
A Partitioning strategy for OODB

Dr. Sudesh Rani
Asstt. Prof.(Computer Science), Govt. College, Hisar
Kurukshetra University, Kurukshetra, Haryana, India

Abstract

An effective strategy for distributing data across multiple disks is
crucial to achieving good performance in a parallel object-
oriented database management system. During query processing,
a large amount of data need to be processed and transferred
among the processing nodes in the system. A good data
placement strategy should be able to reduce the communication
overheads, and, at the same time, to provide the opportunity for
exploiting different types of parallelism in query processing,
such as intra-operator parallelism, inter-operator parallelism, and
inter-query parallelism. However, there exists a conflict between
these two requirements. While minimizing interprocessor
communication favors the assignment of the whole database to a
small number of processors, achieving higher degree of
parallelism favors the distributions of the database evenly among
a large number of processors. A trade-off must be made to obtain
a good policy for mapping the database to the processors.We
need good heuristics to solve this and more complicated database
allocation problems. In this paper, we propose some heuristics
for partitioning an OODB so that the overall execution time can
be reduced.

Keywords: Parallelism, Vertical partitioning, Horizontal
partitioning, Query diameter.

1. Introduction

In order to achieve parallelism, the database needs to be
partitioned over multiple components in a parallel system.
For example, relations in Gamma ([4], [5]) are
horizontally partitioned across all nodes with disk drives
using one of four declustering strategies provided in the
system: round-robin, hashed, range, and hybrid-range
partitioned. However, none of the strategies is a clear
winner in the performance analysis ([7], [8]). To decluster
all relations across all nodes with disks is recognized as a
serious mistake ([5]). A better solution used in Bubba (
[3]) is to decluster a relation based on the \heat" (i.e., the
cumulative access frequency) and the size of the relation.
Since the ideal data placement changes continuously as the
workload changes in time, Bubba repeatedly refines the
data placement if the performance improvement is worth
the work required to reorganize.

In a relational database environment, a relation may be
accessed by several types of queries which require
different sets of attributes. In order to improve the
performance, attributes of the relation are divided into
groups and the relation is projected into fragment relations

according to these attribute groups. This process is called
vertical partitioning. The fragments are assigned to
different sites in distributed database systems to minimize
the cost of accessing data by all queries.

There are trade-offs between horizontal and vertical
partitioning methods. A general discussion of pros and
cons on a decomposed storage system (DSM), which pairs
each attribute value with the surrogate of its record, is
reported by Copeland and Khoshafian ([2]). Several
parallel database projects have employed some form of the
same vertical data partitioning concept ([9], [10], [11],
[14]). A simple file assignment problem, which deals with
assigning files to different nodes of a computer network,
has been studied extensively ([6]). However, most of the
works assume that a request is made at one site and all the
data for answering it is transferred to that site. This simple
view of application cannot model the query processing
strategy in a parallel database system. The simple file
assignment problem is an NP-complete problem

As for the OODBs, it is recognized that object clustering
is important to the performance ([1], [12], [13]). However,
the clustering in OODBs is still an open research issue,
and therefore the problem of declustering an OODB for a
parallel system is a new challenge in research.

2. The Problem

The problem is to partition a given OODB and assign the
partitions to the nodes in a multiprocessor system. It is
assumed that the number of object classes in the database
is larger than the number of processors in the system.
Also, we assume that the processors are fully connected.
This simplifies the problem so that we do not need to
consider the effects of the network's physical topology.
However, we can simulate different topologies by
introducing various delays to different links.

We assume that the unit of distribution is class. In other
words, classes are not allowed to be split, and each class
must reside in one and only one node. Since we group all
the data associated with an object class together, we can
localize retrieval, manipulation, and user-defined
operations and reduce the overall communication among
processors. If we horizontally partition the classes and
assign them to multiple processors, two sets of processors

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 317

need to communicate with each other when two classes
want to exchange information. In addition, if a large
number of processors work on the same class, this
horizontal partition scheme does not provide a good
environment for multiple queries to be executed in parallel
when these queries access different classes. Thus, we
choose class as the unit of partition in this study. However,
if some classes are too large for one node to handle and we
decide to split them, the heuristics presented in this paper
can still be used to group the partial classes.

It is not easy to find a partition which is good for all the
applications. A good partition for one application may not
be suitable for another application. If we make a
compromise for both applications, neither one will
perform well. Therefore, we decide to partition the
database based on the processing requirement of a single
application which is characterized by a set of typical
queries used in the application. By analyzing the query
patterns in the set and the data characteristics of the
database, we try to find a partition so that the execution
time of the set of queries is minimized.

If we want to calculate the execution time of a query, an
appropriate cost function is needed for modeling the
parallel execution of the query. For a set of queries, the
interaction and interference among queries will make it
extremely difficult to formulate the cost function. Even if
we can formulate the correct function, the problem of
finding the minimum would be intractable. Therefore,
instead of finding the best partition which gives the
minimal execution time, we try to find some heuristic
rules that will avoid bad partitions and give good
performance.

3. Heuristics for Partitioning an OODB

The execution time of a query in a parallel environment
consists of three components: CPU time, IO time, and
communication time. Since the CPU time and IO time in
each processor are the time the processor works on the
query, we use the term “processing cost” to represent these
two time components. It takes some communication time
for a message to transfer from one processor to another.
However, both the source and the destination processors
can do other tasks during this time.

If the communication delay is short, one obvious bad
solution for partitioning the database is to assign all object
classes to one single node. In other words, we want to
balance the processing load on the nodes as well as to
reduce the communication cost among them. However, we
cannot use the sum of the processing cost and the
communication cost as the total cost for a partition
because it is difficult to give a meaning to the combined
cost. Also, if we use the combined cost to partition the
database, we run the risk of having two equal cost
partitions in which one has high processing cost and the
other one has high communication cost. On the other
hand, if the communication delay is long, we want to
group classes that exchange large amount of data and

reduce the length of the “path” through which messages
and data must be transferred. Therefore, we try to find a
combined heuristics for partitioning the database.
The heuristic method is based on the overall processing
cost of each class referenced in a query. We measure the
overall CPU time and IO time used for processing a class
to represent the processing cost of that class in the query.
When we consider the set of queries, we take the sum of
the processing costs for the same class in all queries to
represent the total processing cost for that class.

Figure 1 shows the example university database with a
class number and a class size in parentheses (i.e., the
number of instances) attached to each class. A set of 10
queries as shown in Figure 2 represents the processing
requirement of a specific application that we want to
partition the database for. In this example, we have 5
simple queries (queries 0, 1, 2, 3, and 4) and 5 complex
queries (queries 5, 6, 7, 8, and 9). Each simple query
contains 3 or 4 classes and each complex query has 6 or 7
classes. Since this set of queries has a large variety of
query patterns, we feel that it can represent a general
application of this database. The number in parentheses
beside each class number is the measured processing cost
of the class when the query is actually executed. We can
calculate the processing cost of each class. For example,
class 2 (Transcript) has been referenced twice in query 0
and query 8. The overall processing cost of class 2 in the
set is the sum of the processing costs of class 2 in query 0
and query 8. Therefore, the overall processing cost of class
2 is 46.13. The calculated processing costs for all the
classes referenced by the query set are shown in Table 1.

The overall processing cost of a class represents the
minimal work that needs to be done for the set of queries
if the class is assigned to a single processor. If we assign
multiple classes to a processor, the load of the processor is
the sum of the processing costs of the classes that are
assigned to it. In order to achieve good performance, we
want to distribute the load among the processors as evenly
as possible. Load balancing is our main consideration for
partitioning the database.

However, when we group two classes and put them on the
same processor, the time for exchanging messages
between these two classes can be drastically reduced.
Therefore, we also want to group classes in a way so that
the overall communication time can be reduced. The
length of the longest path in a query is called the query
diameter.

If we reduce the diameter of a query, the overall
communication time of the query will also be reduced.
The query diameter can be reduced by grouping adjacent
classes in the longest path and assigning them to the same
processor. This is our secondary consideration for
partitioning the database.

We combine the above two heuristics into the following
method for partitioning a database. Since we want to
evenly distribute the processing cost among the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 318

processors, the number of groups of classes that we
formed should be equal to the number of processors,
assuming the number of classes is larger than the number
of processors.

The overall processing cost of each group should be close
to the average processing cost among the processors. The
average processing cost is called threshold cost. If some of
the classes have processing cost that are larger than the
average processing cost of the processors, we assign each
of them to an empty group and will not assign any other
class to these groups. The remaining classes should be
distributed among the remaining processors as evenly as
possible. Since the processing costs of the classes assigned
to the single-class groups are above the threshold cost, the
average processing costs of the remaining classes would
be lower than the threshold cost. For this reason, we
calculate a new threshold cost based on the costs of the
remaining classes.

This new threshold cost is used as an upper limit for
grouping classes in the first phase. When we group classes
together, the total processing cost of the resulting group
should not be larger than the new threshold cost. We start
from the query with the largest diameter in the set and try
to reduce the diameter by grouping two adjacent classes in
the longest path. The two adjacent classes with the
smallest combined processing cost will be considered. If
the combined cost does not exceed the threshold cost, we
group them together and use the combined cost as the
processing cost of these two classes in all the queries. This
step reduces the length of the longest path by 1. Then, we
try to reduce the next longest path in the set by 1.

If there are multiple paths with the same length, we find a
candidate pair of class for each path and choose the pair
with the lowest combined cost to group. This process will
continue until we cannot reduce the length of any path by
grouping classes or the number of groups is equal to the
number of the processors. In this phase, while we group
classes to reduce the query diameters, the threshold cost is

used to control the load in each group so that we can
balance the load during the second phase of
our heuristic method.

After we finish grouping classes for reducing query
diameters, we need to reduce the number of groups to the
number of processors in the system. In other words, we
want to form the same number of clusters of groups as the
number of processors. First, the groups are sorted based on

Section (1200)

Person (1000) Transcript (200)

Teacher (500) Advising (900) Student (600) Course (2500)

Faculty (2300)

Grad (400) Undergrad (1300)

Deptt (10000)

TA (3000) RA (4000)

A
Number
Room
Stream

ID

Name
A

Grade

A

G A
GPA

Major

A

Minor

TitleNumberDate

G A

G

1 2

3 4 5 6

7

8 9

10

11 12

 Fig1: The University database

2

5 6

(24.50)

(22.12) (15.45)

1

(8.0)

(22.12)

(6.18)108

4

7 8

6

0 10

(4.01)

(4.40)(2.68)

(1.74)(5.40)

(3.75)

0

3 6

11

(5.43)

(4.00)

(2.21)

4

7
8

12

3

1

(3.76) (3.42)

(8.39)

(2.02)

Query 0 Query 1 Query 2

Query 3 Query 4 Query 5

(4.69)

1

11
5

10

3

0

6

(5.58)

(2.14) (5.74)

(18.50)

(3.12)

10

3

0

6
5

8(7.20)

(3.24)
(12.75)(4.54)

(9.32)

(1.80)

5

9
10

2

6

1

(12.50)

(6.65)

(21.90)

(10.70)

(11.10)

(13.54)

0 0

3 51

11
9

10

(18.08)
(8.74)

(8.35)

(10.85)(2.40)

(5.62)

(6.38)

(4.00) (16.74)

(29.20)

Query 6 Query 7

Query 8 Query 9

Fig 2: Sample Queries

3.5912

6.7511

28.4910

21.959

24.298

4.707

42.346

118.685

7.434

21.923

46.402

60.261

44.780

CostClass No.

3.5912

6.7511

28.4910

21.959

24.298

4.707

42.346

118.685

7.434

21.923

46.402

60.261

44.780

CostClass No.

Table 1: Processing cost of each class

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 319

their processing costs. Then we assign the group with the
largest cost to the first available cluster with the lowest
cost and add the group's cost to the cluster's cost. By
continuing this simple process, we can assign all groups to
a fixed number of clusters having relatively close final
costs among the clusters. Then, we can assign each cluster
to a processor because we assume all the processors are
the same and they are fully connected.

4. An Example

If we want to partition the university database for a 7-node
system, we need to find a suitable set of queries to
represent the application and measure the processing cost
of each class in each query. An example is shown in
Figure 2 Then, we calculate the overall processing cost of
each class and the results are shown in Table 1. The next
step is to find the threshold cost. Since the total processing
cost of all classes is 434.59 and the average processing
cost of the 7 processors is 62.08, the cost of class 5 is too
large for it to be considered in the following procedure.
Therefore, we just assign class 5 to a processor and drop it
from further consideration. We also re-calculate the
average cost of the remaining 6 processors and it is 52.65.
This is the new threshold cost.

Among the 10 queries, query 6 has the longest diameter of
6. The adjacent classes 3 and 11 have the smallest
combined cost (29.06) in the longest path in the query. We
group them together. Now, queries 6 and 5 both have a
diameter of 5. We check the longest path in query 6 and
cannot find two adjacent classes that have a combined cost
lower than the threshold cost. In query 5, we find classes 4
and 7 can be grouped together. By continuing this process,
we find that the groups with their cost in parentheses are
as follows: 5 (118.72); 1 (60.90); 9 and 10 (50.83); 2
(46.13); 0 (45.26); 6 (43.01); 4, 7, 8, and 12 (40.68); 3 and
11 (29.06).

We assign the 7 largest groups to the 7 empty clusters.
Then, we assign the next group (in this case 3 and 11) to
the lowest cluster. After we finish all the assignment, we
have the following clusters: class 5; classes 3, 11, 4, 7, 8,
and 12; class 1; classes 9 and 10; class 2; class 0; class 6.
The heuristics presented here along with some other
methods will be evaluated in the following chapter.

5. Evaluating Partition Heuristics

This method performs better than LB and OCPN methods
of partitioning. The LB heuristic method does not try to
reduce the query diameters in the query set. It directly
goes to the second step and tries to balance the load. The
one-class-per-node partitioning method (OCPN) assigns
only one class to a node. Partition of our method performs
better than the LB and OCPN methods when the
communication delay increases. This means the heuristics
used for partition the database is a good one.

6. Conclusion

We have proposed a heuristic method for partitioning the
database. The database is partitioned for a specific
application the processing requirement of which is
represented by a set of queries. By analyzing the queries
and the system characteristics, we can partition the
database to suit the application. This heuristic method first
uses a threshold cost as a guide to group small classes so
that the query diameters can be reduced. Then, it tries to
evenly distribute the cost among all the processors. This
heuristic method is based on the overall processing cost of
each class referenced in a query. We measure the overall
CPU time and IO time used for processing a class to
represent the processing cost of that class in the query.
When we consider the set of queries, we take the sum of
the processing costs for the same class in all queries to
represent the total processing cost for that class.This
method performs better than other partitioning methods
e.g. LB and OCPN if the communication delay is long.

7. References

[1] J. R. Cheng, and A. R. Hurson, “Effective clustering of
complex objects in object-oriented databases”, in ACM
SIGMOD International Conference on Management of
Data, Denver, CO, 1991, pp. 22-31.

[2] G. Copeland, and S. Khoshafian, “A decomposition
storage model”, in ACM SIGMOD International
Conference on Management of Data, Austin, TX, 1985,
pp. 268-279.

[3] G. Copeland, W. Alexander, E. Boughter and T.
Keller, ”Data placement in Bubba”, in ACM SIGMOD
International Conference on Management of Data,
Chicago, IL, 1988, pp. 99-108.

[4] D. J. DeWitt, R. Gerber, G. Graefe, M. Heytens, K.
Kumar and M. Muralikrishna, ”GAMMA-A high
performance dataflow database machine”, in 12th
International Conference on Very Large Data Bases,
Kyoto, Japan, 1986, pp. 228-237.

[5] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A.
Bricker, H. I. Hsiao and R. Rasmussen, “The Gamma
database machine project”, IEEE Transactions on
Knowledge Data Engg., Vol. 2, No. 1, 1990, pp. 44-62.

[6] L. W. Dowdy, and D. V. Foster, “ Comparative models
of the file assignment problem” , ACM Computing
Survey, Vol. 14, No. 2, 1992, pp. 287-313.

[7] S. Ghandeharizadeh, and D. J. DeWitt, “ Hybrid-range
partitioning strategy: A new declustering strategy for
multiprocessor database machines”, in 16th International
Conference on Very Large Data Bases, Brisbane,
Australia, 1990, pp. 481-492.

[8] G. Ghandeharizadeh, and D. J. DeWitt, “A multiuser
performance analysis of alternative declustering

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 320

strategies”, in 6th International Conference on Data Eng.,
Los Angeles, CA, 1990, pp. 466-475.

[9] S. Khoshafian, G. Copeland, T. Jagodits, H. Boral and
P. Valduriez. “A query processing strategy for the
decomposed storage model”, in 3rd International
Conference on Data Engg., Los Angeles, CA, 1987, pp.
636-643.

[10] S. Khoshafian, P. Valduriez and G. Copeland, “
Parallel query processing for complex objects”, in 4th
International Conference on Data Engg., Los Angeles,
CA, 1988, pp. 202-209.

[11] H. Lam, S. Y. W. Su, F. L. C. Seeger, C. Lee and W.
R. Eisenstadt, “A special function unit for database
operations within a data-control system”, in International
Conference on Parallel Processing, Chicago, IL, 1987, pp.
330-339.

[12] K. Shannon, and R. Snodgrass, ”Implementing
Persistent Object Bases: Principles and Practice”, Morgan
Kaufmann Publishers, Palo Alto, CA., 1991, pp. 389-402.

[13] M. M. Tsangaris, and J. F. Naughton, “A stochastic
approach for clustering in object bases”, in ACM
SIGMOD International Conference on Management of
Data, Denver, CO, 1991, pp. 12-21.

[14] P. Valduriez, “ACM Transactions on Database
System”, Vol. 12, No. 2, 1987, pp. 218-246.

Sudesh Rani got his Ph.D. degree in Computer
Science from the Kurukshetra University, Kurukshetra,
India, in 2009, on “Algebraic query processing and
parallelism in databases”. Her areas of interest are data
mining, parallel databases, query processing in databases
etc. Presently she is working as Asstt. Professor in
Computer Science at Govt. College, Hisar, Kurukshetra
University, Kurukshetra, India

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011
ISSN (Online): 1694-0814
www.IJCSI.org 321

