
String Matching and its Applications in Diversified
Fields

Vidya SaiKrishna1, Prof. Akhtar Rasool2 and Dr. Nilay Khare3

1Department Of Computer Science And Engineering Maulana Azad National Institute Of Technology
Bhopal-462051

2Asst.Professor,
2Department Of Computer Science And Engineering Maulana Azad National Institute Of Technology

Bhopal-462051
3Associate Professor, HOD

3Department Of Computer Science And Engineering Maulana Azad National Institute Of Technology
Bhopal-462051

Abstract

String searching algorithms, sometimes called string
matching algorithms, are an important class of string
algorithms that try to find a place where one or several
strings (also called patterns) are found within a larger string
or text.[11] String matching is a classical problem in
computer science. In this paper we are trying to explore the
various diversified fields where string matching has an
eminent role to play and is found as a solution to many
problems. Few of the fields exploited are intrusion detection
in network, application in bioinformatics, detecting
plagiarism, information security, pattern recognition,
document matching and text mining. Here we discuss how
string matching is found useful in finding solutions to above
problems. String matching algorithms can be categorized
either as exact string matching algorithms or approximate
string matching algorithms . Also depending upon the kind
of application, string matching algorithms are designed
either to work on single pattern or multiple patterns.
Followed by a brief introduction to string matching, the
application areas are discussed.

Keywords: String matching, intrusion detection,
bioinformatics, pattern recognition, text mining, digital
forensics.

1. Introduction

String searching algorithms, sometimes called string
matching algorithms, are an important class of string
algorithms that try to find a place where one or several
strings (also called patterns) are found within a larger
string or text. Let Σ be an alphabet (finite set).
Formally, both the pattern and searched text are
vectors of elements of Σ. The Σ may be a usual human

alphabet (for example, the letters A through Z in the
Latin alphabet). Other applications may use binary
alphabet (Σ = {0,1}) or DNA alphabet (Σ = A,C,G,T})
in bioinformatics.[11]
We assume that the text is an array T[1..n] of length n
and that the pattern is an array of length[1..m] of
length m and that m<=n. The character arrays T and P
are often called strings of characters.
We say that pattern P occurs with shift s in text T (or
equivalently that the pattern P occurs beginning at
position s+1 in text T) if 0<=s<=n-m and
T[s+1….s+m]=P[1..m]. If P occurs with shift s in T
then we calls a valid shift otherwise we call s an
invalid shift. The string matching algorithm is the
problem of finding all valid shift with which a pattern
P occurs in given text T.[1]

Fig 1

Large number of algorithms is known to exist to
solve string matching problem. Based on the number
of patterns searched for the algorithms can be
classified as single pattern and multiple pattern
algorithms. Applications may require exact or
approximate string matching.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 219

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2. Exact String Matching Problem

We are given a text string pattern string we want to
find all occurrences of P in T. In Exact string
matching problem the pattern is exactly found inside
the text.[12]
Consider the following example:

There are two occurrences of P in T as shown below:

A brute force method for exact string matching
algorithm:

 If the brute force method is used, many characters
which had been matched will be matched again
because each time a mismatch occurs, the pattern is
moved only one step.
 There are many exact string matching algorithms.
Nearly all of them are concerned with how to slide
the pattern. Few of them are listed below.

2.1 Brute Force Algorithm[12, page 19-20]
 No preprocessing phase.
 Constant extra space needed.
 Always shifts the window by exactly 1 position

to the right.
 Comparisons can be done in any order.
 Searching phase in O (m×n) time complexity.
 2n expected text character comparisons.

2.2 Searching with automation [12, page 25-
30]

 Builds the minimal Deterministic Finite
Automaton recognizing the language ∑*x.

 Extra space in O(m×σ) if the automaton is
stored in a direct access table.

 Preprocessing phase in O(m×σ) time
complexity.

 Searching phase in O(n) time complexity.

2.3 Rabin Karp Algorithm[12, page 31-35]
 Uses an hashing function.

 Preprocessing phase in O(m) time complexity
and constant space.

 Searching phase in O(m× n) time complexity.
 O(m+n) expected running time.

2.4 Shift OR Algorithm[12, page 37-40]
 Uses bitwise techniques.
 Efficient if the pattern length is no longer than

the memory word size of the machine.
 Preprocessing phase in O(m+σ) time and space

complexity.
 Searching phase in O(n) time

complexity(independent from the alphabet size
and the pattern length).

 Adapts easily to approximate string matching.

2.5 Morris Pratt Algorithm[12, page 41-44]
 Performs the comparisons from left to right.
 Preprocessing phase in O(m) space and time

complexity.
 Searching phase in O(m+n) time complexity

independent from the alphabet size.
 Performs at most 2n -1 text character

comparisons during the searching phase.
 Delay bounded by m.

2.6 Knuth- Morris Pratt Algorithm[[12, page

47-50]
 Performs the comparisons from left to right.
 Preprocessing phase in O(m) space and time

complexity.
 Searching phase in O(m+n) time complexity

independent from the alphabet size.
 Performs at most 2n -1 text character

comparisons during the searching phase.
 Delay bounded by logФ (m) where Ф is the

golden ratio(1+√5)/2.

2.7 Colussi Algorithm[12, page 61-67]
 Refinement of the Knuth Morris Pratt algorithm.
 Partitions the set of pattern positions into two

disjoint subsets. The positions in the first set are
scanned from left to right and when no
mismatch occurs the positions of the second
subset are scanned from right to left.

 Preprocessing phase in O(m) time and space
complexity.

 Searching phase in O(n) time complexity.
 Performs 3/2n text character comparisons in the

worst case.

2.8 Forward DAWG Matching algorithm[12,
page 87-90]

 Uses the suffix automaton of x.
 O(n) worst case time complexity.

CCTAP

CCTAAGTCAGCCTAAGCTT




AGTCCCTAAGCTCCTAAG

ACTA

ACTA

ACTA

ACTA

CCACTAGA




P

AT

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 220

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Performs exactly n text character inspections.

2.9 Boyer Moore Algorithm[12, page 91-96]
 Performs the comparisons from right to left.
 Preprocessing phase in O(m+σ) time and space

complexity.
 Searching phase in O(m×n) time complexity.
 n text character comparisons in the worst case

when searching for non periodic pattern.
 O(n/m) best performance.

2.3.0 Quick Search algorithm[12, page 121-

123]
 Simplification of the Boyer Moore algorithm.
 Uses only the bad character shift.
 Easy to implement.
 Preprocessing phase in O(m+σ) time and O(σ)

space complexity.
 Searching phase in O(m×n) time Complexity.
 Very fast in practice for short patterns and large

alphabets.

3. Approximate String Matching Problem

Approximate string matching is a recurrent problem
in computer Science which is applied in text
searching, computational biology, pattern recognition
and signal processing applications[13]. The problem
can be stated as follows:
For a length n and pattern of length m , we are
supposed to find all the occurrences of pattern in the
text whose edit distance to the pattern is at most K.
The edit distance between two strings is defined as
minimum number of character insertion, deletion and
replacements needed to make them equal.
An Example of approximate string matching is
shown below[14]:
T ="appropriate_meaning"
P="approximate_matching"
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 T a p p r o p r i a t e _ m ε e a n i n g
 | | | | | | | | | | | | |
 p: a p p r o x I m a t e _ m a t c h i n g

δ(t, p) = 7
Dynamic Programming is a method to solve
approximate string matching problem. For a Text of
length n and pattern of length m ,the dynamic
programming method returns a time complexity of
O(nm). Bit Parallelism results in faster approximate
string matching algorithm like the the fastest non-
filtering algorithms in practice are the O(kn[m/w])
algorithm of Wu & Manber, the O([km/w]n)

algorithm of Baeza-Yates & Navarro, and the
O([m/w]n) algorithm of Myers, where m is the
pattern length, n is the text length, k is the error
threshold and w is the computer word size.
The motivation for approximate string matching
comes from low quality of text, heterogeneousness of
databases, spelling errors in the pattern or text,
searching for foreign names and searching with
uncertainty [13].

4. Multiple String Matching Problem

In multiple string matching we are given a text T =
t1t2 : : : tn and want to search simultaneously for a set
of strings P = {p1, p2, … pr} Where pi=pi

1 p
i
2…………

pi
mi is a string of length mi, for i=1…..r[16]. There

are many algorithms used for multipattern searching ,
which varies in speed measured in terms of time
complexity. A few are described below .

4.1 Aho-Corasick string matching algorithm

In computer science, the Aho–Corasick string
matching algorithm is a string searching algorithm
invented by Alfred V. Aho and Margaret J. Corasick.
It is a kind of dictionary-matching algorithm that
locates elements of a finite set of strings (the
"dictionary") within an input text. It matches all
patterns simultaneously. The complexity of the
algorithm is linear in the length of the patterns plus
the length of the searched text plus the number of
output matches.
Informally, the algorithm constructs a finite state
machine that resembles a trie with additional links
between the various internal nodes. These extra
internal links allow fast transitions between failed
pattern matches (e.g. a search for cat in a trie that
does not contain cat, but contains cart, and thus
would fail at the node prefixed by ca), to other
branches of the trie that share a common prefix (e.g.,
in the previous case, a branch for attribute might be
the best lateral transition). This allows the automaton
to transition between pattern matches without the
need for backtracking.[17]

4.2 Rabin Karp String matching Algorithm

In computer science, the Rabin–Karp algorithm is a
string searching algorithm created by Michael O.
Rabin and Richard M. Karp in 1987 that uses hashing
to find any one of a set of pattern strings in a text. For
text of length n and p patterns of combined length m,
its average and best case running time is O(n+m) in
space O(p), but its worst-case time is O(nm). In

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 221

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

contrast, the Aho–Corasick string matching algorithm
has asymptotic worst-time complexity O(n+m) in
space O(m).A practical application of Rabin–Karp is
detecting plagiarism. Given source material, Rabin–
Karp can rapidly search through a paper for instances
of sentences from the source material, ignoring details
such as case and punctuation. Because of the
abundance of the sought strings, single-string
searching algorithms are impractical [18].

4.3 Commentz-Walter algorithm

 In computer science, the Commentz-Walter
algorithm is a string searching algorithm invented by
Beate Commentz-Walter. Like the Aho–Corasick
string matching algorithm, it can search for multiple
patterns at once. It combines ideas from Aho–
Corasick with the fast matching of the Boyer–Moore
string search algorithm [19].

5. Applications of String Matching

5.1. Intrusion Detection

 Security is a big issue for all networks in today’s
enterprise environment. Hackers and intruders have
made many successful attempts to bring down high-
profile company networks and web services. Many
methods have been developed to secure the network
infrastructure and communication over the Internet,
among them the use of firewalls, encryption, and
virtual private networks. Intrusion detection is a
relatively new addition to such techniques. Intrusion
detection methods started appearing in the last few
years. Using intrusion detection methods, you can
collect and use information from known types of
attacks and find out if someone is trying to attack
your network or particular hosts. The information
collected this way can be used to harden your
network security, as well as for legal purposes.[2]
Intrusion detection is a set of techniques and methods
that are used to detect suspicious activity both at the
network and host level. Intrusion detection systems
fall into two basic categories: signature-based
intrusion detection systems and anomaly detection
systems. Intruders have signatures, like computer
viruses, that can be detected using software. You try
to find data packets that contain any known intrusion-
related signatures or anomalies related to Internet
protocols. Based upon a set of signatures and rules,
the detection system is able to find and log suspicious
activity and generate alerts. Anomaly-based intrusion
detection usually depends on packet anomalies
present in protocol header parts. In some cases these
methods produce better results compared to

signature-based IDS. Usually an intrusion detection
system captures data from the network and applies its
rules to that data or detects anomalies in it. Snort is
an open source IDS available to the general public.
NIDS are intrusion detection systems that capture
data packets traveling on the network media (cables,
wireless) and match them to a database of signatures.
Depending upon whether a packet is matched with an
intruder signature, an alert is generated or the packet
is logged to a file or database. One major use of Snort
is as a NIDS.

String matching in intrusion detection

The earlier intrusion detection systems makes use of
the AC Algorithm (Aho- Corasick) .It is an
automaton based multiple string matching algorithm
which locates all the occurrences of keywords in a
string or text. It first builds a finite state machine of
all the keywords in a string and then uses the
machine to process the payload in a single pass. The
AC algorithm is having a deterministic performance
which does not depends on specific input and
therefore not vulnerable to various attacks, making it
attractive to Network intrusion detection systems.[3]
Let us consider an example to understand how the
algorithm works. P={at, cat,rat} is a set of keywords
and the algorithm searches for the occurrences of
keywords in the text =”cratcatar”. The AC automaton
built on pattern P is shown in figure 2. The Dashed
arrows represent failure transitions. The failure
function is shown in figure 3 and output function in
figure 4.

 Fig 2: AC Automaton

Fig 3: failure Function

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 222

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Fig 4: output function

Original AC automaton representations are unsuitable
for high performance requirements, which require too
much memory, and too much time in the matching
process. Recently many works have been presented
with the goal of memory reduction for DFAs, by
exploiting the intrinsic redundancy in regular
expression sets. NIDS not only focus on the header
fields but also have to check signatures in the data
payload portion of a packet. The most widely used
NIDS like Snort and Bro use DFA to describe attack
signatures in their rule sets. Because of the large
traffic volume and complexity of the process,
signature matching can easily become the
performance bottleneck in deep packet inspection.[4]

5.2. String matching in detecting plagiarism

Management of large collection of replicated data in
centralized or distributed environments is important
for many systems that provide data mining,
mirroring, storage, and content distribution. In its
simplest form, the documents are generated,
duplicated and updated by emails and web pages.
Although redundancy may increase the reliability at a
level, uncontrolled redundancy aggravates the
retrieval performance and might be useless if the
returned documents are obsolete. Document
similarity matching algorithms do not provide the
information on the differences of documents, and file
synchronization algorithms are usually inefficient and
ignore the structural and syntactic organization of
documents. For this purpose the S2S matching
approach is used The S2S matching is composed of
structural and syntactic phases to compare documents
[5]. Firstly, in the structural phase, documents are
decomposed into components by its syntax and
compared at the coarse level. The structural mapping
processes the decomposed documents based on its
syntax without actually mapping at the word level.
The structural mapping can be applied in a
hierarchical way based on the structural organization
of a document. Secondly, the syntactic matching
algorithm uses a heuristic look-ahead algorithm for
matching consecutive tokens with a verification
patch. The two-phase S2S matching approach

provides faster results than currently available string
matching algorithms.[4,5]

Figure 5: S2S matching

5.3 String matching in bioinformatics

Bioinformatics is the application of information
technology and computer science to biological
problems, in particular to issues involving genetic
sequences. String algorithms are centrally important
in bioinformatics for dealing with sequence
information. Modern automated high throughput
experimental procedures produce large amounts of
data for which machine learning and data mining
approaches hold great promise as interpretive
means[6].
Approximate matching of a search pattern to a target
(called the “text” in string algorithms) is a
fundamental tool in molecular biology. The pattern is
often called the “query” and the text is called a
“sequence database”, but we will use “pattern” and
“text” consistent with usage in computer science.
While exact string matching is more commonly used
in computer science, it is often not useful in biology.
One reason for this is that biological sequences are
experimentally determined, and may include errors: a
single error can render an exact match useless, where
approximate matches are less susceptible to errors
and other sequence differences. Another, perhaps
more important, reason for the importance of
approximate matching is that biological sequences
change and evolve. Related genes in different
organisms, or even similar genes within the same
organism, most commonly have similar, but not
identical sequences. Determining which sequences of
known function are most similar to a new gene of
unknown function is often the first step in finding out
what the new gene does.
Another application for approximate string matching
is predicting the results of hybridization experiments.
Since strands may hybridize if they are similar to
each other's reverse complements, prediction of
which strands will bind to which other strands, and
how stable the binding will be, requires approximate,
rather than exact, string matching.[6]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 223

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Approximate string matching
character[] pattern, text;
integer i,j;
for (i=0;i<length text;i++){
for (j=0; j< length pattern; j++){
if (text[i+j] != pattern[j]) next i;
}
record_match(i);
}

Note: the command “next i” exits the current j loop
without completing the call to record match.
Biological sequences can be represented as strings.
Approximate matching algorithms that can tolerate
insertions, deletions, and substitutions are extremely
important for biological sequence comparison.
The Shift-AND method uses a bit manipulation
approach to accelerate the process of approximate
matching. The approach can be explained by
comparing it to the naïve exact matching method, in
which the pattern is compared character by character
at each position along the text. This simple approach
is inefficient (its time complexity is O(n*m)) because
it contains two nested loops, where the inner loop is
executed at each position along the text. Shift-AND
uses bit-wise operations in entire registers to perform
the inner loop operations on multiple positions in
parallel. For patterns that can be contained within the
length of a register, it has a time complexity
proportionate to the length of the text being searched
(O(n)). Shift-AND actually uses a set of four registers
(called the “U” registers [Gusfield 1997]) to contain
the pattern, with one bit in each register to represent
each base of the pattern. Thus, a machine with 32 bit
registers can easily represent 32 base patterns for use
in shift-AND. Longer registers, such as the 128 bit
registers of the PowerPC Alti Vec vector engine, can
represent proportionately longer patterns. The
algorithm can also be extended to use multiple
registers to represent longer patterns, but (depending
on the architecture), this would likely be at a cost of
increased time complexity.
 Of course, shift-AND is more sophisticated than a
simple short-circuit of the inner loop in the naïve
exact matching approach, in that it can be extended to
allow for approximate matches 9
[Wu 1991].
 The full algorithm allows for a given number of
substitutions, insertions, or deletions in the pattern.
This is achieved by maintaining a set of matrixes,
which allow different numbers of errors. A bit is set
if the current characters match and the prefixes of
each string were within the error limits; if the
prefixes had not reached the error limits, the bit is set
even if there is an error at the current position.

5.4 String matching in Digital Forensics

Textual evidence is important to the vast majority of
digital investigations. This is because a great deal of
stored digital data is linguistic in nature (e.g. human
languages, programming languages, and system and
application logging conventions). Some examples of
important text-based evidence include: email,
Internet browsing history (both logs and the content
itself), instant messaging, word processing
documents, spreadsheets, presentations, address
books, calendar appointments, network activity logs,
and system logs.
Digital forensic1 text string searches are designed to
search every byte of the digital evidence, at the
physical level, to locate specific text strings of
interest to the investigation. Given the nature of the
data sets typically encountered, text string search
results are extremely noisy, which results in
inordinately high levels of information retrieval (IR)
overhead and information overload (Beebe and
Dietrich, 2007). Frequently, investigators are left to
wade through hundreds of thousands of search hits
for even reasonably small queries (i.e. 10 search
strings) on reasonably small devices (i.e. 80 GB) –
most of which (i.e. 80–90% of the search hits) are
irrelevant to investigative objectives. The investigator
becomes inundated with data and wastes valuable
investigative time scanning through noisy search
results and reviewing irrelevant search hits
presumably by some automated means. This can
prohibit There are fundamentally two classes of
solutions to this problem: (1) decrease the number of
irrelevant search hits returned, or (2) present the
search hits in a manner which enables the
investigator to find the relevant hits more quickly.
The first solution class is disconcerting to many
investigators and litigators, since it results in
information reduction, the investigator from finding
important evidence. The second solution class
encompasses the basic approach that revolutionized
web-based knowledge discovery: search hit ranking.
This approach presents hits in priority order based on
some determination of similarity and/or relevancy to
the query. This approach is much more attractive to
investigators and litigators, since it improves the
ability to obtain important information, without
sacrificing fidelity.
Current digital forensic text string search approaches
fail to employ either solution class. They use simple
matching and/or indexing algorithms that return all
hits. They fail to successfully implement grouping
and/or ranking algorithms in a manner that
appreciably reduce IR overhead (time spent
scanning/reviewing irrelevant search hits). Search
hits are commonly grouped by search string and/or

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 224

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

‘‘file item3’’ and/ or ordered by their physical
location on the digital media.
Such grouping and ordering are inadequate; as
neither substantially helps investigators get to the
relevant hits first (or at least more quickly). New,
better approaches in the second solution class are
needed.
The Current researches in digital forensics aims at
improving IR(information Retrieval) effectiveness of
digital forensics text string searches.[7,8]

5.5 Text Mining Research

Text mining includes tasks designed to extract
previously unknown information by analyzing large
quantities of text, as well as tasks geared toward the
retrieval of textual data from a large corpus of
documents (Sebastian, 2002; Fan et al., 2006;
Sullivan, 2001). Several information processing tasks
fall under the umbrella of text mining: information
extraction, topic tracking, content summarization,
information visualization, question answering,
concept linkage, text categorization/ classification,
and text clustering (Fan et al., 2006).
These are defined as follows:
1. Information extraction: identifies conceptual
relationships, using known syntactic patterns and
rules within a language.
2. Topic tracking: facilitates automated information
filtering, wherein user interest profiles are defined
and fine-tuned based on what documents users read.
3. Content summarization: abstracts and
condenses document content.
4. Information visualization: represents textual
data graphically (e.g. hierarchical concept maps,
social networks, timeline representations).
5. Question answering: automatically extracts key
concepts from a submitted question, and
Subsequently extracts relevant text from its data store
to answer the question(s).
6. Concept linkage: identifies conceptual
relationships between documents based on Transitive
relationships between words/concepts in the
documents.
7. Text categorization/classification: automatically
and probabilistically assigns text documents into
predefined thematic categories, using only the textual
content (i.e. no metadata).
8. Text clustering: automatically identifies thematic
categories and then automatically assigns text
documents to those categories, using only textual
content (i.e. no metadata).

If applied to digital forensic text string searching,
information extraction, content summarization,
information visualization, and concept linkage would
fit into the first solution class identified earlier

(reduction of search results set size).These text
mining approaches reduce the search result set size
via data abstraction techniques, by and large.

5.6 String matching Based Video Retrieval

String matching can be effectively used to retrieve
fast video as it uses the content based video retrieval
in contrast with the traditional video retrieval which
was slow and time consuming. String based video
retrieval method first converts the unstructured video
into a curve and marks the feature string of it.
Approximate string matching is then used to retrieve
video quickly. In this method the characteristic curve
of the key frame sequence is first extracted followed
by marking the feature string and then approximate
string matching is used on the feature string to get
fast video retrieval [10].

Fig 6: Video Retrieval Process

6. Conclusion

String matching has greatly influenced the field of
computer science and will play an important role in
future technology. The importance of memory and
time efficient string matching algorithm will be
increased in computer science. There are many more
possible areas in which string matching can play a
key role for excelling. Exact and approximate string
matching algorithm makes various problems in the
solvable state. Innovation and creativity in string
matching can play a immense role for getting time
efficient performance in various domains of
computer science.

References

[1] Thomas H Corman, Charles E. Leiserson, Ronald L.

Rivest & Clifford Stein “Introduction to Algorithms-
String matching”, EEE Edition, 2nd Edition, Page no
906-907.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 225

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[2] Ali Peiravi, “Application of string matching in Internet
Security and Reliability”, Marsland Press Journal of
American Science 2010, 6(1): 25-33

[3] Peifeng Wang , Yue Hu, Li Li, “An Efficient
Automaton Based String Matching Algorithm and its
application in Intrusion Detection”, International
Journal of Advancements in Computing
Techology(IJACT), Vol 3, Number 9 , October 2011

[4] Pekka Kilpelainen, “Set Matching and Aho-Corasick
Algorithm”, Biosequence Algorithms, Spring 2005,
BSA Lecture 4

[5] Ramazan S. Aygün “structural-to-syntactic matching
similar documents”, Journal Knowledge and
Information Systems archive, Volume 16 Issue 3,
August 2008.

[6] Robert M. Horton, Ph.D. “Bioinformatics Algorithm
Demonstrations in Microsoft Excel” , 2004 -
cybertory.org

[7] Nicole Lang Beebe, Jan Guynes Clark, “Digital
forensic text string searching: Improving information
retrieval effectiveness by thematically clustering
search results”, d i g i t a l i n v e s t i g a t ion 4 S (2 0
0 7) S 4 9 – S 5 4

[8] Beebe NL, Dietrich G. “A new process model for text
string searching”. In: Shenoi S, Craiger P, editors.
Research advances in digital forensics III. Norwell:
Springer; 2007. p. 73–85.

[9] Rafeeq Ur Rehman , “Intrusion Detection Systems with
Snort Advanced IDS Techniques Using Snort Apache,
MySQL, PHP, and ACID”

[10]Yin Jian, Yu Xiu ,Dong Meng, “ Application of
Approximate String Matching in Video Retrieval”,
2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE),vol 4,
page 348-351.

[11]Wikipedia The free Encyclopedia
en.wikipedia.org/wiki/String_searching_algorithm,

[12] Christian Charras,Thierry Lecroq , “Handbook of
exact string matching algorithms”

 [13] Ricardo Baeza-Yates, Gonzalo Novarro, “Fast
Approximate string matching in a Dictionary”,�Bulletin
of the Technical Committee, 2000
[14] Yoan Pinzon, “Algorithm for approximate string

Matching”,�dis.unal.edu.co/~fgonza/courses/2006.../
approx_string_matching.pdf August 2006

[15] Heikki Hyyo, “Bit Parallel approximate string
matching algorithm with transposition”�String
Processing and Information Retrieval, 2003 –
Springer.

[16] D. Huson , “multiple string matching”, Comp.
Sequence Analysis, Nov 17 , 2004

[17] Aho, Alfred V.; Margaret J. Corasick (June 1975).
"Efficient string matching: An aid to bibliographic
search". Communications of the ACM 18 (6):

 333–340.
[18] http://en.wikipedia.org/wiki/Rabin_kar

p_string_search_algorithm.
[19] http://en.wikipedia.org/wiki/Commentz_Walter_
 algorithm

Vidya Saikrishna, B.E in Computer Science From
University Institute of Technology, Bhopal in the year 2002,

M.Tech in Computer Science From Maulana Azad National
Institute of Technology. Worked as Asst. Prof in Truba
Institute of Science and Technology, Bhopal, Asst. Prof. in
Institute of Technology and Science , Ghaziabad. and
Presently working as Asst. Prof. in SAM College of
Engineering and Technology.

Akhtar Rasool, B.E in Computer Science from Rajiv Gandhi
Technical University in the year 2003,M.Tech in Computer
Science from Maulana Azad National Institute of
Technology. Presently Working as Asst. Prof in Department
of Computer Science in Maulana Azad National Institute
Technology, Bhopal.

Dr. Nilay Khare, Associate Prof. and Head in Department of
Computer Science in Maulana Azad National Institute of
Technology,Bhopal. Reviewer of Journal Elsevier

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 226

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

