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Abstract 
This paper introduces the performance evaluation of 

statististical approaches for Automatic-text-independent 

Speaker Recognition system. Automatic-text-independent 

Speaker Recognition system is to quickly and accurately 

identify the person from his/her voice. The study on the effect 

of feature vector size for good speaker recognition 

demonstrates that the feature vector size in the range of 18-22 

can capture speaker related information effectively for a 

speech signal sampled at 16 kHz. it is demonstrated that the 

timing varying speaker related information can be effectively 

captured using hidden Markov models (HMMs) than GMM. 

It is established that the HMM based speaker recognition 

system requires significantly less amount of data during both 

during training as well as in testing than GMM based Speaker 

Recognition System. The performance evaluation of speaker 

recognition study using robust features for HMM based 

method and GMM based method is exploited for  different 

mixtures components, training and test durations We 

demonstrate the speaker recognition studies on TIMIT 

database. 

Keywords: hidden Markov models (HMMs), Gaussian 
Mixture Model (GMM)),  MFCC, Robust Features, Speaker 
 

1. Introduction 

Speaker recognition refers to recognizing persons from 
their voice.  No two individuals sound identical because 
their vocal tract shapes, larynx sizes, and other parts of 
their voice production organs are different.  In addition to 
these physical differences, each speaker has his or her 
characteristic manner of speaking, including the use of a 
particular accent, rhythm, intonation style, pronunciation 
pattern, choice of vocabulary and so on.  State-of-the-art 
speaker recognition systems use a number of these features 
in parallel, attempting to cover these different aspects and 
employing them in a complementary way to achieve more 
accurate recognition. 
 
An important application of speaker recognition 
technology is forensics.  Much of information is 
exchanged between two parties in telephone conversations, 
including between criminals, and in recent years there has 
been increasing interest to integrate automatic speaker 
recognition to supplement auditory and semi-automatic 
analysis methods. 
Automatic speaker recognition is an application of pattern 
recognition. Speaker recognition system, like any other 
pattern recognition system, can be represented as shown in 
Fig. 1. This task involves three phases, feature extraction 
phase, training phase and testing phase [1].  Training is the 
process of familiarizing the system with the voice 
characteristics of a speaker, whereas testing is the actual 
recognition task.   
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Fig. 1: A typical Block diagram representation of a speaker recognition 
task. 

1.1 Feature extraction 

For any pattern recognition task like Automatic Speaker 
Recognition (ASR), the relevant information has to be 
captured in terms of suitable feature vectors.  In speaker 
recognition, the feature vectors are in general some 
parameter vectors extracted from frames of the speech 
signal.  Most of the present day ASR systems are 
developed using parameters that are derived based on 
spectral analysis, and the speaker variability is captured in 
terms of the distribution of these feature vectors.  But, it is 
a fact that the spectrum of a signal is prone to channel 
characteristics and noise. Channel characteristics and noise 
play a prominent role in the performance of spectral 
feature-based systems [2]. Another drawback with the 
existing techniques is the way in which speaker-specific 
information is being captured. Mostly, they are statistical 
techniques, capturing the variability in terms of 
distribution of the feature vectors and hence large amount 
of data is required for a better estimate. 
Since all the real world services have to deal with speech 
coming over telephone channel, the ASR systems have to 
be robust to environmental variations. Also, the 
requirement of large amount of data has to overcome, as in 
the real world applications we may not have large amount 
of data to recognize a person.  Hence, in order to make the 
ASR work in noisy conditions, and with less amount of 
data, features other than those derived based on spectral 
analysis also need to be explored. 

1.2 Selection of Features 

Speech signal includes many features of which not all 
are important for speaker discrimination.  An ideal feature 
would 
 

 have large between-speaker variability and small 
within-speaker variability 

 be robust against noise and distortion 
 occur frequently and naturally in speech 
 be easy to measure from speech signal 
 be difficult to impersonate/mimic 
 not be affected by speaker’s health or long-term 

variations in voice. 

1.3 Motivation to use Mel frequency cepstral 
coefficients (MFCC) 

  Since our interest is in capturing global features which 
corresponds the low frequency or pitch components are to 
be emphasized. To fulfil this requirement it is felt that 
MFCC are most suitable as they emphasize low frequency 
and de-emphasize high frequencies 

1.4 Mel frequency cepstral coefficients (MFCC) 

In this phase the digital speech signal is partitioning into 
segments (frames) with fixed length 10-30 ms from which 
the features are extracted due to their spectral qualities. 
Spectrum is achieved with fast Fourier transformation [3]. 
Then an arrangement of frequency range to mel scale 
follows according to relation  
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By logarithm of amplitude of mel spectrum and applying 
reverse Fourier transformation we achieve frame 
cepstrum: 
 

 |))(|(log)( 1 frameFFTmelFFTframecepstrummel 
 
 
The FFT-base cepstral coefficients are computed by taking 
IFFT of the log magnitude spectrum of the Speech signal. 
The mel-warped cepstrum is obtained by inserting a 
intermediate step of transforming the frequency scale to 
place less emphasis on higher frequencies before taking  
the IFFT [4][5][6]. 

1.5 High-Level Features 

Speakers differ not only in their voice timbre and 
accent/pronunciation, but also in their lexicon – the kind of 
words the speakers tend to use in their conversations.  The 
work on such “high-level” conversational features was 
initiated in [7] where a speaker’s characteristic vocabulary, 
the so-called idiolect, was used to characterize speakers.  
The idea in “high-level” modeling is to convert each 
utterance into a sequence of tokens where the co-
occurrence patterns of tokens characterize speaker 
differences.  The information being modeled is hence in 
categorical (discrete) rather than in numeric (continuous) 
form. 
The tokens considered have included words [7], phones 
[8][9], prosodic gestures (rising/failing pitch/energy) 
[10][11][12], and even articulatory tokens (manner and 
place of articulation) [13]. The top-1 scoring Gaussian 
mixture component indices have also been used as tokens 
[14][15][16]. 
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Sometimes several parallel tokenizers are utilized 
[9][14][17].  This is partly motivated by the success of 
parallel phone recognizers in state-of-the-art spoken 
language recognition [18][19].  This direction is driven by 
the hope that different tokenizers (e.g. phone recognizers 
trained on different languages or with different phone 
models) would capture complementary aspects of the 
utterance.  As an example, in [14] a set of parallel GMM 
tokenizers [15[[16] were used.  Each tokenizer was trained 
from a different group of speakers obtained by clustering. 
 
One of the issues in speaker recognition is how to 
represent utterances that, in general, have a varying 
number of feature vectors. In early studies [20] speaker 
models were generated by time-averaging features so that 
each utterance could be represented as a single vector.  
The average vectors would then be compared using a 
distance measure [21] which is computationally very 
efficient but gives poor recognition accuracy.  Since the 
1980’s, the predominant trend has been creating a model 
of the training utterances followed by “data-to-model” 
type of matching at run-time (e.g. likelihood of an 
utterance with respect to a GMM).  This is 
computationally more demanding but gives good 
recognition accuracy. 
Interestingly, the speaker recognition community has 
recently re-discovered a robust way to present utterances 
using a single vector, a so-called super vector [22]. 

2. Exploring Robust Features for Speaker 
Recognition 

Here, the GMM is used as front-end to extract features 
vectors from speech signal. For the ASR task, the basic 
requirement is to obtain the feature vectors form the 
speech signal. Recently, some attempts are made to 
explore the alternative representation of feature vectors 
based on GMM feature extraction.  
For Speaker Recognition task, robust features are derived 
from the speech signal based on estimating a Gaussian 
mixture model. The underlying speaker discrimination 
information is represented by Gaussians. The estimated 
GMM parameters means, co-variance and component 
weight can be related to the formant locations, bandwidths 
and magnitudes. 
For the proposed new feature vectors, from the speech 

signal of a speaker iS ,  a 12 dimensional MFCC feature 

vectors are obtained with a window size of 20ms and 
window shift of 5 ms. These MFCC feature vectors are 
distributed into ‘R’ Gaussians mixtures as shown in Fig. 2.  

 

Fig. 2: R Gaussians for Speaker iS .  

 
     The feature vector X=(X1, X2,……, X12) is passed 
through a Gaussian G1 by calculating a Gaussian 
probability P1 using Gaussian probability density  
function. This P1 is first coefficient in the new feature 
vector. In the same way feature vector X is passed through 
R Gaussians by creating R feature vector coefficients 
namely P1,P2,….,PR, as shown in Fig. 3. These R 
coefficients create a new R dimensional feature vector. 
The newly created   R dimensional feature vector is shown 
in the Fig. 4.  
Experiments are carried to find the dimension new feature 
vector for good speaker recognition performance. This is 
done by varying the number of Gaussians from 12 to 30, 
i.e number of coefficients in the new feature vectors. 
When the numbers of coefficients are 20, the good 
identification performance is achieved. 
 

 

Fig. 3: Parameter estimation for new vector P. When R=15, the optimal 
recognition performance has been achieved. 

 
 

Fig. 4: Transforming from 12 dimensional MFCC feature vector to R 
dimensional feature vector. 

3. Performance evaluation of Parametric 
approaches 

Parametric approaches are model-based approaches. The 
parameters of the model are estimated using the training 
feature vectors.  It is assumed that the model is adequate to 
represent the distribution.  The most widely used 
parametric approaches are GMM and HMM based 
approaches. 
 

3.1 Gaussian Mixture Models for LID 

GMM is a classic parametric method best used to model 
speaker identities due to the fact that Gaussian components 
have the capability of representing speaker discrimination 
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information effectively. Gaussian classifier has been 
successfully employed in several text-independent speaker 
recognition applications. As shown in Fig. 5 in a GMM 
model, the probability distribution of the observed data 
takes the form given by the following equation [23][24]. 

 

 

Fig. 5: Gaussian Mixture Model 
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Where M is the number of component densities, x is a D 

dimensional observed data (random vector), )(xbi  are the 

component densities and ip  are the mixture weights for 

 i = 1, .., M. 
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Each component density )(xbi  denotes a D-dimensional 

normal distribution with mean vector i  and covariance 

matrix i . The mixture weights satisfy the condition  

1
1




M

i
ip  and therefore represent positive scalar values.  

These parameters can be collectively represented as 
 

iiip ,,   for i = 1 … M. Each speaker in a language 

system can be represented by a GMM and is referred by 
the language respective model  . 
The parameters of a GMM model can be estimated using 
maximum likelihood (ML) [25] estimation. The main 
objective of the ML estimation is to derive the optimum 
model Parameters that can maximize the likelihood of 
GMM. Unfortunately direct maximization using ML 
 

 
 

Fig. 6: Training GMM for Speaker Recognition Task 

 
Parameter estimation is not possible and therefore a 
special case of ML estimation known as Expectation-
Maximization (EM) [25] algorithm is used to extract the 
model parameters. 
The GMM likelihood of a sequence of T training vectors  

 TxxX ,...1  can be given as [25] 

)|x(p)|X(p t

T

1t
 




                                 
The EM algorithm begins with an initial model   and 

tends to estimate a new model   such that 

)|()|(  XpXp   [19]. This is an iterative process 

where the new model is considered to be an initial model 
in the next iteration and the entire process is repeated until 
a certain convergence threshold is obtained. 
 

3.2 Continuous Ergodic Hidden Markov model for 
speaker recognition 

The HMM is a doubly embedded stochastic process where 
the underlying stochastic process is not directly 
observable. HMMs have the capability of effectively 
modeling statistical variations in spectral features.  In a 
variety of ways, HMMs can be used as probabilistic 
speaker models for both text-dependent and text-
independent speaker recognition [27][28][29]. HMM not 
only models the underlying speech patterns but also the 
temporal sequencing among the sounds.  This temporal 
modeling is advantageous for text-dependent speaker 
recognition system.  Left Right HMM can model temporal 
sequence of patterns only, where as to capture the patterns 
of different type ergodic HMM is used [21]. 
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b33 

b31 
b13 b

b23 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 471

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 
 

 
 
 

FIG. 4:   

 

                      Fig. 7: Three-state ergodic HMM. 

As shown in the Fig. 8 in the training phase, one HMM for 
each speaker is obtained (i.e., parameters of model are 
estimated) using training feature vectors.  The parameters 
of HMM are [19] State-transition probability distribution: 

It is represented by  ijaA   

 Where 

NjiiqjqPa ttij   ,1)|( 1   (2) 

defines the probability of transition from state i  to j  at 

time t . 
For a three state left-right model the state transition matrix 

is given as   
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The state transition matrix of three state ergodic model is 
given by   
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Observation symbol probability distribution: It is given by 

  kbB j  in which  

 

MkjqVOPkb tktj  1)|()( (5) 

      
  
defines the symbol distribution in state Nj .....3,2,1 . 

The initial state distribution is given by  iqP  1  

where 
 

       NiiqPi  1)( 1  (6)  

       

Here, N   is the total number of states, and tq  is the state 

at time t ,  M  is the number of distinct observation 

symbols per state, and tO  is the observation symbol at 

time t . In testing phase,  OP  for each model is 

calculated, where  TOOOOO ....321  Here the goal is 

to find out the probability for a given model to which the 
test utterance belongs to.  The speaker whose model gives 
the highest score is declared as the identified speaker.  
GMM corresponds to a single-state continuous ergodic 
HMM.  
 
The model parameters can be collectively represented as    

 iii BA  ,,  for Mi ........1 . Each speaker in a 

speaker identification system can be represented by a 
HMM and is referred to by the speaker’s respective 
models . 
 
In the testing phase, p (O/λ) for each model is calculated 
[29]. Where O=(o1o2o3…OT) is the sequence of the test 
feature vectors. The goal is to find the probability, given 
the model that the test utterance belongs to that particular 
model. The speaker model that gives the highest score is 
declared as the identified speaker. 
  

 
 

    Fig. 8: Training HMM for Speaker Recognition Task 

The parameter estimation is not possible and therefore a 
special case of ML estimation known as Expectation-
Maximization (EM) [30] algorithm is used to extract the 
model parameters. 
The GMM likelihood of a sequence of T training vectors  

 TxxX ,...1  can be given as [30]  

)|()|(
1

 t

T

t

xpXp 


                                  

The EM algorithm begins with an initial model   and 

tends to estimate a new model   such that 

)|()|(  XpXp   [29]. This is an iterative process 

where the new model is considered to be an initial model 
in the next iteration and the entire process is repeated until 
a certain convergence threshold is obtained. 
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4. Experimental Evaluation 

4.1 Database used for the study 

Speaker Recognition is the task of identifying the speaker 
from the registered set of speakers. In this paper we 
consider identification task for TIMIT Speaker database 
[30].  

The TIMIT corpus of read speech has been designed to 
provide speaker data for the acquisition of acoustic-
phonetic knowledge and for the development and 
evaluation of automatic speaker recognition systems. 
TIMIT contains a total of 6300 sentences, 10 sentences 
spoken by each of 630 speakers from 8 major dialect 
regions of the United States.    We consider 100 male 
speakers and 100 female out of 630 speakers for speaker 
recognition. Maximum of 30 sec. of speech data is used 
for training and minimum of 1 sec. of data for testing. In 
all the cases the speech signal was sampled at 16 kHz 
sampling frequency. Through out this study, closed set 
identification experiments are done to demonstrate the 
feasibility of capturing the speaker-discrimination 
information from the speech signal. Requirement of 
significantly less amount data for speaker-discrimination 
information and Gaussian mixture models is also 
demonstrated. 

4.2 Experimental setup 
   The system has been implemented in Matlab 7 on 
Windows XP platform. We have trained the GMM model 
using Gaussian Components as 4, 8, 16, 32 and 64 and 
HMM with 2, 3 and 4  states with 4, 8, 16, 32 and 64 
components at each state for training speech duration of 
10, 20 and 30 sec. testing is performed using different test 
speech durations such as 1 sec., 3 sec., and 5 sec..  

5. Performance Evaluation 

The system has been implemented in Matlab7 on windows 
XP platform. The result of the study has been presented in 
Table 3. We have used coefficient order of 20 for all 
experiments. We have trained the GMM and HMM 
models using Gaussian components as 4, 8, 16, 32 and 64 
components at each state for different training speech 
lengths as 10 sec., 20 sec., and 30 sec. by varying HMM 
states such as 2, 3 and 4. Testing is performed using 
different test speech lengths such as 1 sec, 3 sec, and  5 
sec.. Here, recognition rate is defined as the ratio of the 
number of speaker identified to the total number of 
speakers tested. As shown in Fig. 9, the speaker 
recognition performance for varying co-efficient \order is 
depicated. It is established that the co-efficient order range 
of of 18-22 is found to be optimal for good speaker 
recognition.   As shown in Fig. 10, Fig. 11, Fig. 12 for a 3-
state HMM, the recognition rate for testing length for 5 
sec. outperformed, where as for testing length of 3 sec. is 
also on par with 5 sec. testing length.  

 

 
Fig. 9: Speaker Recognition Performance for varying 

                            Co-efficient order 

 
 
      

Table 1: Speaker Recognition Performance for 
                                     varying Co-efficient order 
 

 
Coefficients 

Order 

Speaker 
Recognition ( % ) 

of GMM 

Speaker 
Recognition ( % ) 

of HMM 

13 87 89 

14 90 92 

15 92 94 
16 94 94.5 
17 89 92 
18 90 96 
19 98.5 98.5 
20 99 100 
21 99.5 99.5 
22 100 98 
23 99.5 97.5 
24 99 98 
25 98 98 
26 96 95 
27 93 94 
28 92 94 
29 87 89 
30 84 86 

      

 

Table 2: Avg. Speaker Recognition Performance for 
                                varying test duration. 

 

As shown in Table 3,, for a 3-state HMM  the percentage 
(%) recognition  for  Gaussian Components such as  4, 8, 
16, 32 and 64  seems to be uniformly increasing. The 
minimum number of Gaussian components to achieve 
good speaker recognition performance seems to be 16 and 
thereafter the recognition performance is minimal. As 
shown in Fig. 12.  
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Fig. 10: Avg. Speaker Recognition Performance of GMM/HMM for 
varying test duration of 1Sec.  

As shown in Fig. 10, the average speaker recognition 
performance for 10 sec., 20 sec. and  30 sec. training 
duration for varying mixture components as 4, 8, 16, 32 
and 64 tested with 1 sec., 3 sec., and 5 sec., test durations 
for 2, 3 and 4 states indicate that for 20 sec., of training 
speech duration with 16 mixture components test duration 
of 3 sec. And for 3-state HMM gives good speaker 
recognition performance. 
 

 

       Fig. 11: Avg. Speaker Recognition Performance of GMM/HMM       
                     for varying test duration of 3 Sec. 
 
 

 
         Fig. 11: Avg. Speaker Recognition Performance of GMM/HMM       
                     for varying test duration of 5 Sec. 

 
 
 

Table 3: Avg. Speaker Recognition Performance 
                     of GMM & HMM for 20 Sec. Training 
                     duration. 
 

No. of 
Mixture 

Components 

Avg. Speaker 
Recognition 

Performance of 
GMM 

Avg. Speaker 
Recognition 

Performance of 
HMM 

4 78.33 96.83 
8 87.66 98.33 
16 90.83 99.5 
32 93.33 99.16 
64 94.16 97.83 

 

 

 

    Fig. 11: Avg. Speaker Recognition Performance 
                 of GMM & HMM for 20 Sec. training  
                 duration 

 

No. of  
Mixture 
Components 

Avg. Speaker Recognition ( % ) 

Test Duration  

1 Sec. 3 Sec. 5 Sec. 

GMM 
 

HMM GMM HMM GMM HMM 

4 54.66 86.66 86 92.83 92.66 96.16 

8 67.83 90.5 95 96.33 97.33 98.66 

16 74.66 92.16 97.5 98.16 99 99 

32 82.85 94 97.83 97.66 99 98.83 

64 79.83 92 96 96.33 98.16 98.16 
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1 CONCLUSION 

In this work we have demonstrated the importance of 
coefficient order for speaker recognition task. Speaker 
discrimination information is effectively captured for 
coefficient order 20 using a HMM .The recognition 
performance depends on the training speech length 
selected for training to capture the speaker-discrimination 
information. Larger the training length, the better is the 
performance, although smaller number reduces 
computational complexity. 
 
Effectiveness of the HMM for speaker recognition task 
using the time varying speech signal is demonstrated. 
GMM based approaches do not capture prosodic 
information and acoustic variations, which vary with time. 
Hence, in order to capture time varying properties in the 
speech signal effectively, HMM based system is well 
suited for speaker recognition task. Continuous HMM 
embeds benefits associated with GMM approaches. We 
have not made any attempt to optimize the parameters of 
the model used for feature extraction, and also the decision 
making stage. Therefore the performance of language 
identification may be improved by optimizing the various 
design parameters 
 
 The objective in this paper was mainly to 
demonstrate the significance of the speaker-discrimination 
information present in the speech signal for speaker 
recognition. We have not made any attempt to optimize 
the parameters of the model used for feature extraction, 
and also the decision making stage. Therefore the 
performance of speaker recognition may be improved by 
optimizing the various design parameters. 
 

. 
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