eases service identification to be
implemented into application, and transform it into low
level one such as PSM level to model Web Services and its
composition.

PIM is a view of a system from platform independent
point of view. PIM indicates particular levels of platform-
freedom so that it can be used for some different platforms.
PIM can be seen as the specification of free technology
system functionality that will be used to implement the
functionality. PIM provides formal specification from
system structure and function that is free from any
platform. From this point of view, it can be said that CIM
is a component of PIM since platform independent
component describes computational component and its
independent interaction. This components and interface are
ways to realize some more abstract information system or
application, which automatically help to create a CIM
[1][16][6][10].

PSM explains how particular technology can be used to
implement the function described in PIM. PSM is adapted
with the system in term of implementation construction
provided by a particular implementation technology. PSM
possesses components for target platform. PIM can be
transformed into one or more PSM. Particular platform is
produced for every particular technology platform
[1][16][6][10].

According to OMG [9][4], PSM is a system reviewed from
a particular platform point of view. For Example, Class
Model is PIM with service implementation architecture

choice, if the model chooses to use particular service
technology such as Web Services, the Class Model is then
transformed into specific PSM for Web Services.

The use of UML can be said as a common thing in most
methods. However, this integration method proposes the
use of UML for modeling notation in PIM level, whereas
modeling in PSM level will be adapted with
implementation platform.

This integration method is a complete development
method because it views modeling from all elements
related to services oriented system development. This
method does not only include one level in driven model,
such as PIM, or PSM, but it includes all level including
CIM, PIM dan PSM.

4. PHASES OF SOA-MDA METHOD

Figure 3 shows that the processes start by building
Business Process Model that later result in services. These
processes include several phases where each phase is
related to the “creation” of different models. The phases of
this integration model include nine phases 1) Business
Process Model, 2) Abstraction Layer Model, 3) Use Case
Model, 4) Class Model, 5) Sequence Model, 6)
Component Model, 7) WSDL Model, 8) BPEL Model and
9) Composite Model. The phases of development process
of this integration method are:

1. Business Process Model

With the fast changing business, company can build new
business processes by running existing application. This
model includes in business perspective and CIM layer.
This model is a high level model that serves as the
modeling starting point of this method. This model is
derived from SOA and MDA methods. The notation used
in Business Process Model can use either BPMN or
Activity Diagram UML notation.

Business Process Model does not only focus in individual
business process representation, which can be fulfilled by
workflow description using BPMN that are implemented
into WS-BPEL, but also focuses in the development of
SOA solution using business process. Business Process
Model manages services in workflow business context.
This model displays service management in top-down
process level. Top-down direction eases the mapping of
business requirements into tasks that include activity flows,
every is activity realized by existing business process and
service components.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 13

To decompose business process, first, tasks are broken
down into smaller ones and then map each business
process into services.

By implementing SOA design and method, company
business processes are modeled and processes blocks that
can be grouped into services are identified. Legacy
application is analyzed based on its functionality and is
mapped to the services. New service is constructed when
there is business process that cannot be mapped to legacy
application.

Fig. 4 Process Model using BPMN notation

2. Abstraction Layer Model
Services decomposition can be done from Business
Process Model by decomposing business process into the
smaller ones. Process Model can be generated into services
required to construct new business process. These services
can be developed from legacy application, third party or
constructing new services.

Abstraction Layer improves Web Services group concept
that is a group of Web Services that serves business
function as general. Web Services can be published by
different service provider and be differentiated from others
through specific features. Service layer shows top-down or
bottom-up service layer handling.

Even though this integration method is the integration of
SOA methods from Erl [3], there are some differences in
this Service Layer Model. These differences occur because
this integration method uses middleware ESB via BPEL to
do Web Services orchestration, whereas in SOA method,
Web Services orchestration still uses Web Services (in
Service Layer Orchestration).

Service candidate identification is carried out in every
layer in SOA, which exists in Application Service Layer,
Business Service Layer, and Orchestration Service Layer.
However, as mentioned before, ESB replaces

Orchestration Service Layer. Therefore, services candidate
identification is only carried out in two SOA layers,
Application Service Layer and Business Service Layer.
Service candidate identification is carried out based on the
requirements derived from application Use Case Model
and Business Process Model.

In Business Service Layer, identification is carried out by
looking at the existing business process and the parts
nominated as service candidates are identified. The
identification process of service candidate in this layer can
be done through task-centric business service. In
identifying task-centric business service, identification
from Use Case Model in Use Case Diagram is also done in
addition to the use of existing business process. Task-
centric business layer is gained by mapping the existing
phases in business process into services.

Based on Business Process Model constructed, two kinds
of services in this layer can be seen 1) input services that
create trigger toward business process, and 2) output
services that promote invoke. Rademakers-Dirksen [11]
explicitly divides these services into two, inbound service
to carry out input connection configuration and outbound
to carry out output connection configuration. Referring to
Rademakers-Dirksen [11], there are two kinds of services
in this layer, inbound service and outbound service.

Therefore, in this integration method, Abstraction Layer
Model is the improvement of Erl layer model (2005), with
the following improvement:
1. Orchestration Service Layer is improved into Service

Bus Layer
2. Leave out Application Service Layer. This layer is left

out because by the implementation of ESB for
integration, all services are services related to business
process, and there is no services that technically related
to only Application Layer.

3. Business Service Layer is grouped into two service
layers, Inbound Service Layer and Outbound Service
Layer.

By the use of this new Abstraction Layer Model, the
former services found are mapped into Abstraction Layer
Model as shown in Figure 5.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 14

Java EE

Business Process Business Process Business Process

DBMS

Enterprise Service Bus

Business Process

B
usiness

Process
Layer

Service B
us

Layer
Inbound B

usiness
Service Layer

O
utbound B

usiness
Service Layer

A
pplication
Layer

Business ProcessBusiness Process

Fig. 5 Abstraction Layer Model

3. Use Case Model
This Use Case Model describes the system’s requirements.
This phase is a form of software engineering that enables
developer in understanding problem domain. This
Requirement Model is a series of tasks to know the impact
of software development, what the costumers want, and
how end users will interact with software.

Use Case Model is used to describe what the system will
do, system’s functional requirements, and the expected
system functionality along with its environment.
Complement specification is the not-yet-mapped
requirement into Use Case specification that includes non
functional requirements such as code maintenance,
performance reliability, and system supports or obstacles
as well as safety. Use Case Model is a mechanism to
achieve expected system behavior without determining
how behavior system is implemented.

The output produced in this phase is in the form of Use
Case Model (Use Case Diagram), and Use Case
Specification. This Use Case model is usually gained
based on user’s requirements, however, in this integration
method, Use Case is produced from Business Process
Model. Every business process, which is a functionality of
a business unit, is represented into every Use Case of Use
Case Diagram.

Use Case Diagram consists of Actor and Use Cases. This
diagram shows system functionality and actor
communicate with the system. Every Use Case in the
model explains the details of the use of Use Case
specification. Use Case UML diagram is used as modeling
tool for Use Case model. This Use Case diagram consists
of three components (see Figure 7):
1. Actor, represents a series of role played by users or

system when they interact with Use Case. The actor
calls the system to send a service. This Actor can be
human or other system. Actor is named after nouns.

2. Use Case, describes the function displayed by the
system when it interacts with the Actor. This Use Case
is described using verbs or verb phrases.

3. Association, shows the relation or association between
Actor and Use Case and or inter-Use Case

Fig. 6 The Example of Use Case Diagram

4. Class Model
Class model is constructed using UML Class Diagram.
This Class Diagram is an input for the following program
development. This Class Model represents previous
conceptual model over something in the system that
possesses behavior. Class Model is an important model in
software development because it will be the main input for
the following phase. This model is described in Class
Diagram containing classes that provide former conceptual
model for things in the system that possesses property and
behavior. This Class Diagram consists of Boundary Class,
Control Class, Entity Class and Web Services Class.

There are four perspectives used in identifying classes,
they are boundary between system and actor, the
information used by system, and control logic of the
system. These four perspectives are described into classes,
they are: Boundary Class, Control Class, Entity Class and
Web Services Class (Figure 7).

Fig. 7 The Example of Boundary Class, Control Class, Entity Class and
Web Services Class

Boundary Class is used to model the interaction between
environment and the system working in it. This Class
explains system boundary and starting point in identifying
related services. This Class limits external power from
internal mechanism and vice versa. This Class bridges
interface and something outside the system that consists of
interface users, system interface and interface tools.

ShoppingCont
<<Control>>

ShoppingUI
<<Boundary>>

Order
<<entity>>

InboundShopping
<<web service>>

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 15

Boundary Class is derived from Use Case Diagram,
originally from the set of Actor and Use Case.

Control Class represents system functionality. This Class
provides behavior that defines control logic and
transaction in Use Case, contributes small change if Entity
Class’ structure or behavior changes, uses or governs some
Entity class’ contents. This Class provides system
coordinated behavior and limits Boundary Class and Entity
Class.

Fig. 8 Boundary Class derived from the set of actor and Use Case

Fig. 9. Control Class from Use Case

Entity Class represents information storage in the system.
This Class is used to update information, such as events,
phenomena or objects. This class responsible for storing
and managing information in the system that represents
key concept from the system constructed. This Class
Entity can be derived from key abstraction of Use Case
Diagram by filtering noun.

Web Services Class is a representation of services found in
Service Layer Model.

5. Sequence Model
Sequence Model is created using UML Interaction
Diagram containing Collaboration Diagram and Sequence
Diagram. Interaction diagram models dynamic
characteristics of objects in groups of classes. This
diagram models system behavior as how system responds

toward a particular user’s action, how an object is created
or changed as well as how data is transformed.

This model shows interaction and collaboration among
analyses classes. Two basic elements used in Behavior
Model are object and message. Object is an instantiation of
a class, whereas message is a form of communication
among objects. This service Process Model can be seen as
a collaboration among the object of classes in Service
Model. Therefore, the input from this Sequence Model is
derived from Class Model. An example of Sequence
Model can be seen in Figure 10.

Fig. 10 An Example of Service Process Model

6. Component Model
This model expands the representation of Class Model and
the Sequence Model modeled before. Component Model
represents components from Web Services composition that
identifies services collaborating with business process.
This method represents this model using Component
Diagram.

This Component Diagram describes components
integration which in the next phase will be derived into
composite application. The example of Component Model
can be seen in Figure 11.

Fig. 11 An Example of Component Model

7. WSDL Model
This model is used to describe Web Services interface that
will be used to deliver every services provided by the
system. This model is based on WSDL standard. WSDL
is a language proposed by W3C to describe Web Services
and enables it to describe the interface of services in XML

SearchingBP
<<BPEL>>

SearchingUI

SearchingCont
InboundSearching
<<web service>>

OutboundAmazonSearch
<<web service>>

Eshop

OutboundyahooSearch
<<web service>>

OutboundEbaySearch
<<web service>>

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 16

format. WSDL Model allows to derive graphic
representation of Web Services interface that will be
generated into WSDL code automatically. The example of
Web Service Interface Model implemented in Java EE
platform using Netbeans.

8. BPEL Model
This model expands service composition identified by
process model explained above by adding particular Web
Services based platform details. This Process Execution
Model is represented in the form of WS-BPEL. WS-BPEL
is a Web Services extension used to facilitate modeling
process and BPEL execution in Web Services. BPEL is a
modeling language in XML format used to describe
business process. The model produced by this language is
later executed by BPEL engine.

The explanation of elements in this language will be
explained as follow [3]:
1. Process. Process is BPEL’s main element. The name of

process is defined as name attribute. Aside from that,
this tag is also used to insert information related to
process definition.

2. PartnerLink and partnerLinks. This element defines
the kinds of port from other services involved in
business process execution.

3. Variables. This element is used to keep status
information used during the process of workflow logic.

4. Sequence. This element organizes a group of
activities that they can be executed in an orderly
manner. Whereas the elements are supported by WS-
BPEL for sequence such as recieve, assign, invoke, and
reply.

Beside the four main elements above, WS-BPEL also
facilitates some other tags. Standard from BPEL is defined
by OASIS and can be achieved from OASIS website. The
example of BPEL Model implemented in BPEL using
Netbeans can be seen in Figure 12.

Fig. 12 An example of BPEL Model implemented in BPEL using
Netbeans.

9. Composite Model
Composite application (SOA composite application)
according to Binildas [2] is an SOA application containing
some components such as services, BPEL process, ESB
mediation, rules, adapter, and etc. All components must
cooperate and support one or more Composite Application.

This model is SOA application modeling containing some
components such as BPEL process and ESB. All the
components cooperate and support one or more Composite
Application. Composite application is the integration of
services containing business function and information
from a separate source of information. Composite
application is a form of integration and application
development. Specifically, Composite Application is
constructed to support company business process and map
it to underlying information resources. In business
integration, Composite Application is the final product of
SOA. The example of Composite Application can be seen
in Figure 13.

Fig. 13 An example of Composite Application implemented in CASA
using Netbeans.

4. Conclusions

The case study to proves thisn methods consists of e Shop
application where consumers can shop and place orders for
goods offered for sale there. The e-Shop doesn't store
inventory but it relies on third parties to warehouse and
ship the goods. The third party consisted of the Amazon,
Ebay and Paypal. As soon as the e-shop receives an order,
it creates a purchase order and sends it to the backend
purchasing system which, in turn, sends orders out to one
or more suppliers for fulfillment.

This case study of e Shop application proves that SOA-
MDA method has been successfully used to perform
analysis, design and implement of enterprise integration.

References
[1] Almeida, J.P.A., 2006, Model-Driven Design of Distributed

Applications, Ph.D. Thesis, Centre for Telematics and
Information Technology, University of Twente, Netherlands

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 17

[2] Binildas, C. A., 2008. Service Oriented Java Business
Integration, Birmingham-Mumbai: Packt Publishing.

[3] Erl, T., 2005, Service-Oriented Architecture: Concepts,
Technology, and Design, Prentice Hall PTR, Upper Saddle
River, New Jersey 07458

[4] Frankel, D.S., 2003, Model Driven Architecture : Applying
MDA to Enterprise Computing, Wiley Publishing, Inc.,
Indianapolis, Indiana

[5] Kanchanavipu, K., 2008, An Integrated Model for SOA
Governance An Enterprise Perspective, Master Thesis, IT
University of Göteborg Chalmers University of Technology
and University of Gothenburg, Göteborg, Sweden

[6] Kim, H., 2008, Modeling of Distributed Systems with SOA &
MDA, IAENG International Journal of Cumputer Science,
35:4, 20 November 2008

[7] Li, G., Muthusamy,V. and Jacobsen, H., 2010, A Distributed
Service-Oriented Architecture for Business Process
Execution, ACM Transactions on The Web, Vol. 4, No. 1,
Article 2, Publication date: January 2010.

[8] Nikayin, F.A., 2009, Adopting A Theoretical Method For The
Development Of A Service-Oriented Information System,
Dissertation, Faculty of Computer Science and Information
Technology, University of Malaya, Kuala Lumpur

[9] Pastor, O. and Molina, J.C., 2007, Model-Driven
Architecture in Practice A Software Production Environment
Based on Conceptual Modeling, Springer-Verlag Berlin
Heidelberg

[10] Pokraev, S.V., 2009, Model-Driven Semantic Integration of
Service-Oriented Applications, Ph.D. Thesis, Centre for
Telematics and Information Technology, University of
Twente, Netherlands

[11] Rademakers, T., dan Dirksen, J., 2009, Open Source ESBs
in Action, Manning Publications Co., Greenwich, CT 06830

[12] Rafe, V., Rafeh, R., Fakhri, P., and Zangaraki, S., 2009,
Using MDA for Developing SOA-Based Applications,
International Conference on Computr Technology and
Development, IEEE Computer Society

[13] Reddy, V.K., Dubey, A., Lakshmanan, S., Sukumaran, S.
and Sisodia, R., 2009, Evaluating legacy assets in the context
of migration to SOA, Software Qual Journal (2009) 17:51–
63, Springer Science+Business Media

[14] Solamo, R., Antonio, J., Asrani, N., Chen, D., de Guzman,
O., Feria, R., Petines, J.P., Shin, S., Srinivas, R., Thompson,
M. and Villafuerte, D., 2006, Software Engineering, Java
Education & Development Initiative, Sun Microsystem.

[15] Sterff, A., 2006, Analysis of Service-Oriented Architectures
from a business and an IT perspective, Master Thesis,
Technische Universität München, Fakultät für Informatik

[16] Vidales, M.A.S., García1, A.M.F., and Aguilar, L.J., 2008,
A new MDA approach based on BPM and SOA to improve
software development process, Tékhne, 2008, Vol VI, no 9,
ISSN: 1645-9911

[17] Vos, W., and Matthee, M.C., 2011, Towards A Service-
Oriented Architecture: A Framework For The Design Of
Financial Trading Applications In The South African
Investment Banking Environment, South African Journal of
Industrial Engineering May 2011 Vol 22(1)

Dr. Wiranto Herry Utomo is an associate professor of the
Departement of Information System at the Satya Wacana Christian
University, Salatiga, Central Java, Indonesia. He has published in

several journals including IJWA, MASAUM Journals, and
international conference including iiWAS of the ACM. His
research interests include the enterprise integration, strategic
alignment, SOA, Web Services, BPEL, Enterprise Service Bus,
and Java EE.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 18

