
A new path algorithm for the weighted multi-graphs WMGPA:
application to the Direct Topological Method

Abderrahmane Euldji1, Abderrahim Tienti2 and Amine Boudghene Stambouli3

 1 National Institute of Telecommunications and ICT (INT-TIC), Oran, Algeria

2 National Institute of Telecommunications and ICT (INT-TIC), Oran, Algeria

3 Department of Electricity, University of Science and Technology of Oran USTO, Oran, Algeria

Abstract
The aim of this paper is to present an algorithm which gives all
the possible paths that start from a specific node to another of a
weighted multi-graph. This algorithm is intended to be applied
for the direct topological method.
Keywords: Electrical circuits analysis, direct topological
method, graph theory, path, weighted multi-graph, algorithm.

1. Introduction

The path notion is one of the most important graph
traversal concepts. To find a path in a graph, two vertices
shall be specified as a beginning and an ending vertex.
The path is the chain that starts from the beginning vertex
until it reaches the ending node, such that every vertex in
this chain shall not be crossed twice. As a result, a path is
a simple graph that does not contain any isolated node.

The path can be used to describe certain characteristics of
a graph, or to solve other problems related to this latter. It
can be used for decisional purposes, or for optimization
needs. In general, many topics in the graph theory are
based upon the path notion.

For this purpose, many efforts have been done in order to
give an “optimized” algorithmic form that finds all the
possible paths that starts from a specific node to another in
a graph; the most well-known all paths extractor
algorithms are the BFS (Breadth First Search), and the
DFS (Depth First Search) and their derivative algorithms
[1][2][3][4][5]. But since there are multiple classifications
of graphs, then a path algorithm made for a specified class
of graphs may or may not be used for the other classes of
graph.

For electrical circuits -in which this paper is established
for- the DFS at a first sight may appear as the appropriate
procedure to find paths of the electrical circuit’ associated

graph, but since they are considered as weighted multi-
graphs, then DFS becomes ineffective (incompetent).
Hence, this paper proposes a path algorithm suited for the
electrical circuits’ analysis, and that can be used
specifically for the direct topological method DTM; it is
called: WMGPA.

Before everything, it is better suited to talk about the
selected electrical circuits’ analysis method in this paper,
which is the direct topological method DTM.

2. Direct Topological Method DTM

The methods of analysis of the electrical circuits are
divided into two main classes:

 The algebraic methods: based on the resolution of
the circuits equations, either by conventional
computations, or through the intermediary of the
signal flow graph.

 The topological methods: they study the circuit’s

structure (topology) to deduct the expression of
the circuit’s functions.

The direct topological method (D.T.M) -as its name
indicates- is a method of analysis of the permanent linear
circuit networks, which permits to write directly the terms
of the looked for circuit functions, under their definitive
compact form, by visual examination of the studied circuit
topology. While reducing the steps to get the result
without complex computations, by simple application of
the topological rules. Hence, it permits to solve a problem
of circuit's analysis with minimum effort and economy of
time in comparison with the other methods.

D.T.M is based on the graph theory definitions, since it is
among the topological methods.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 248

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Any circuit function is rational; D.T.M intends to write
separately the numerator and the denominator, while with
the other analysis methods, only the circuit function is
well determined. The denominator is called the topological
determinant D; for the case of transfer functions, the
numerator is called the topological transfer numerator N,
both of these two parameters are called: the circuit’s
topological functions [6].

This method analyzes many types of electrical networks:
passive or active circuits, circuits with dependent or
independent sources, circuits containing one or many
mutual inductances as well as ideal transformers. This
method analyzes also circuits with distributed parameters
as transmission lines. All of these circuits require -in one
or many phases of their analysis process- the analysis of
RLC circuits.

Before introducing how to analyze RLC circuits by the
D.T.M, one should know some graph theory definitions.

3. Graph theory

Graph theory is the study of the properties of graph
structures. It provides us with a language with which to
talk about graphs. The key to solve many problems is
identifying the fundamental graph-theoretic notion
underlying the situation and then using classical
algorithms to solve the resulting problem.

Graph theory is very wide domain, in constant evolution in
either fundamental or applicative research; the
applications are very numerous, which justifies an
important research in algorithmic.

The graph theory offers a certain educational interest on
the other hand. Indeed, the definitions are simple, and real
problems of research can be posed as "mathematical
games" whose playful formulation can cover big
difficulties.

As the graph models very numerous situations, the
proposed problems are of more "natural" form [7].

The multiplicity of the applications also explains the
variety of the definitions, or of the variants of definitions.
So an article of graph theory always must "fix the
definitions"[8].

3.1 Relative definitions to topological graphs

1) node (vertex): A node "v" is an extremity point or an
intersection point between branches.

2) Branch: A branch "e" is a link between two nodes;
there are two types of branches, oriented branches (it is
called in this situation by arc) and non-oriented branches
(it is called in this situation by edge) .

3) Graph: A graph "G" (v, e) is constituted from "v", a
nonempty set of nodes, and from "e", a set of branches,
where each branch from "e" is a connection between two
nodes from "v"; nodes number is denoted |v|, and the
branches number is |e| [3].

There exist many classifications for graphs; such as:

a) Embedded vs. Topological graph: A graph is
embedded if the vertices and branches have been assigned
geometric positions. Thus any drawing of a graph is an
embedding, which may or may not have algorithmic
significance. Occasionally, the structure of a graph is
completely defined by the geometry of its embedding.

b) Simple graph vs. Multi-graph: A simple graph is a
graph having no loops or multiple branches. In this case,
each branch in E(G) can be specified by its endpoints u; v
in V(G).

In contrast, a multi-graph is a graph that it may contain
loops and at least one multiple branches (two adjacent
vertices are connected via multiple branches)

c) Directed graph (digraph / oriented graph): a
directed graph (digraph) is a graph where at least one
branch in it is oriented (arcs).

d) Weighted graph: In weighted graphs, each branch (or
vertex) of G is assigned a numerical (or symbolical) value,
or weight.

e) Labeled vs. Unlabeled graph: In labeled graphs, each
vertex is assigned a unique name or identifier to
distinguish it from all other vertices [7].

4) Node’s degree of a non-oriented graph: it is the
number of non-looped branches connected to this node.

3.2 Links and attributes

1) Loop: There is a loop when the branch extremities
correspond to the same node.
2) Cycle: A cycle is a closed path. A loop is a cycle with
a single node and branch.

3) Supplement: supplement of a branch set [e1, e2,…, en]
in a graph "G" is the resulted graph from the elimination

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 249

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

of these branches, each one is followed by the coincidence
of correspondent extremities.

4) Connected graph: A graph "G" is called connected, if
it is possible to find at least a path joining two arbitrary
nodes from it. A non-connected graph is a degenerated
one [6].

5) Transfer Graph:

a) Transfer cycle: There are two distinct branches from a
graph; "g" is called: the transmitter, and "h" is called the
receptor; these two branches form a couple K = (g , h)
called the transfer couple. Each cycle from a graph
containing at the same time "g" and "h" is a transfer cycle
joining "g" and "h", noted (g  h). A graph containing
transfer couples is a transfer graph.

b) Sign of the cycle: The sign of the transfer cycle
joining g to h is +1 or -1 depending on whether g and h are
in the same direction or in an opposite direction in the
cycle.

4. Analysis of RLC circuits by the D.T.M

The analysis process is subdivided into many steps which
depend on the specified network function: if it is a transfer
function, than a calculus of a topological transfer
numerator and a topological determinant is required. If it
is a driving point function (input function) than two
topological determinants are needed.

Both of the circuit’s topological functions are calculated
by following a set of steps, these steps vary according to
the complexity of their associated graphs, if the graph is
complex, then further rules and theorems are executed.

These rules and theorems are specified to extract either the
topological determinant or the topological transfer
numerator, for either of these two situations, some of these
rules and theorems are elementary (like rule n°1 and
theorem n°1), some are executed for special topologies,
others are general.

In order to identify the procedure to obtain the topological
functions, the class of these graphs shall be identified as
well. The classification is important. The class of the
graph implies the procedure to process it (this includes the
algorithm(s) to apply). The two previously mentioned
graphs to be extracted are both labeled and weighted
topological multi-graphs. In the case of the transfer
numerator’s graph, it is considered as a directed graph, in
contrast with the topological determinant’s graph (it is a
non-directed graph).

4.1 Topological Determinant D

To calculate the topological determinant of a RLC circuit,
we consider the graph of its non-excited circuit (hence it is
non-directed graph). The excitation sources in the circuit
have to be replaced by short-circuits for voltage
generators, and by opened circuits for current generators
[6].

Afterwards, the circuit’s topology is processed; it includes
also the verification of the circuit’s complexity.

If the graph is simple, than a table of elementary
topological determinants (TED) is consulted, if this table
does not contain this graph, or the graph is complex, than
further rules and theorems are needed.

In this paper, we introduce only two rules [9]:

1) Rule n° 1: An inductance "L" must be considered as
impedance "LS', and a capacitance "C" must be considered
as admittance "CS". A resistance could be considered as
impedance "R", or admittance "G".

2) Rule n° 3: The determinant of a degenerated circuit is
null.

A circuit is degenerated when it is not connected, or when
it contains a cycle which all its branches have a null
impedance. This cycle corresponds to a degenerated node
of the graph of the circuit.

4.2 Transfer Numerator

To get the transfer function, we must have besides the
determinant the transfer numerator. Contrary to the
determinant that only depends on the non-excited circuit,
the transfer numerator depends not only on the placement
of the excitation source, but also to the one of the output
response. Therefore, we have then to consider the circuit’s
graph with the excitation source and the output response.
This graph differs from the non-excited circuit's graph by
the existence of a transmitter branch, which represents the
excitation source, and a receiver branch, which represents
the output response, which both of them are oriented
branches. Therefore, this is the transfer graph of a single
transfer couple; it can contain several transfer cycles
joining the source excitation to the output response.
In this paper, we introduce only one theorem.

Theorem n°3: The transfer numerator of a RLC circuit is
the algebraic sum of the circuit's transfer cycles values [9].

The value of the transfer cycle, as a definition, equals the
multiplication of:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 250

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 The cycle’s sign.
 Admittances being part of the cycle.
 The cycle's supplement determinant of the

circuit.

5. Specification of the data structures

As already said, the graphs classification have a major
impact on the choice of the procedure/algorithm to be
applied. This also have an important role for the choice of
the most appropriate data structures to be selected.

Since the previously mentioned graphs to be extracted are
both labeled and weighted topological multi-graphs, then
the proposed data structures in this case are as follows:

a) Vertex list: This list holds the data of every vertex in
the graph; they are the vertex’s label (numerical value) and
degree.

b) Non-looped branches list: This list holds the data of all
the non-looped branches in the graph.

c) Looped branches list: Since the multi-graphs may
contain looped branches, thus it will be much more
appropriate to put them in their own list.

For both non-looped and looped branches lists, the
vertex’s labels in which these branches are connected to
shall be included in both of them.

The branch’s orientation defines whether the branch is
directed (true) or non-directed (false). It is to note that for
the directed branches, the order of the branch’s vertices
always indicates the positive direction.

The name of the branch is composed from the nature of
the component in which it is represented by this branch,
plus the index of the component which differs between the
components with the same nature. For example: if the
branch represents a resistor with the index 1, then its name
will be: R1.

According to rule n°1, the RLC components have an
affinity to be impedances or admittances, so this affinity
will be indicated as the category of the branch. Hence,
every branch shall have a category name that is obtained
from the association of the component’s affinity, and an
index to differ between components with the same
category. For example: if G have the following
components: R1, L1, C1 and C2, their category names are
(respectively): Z1, Z2, Y1 and Y2.

The weight of the branch is the category of the
component. It can be defined by both of the branch’s
category name and type name.

The previous mentioned data structures for the branches
are made to store the data of each branch without to
consider its connection with the rest of the branches, this
connection gives a look at the topology of the graph. So to
illustrate it, the adjacency-incidence list is defined.

d) Adjacency-incidence list: In this representation, the
graph’s data are represented by using linked lists to store
the entire incident branches (looped branches are
excluded) to each vertex in the graph. In the same process,
the neighbored vertices to each actual vertex which is
connected to those branches are stored as well. Typically
to construct this list, all the branches of the graph -through
the non-looped branches list- are swept (in coordination
with the vertex list), and the adjacency-incidence list is
updated. As a result, one can identify the adjacent
branches to a specific branch, and in the same time one
can identify all the incident branches to a specific node.

Example: Let us make the adjacency-incidence list of the
following circuit (Fig.1).

Fig. 1 Example of a circuit.

The graph associated to this circuit is called G.

This graph has one looped branch, so the looped branches
list is as presented in Table 1.

Its Non-looped branches list as presented in Table 2.

Table 1: Looped branches list of graph G

Vertex Label
Component’s

Category Name
Component’s
Nature Name

2 Y2 C2

R1

L1C1

1

3 2
C2

R2

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 251

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 2: Non-looped branches list of graph G

Branch’s
1st Node

Branch’s
2nd Node

Branch’s
Orientation

Branch’s
Nature
Name

Branch’s
Category

Name

1 2 false C1 Y1
1 3 false L1 Z3
2 3 false R1 Z1
1 3 false R2 Z2

This graph has three nodes, so the vertex list is as
illustrated in Table 3.

Table 3: Vertex list of graph G

Vertex
Label

Vertex
Degree

1 3
2 2
3 3

Then, the Adjacency-incidence list is as presented in Table
4.

Table 4: Adjacency-incidence list of graph G

Vertex data Adjacency-incidence list data

Label Degree Adjacent Vertex  Incident Branch’s
Nature Name / Category Name

1 3 2  C1/Y1 ; 3  L1/Z3 ; 3  R2/Z2
2 2 1  C1/Y1 ; 3  R1/Z1
3 3 1  L1/Z3 ; 1  R2/Z2 ; 2  R1/Z1

Now, let us discuss the path’s algorithm.

6. The weighted multi-graph’s path algorithm
WMGPA

The weighted multi-graph path algorithm WMGPA needs
as a principal element for its development the adjacency-
incidence list, because this list is simply a list of very
elementary paths which contain only the beginning and
ending nodes. From this remark, the WMGPA is as
follows:

WMGPA (BgnNd , EndNd, GRAPH)
{

if (BgnNd == EndNd) {
Printf (“Error ! Beginning node shall be different than

the ending node.”) ; }
else {
TempPathCounter = Degree of BgnNd ;

Creating path copies containg BgnNd in the temporary path
array TempPath with a number equal to TempPathCounter ;

for (i = 0 ; i < TempPathCounter ; i++)
{

Search in the Adjacency-incidence List of GRAPH for a
match between data of the last node in TempPath[i];

if (last node in TempPath[i] == EndNd) {

Save TempPath[i] in the PathList array ;
Delete TempPath[i] ;
Decrement TempPathCounter by 1 ; }

else if (last node degree in TempPath[i] == 1) {
Delete TempPath[i] ;
Decrement TempPathCounter by 1 ; }

}

for (i = 0 ; i < TempPathCounter ; i++)
{

Counter = Degree of the last node in TempPath [i];

Create path copies from TempPath[i] , with a number

equal to Counter and store them in TempPathAnalyzer ;

Search in the Adjacency-incidence List for a match

between data of the last node in TempPathAnalyzer ;

Save the data of each neighboured element to the last

node in the last position of each path stored in
TempPathAnalyzer ;

for (j = 0 ; j < Counter ; j++)
{

if (last node in TempPathAnalyzer[j] is EndNd)
{

Save TempPathAnalyzer[j] in the PathList;
Mark TempPathAnalyzer[j] as unwanted ; }

else if (last node in TempPathAnalyzer[j] is repeated
in it) {

Mark TempPathAnalyzer[j] as unwanted ; }
else if (Degree of the last node in

TempPathAnalyzer[j] == 1) {
Mark TempPathAnalyzer[j] as unwanted ; }

else {
Save TempPathAnalyzer [j] in TempPath ;
Increment TempPathCounter by 1 ;
Mark TempPathAnalyzer [j] as unwanted ; }

}
 }
 }
}

6.1 Description of the algorithm

This algorithm is intended to extract all the possible paths
which start with the beginning vertex BgnNd and the
ending vertex EndNd from a graph GRAPH.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 252

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

As a first step, the algorithm processes the before
mentioned vertices to make sure that they are not the
same. Afterwards, it builds an array that stores the
temporary paths called TempPath, and an array that stores
the positively verified paths PathList.

There are two stages in this process:

As a first stage, TempPath stores BgnNd, then it starts to
process -through the “adjacency-incidence” list- the
neighboured nodes to this latter (without to forget their
connecting branch). If the node to be processed is
effectively EndNd, then this temporary path is verified as
a complete path and it is stored in PathList (and eliminated
from the temporary path array). If this is not the case, then
if this node has a degree of one, then this temporary path
is rejected due to the fact that this node can not pass to any
other node anymore, then it can not pass to the ending
node. If this condition is not correct, then this path is
verified as temporary, and it may lead in the next “hop” to
the ending node.

In the second stage, the last vertex is selected in order to
get its neighboured vertices (and the branch connecting
these two) by the mean of the adjacency-incidence list,
then, another array arises which is TempPathAnalyzer,
which presents a table that stores the established
temporary “temporary paths” from the TempPath array,
and the same procedure as in the first stage is set with an
extra condition, which is the test of the pre-existence of
this additional node in the temporary path, which means in
other words that this node is repeated, and so it results in a
rejection of this possibility. This process keeps looping
until the temporary path array becomes void, at this state,
all the possibilities have been considered and the
algorithm finishes.

7. Application of the weighted multi-graph
path algorithm in the DTM

The direct topological method may use WMGPA in many
of its stages. One of its applications which is explicit and
presents one of its most useful benefits is its ability to study
the connectivity of the graph. As already mentioned in part
III.B.4, if there is no way to find any path joining two
nodes in a graph, then this graph is degenerated and as rule
n°3 states, the determinant of a degenerated graph is null.
One of its implicit uses is when it is molded to become the
cycle’s algorithm, this algorithm can be used –in one of its
applications– as a transfer cycle to calculate the topological
transfer numerator according to the third theorem of this
method (part IV.B).

8. Conclusion

In this paper, we proposed a new path algorithm that finds
all the possible paths that start from a specific node to
another in a graph. This algorithm is suited to the weighted
multi-graphs; it can be considered as an extended DFS
algorithm. It can be used to develop algorithm for DTM in
order to analyze electrical circuits.

References

 [1] D. Narsingh, Graph theory with applications to engineering

and computer science, Prentice-hall inc, 1974.
[2] M. C. Golumbic, Algorithmic graph theory and perfect

graphs, Academic Press, 1980.
[3] R. Sedgwick, Algorithms in Java, Addison Wesley, third

edition, 2003, part 5 : graph algorithms.
[4] D. Jungnickel, Graphs, networks and algorithms, Springer,

third edition, 2007.
[5] H. Nagamochi and T. Ibaraki, Algorithmic Aspects of Graph

Connectivity-Encyclopedia of Mathematics and its
Applications, Cambridge University Press, 2008.

[6] S. Hoang, Direct topological method, Course document,
Telecommunications institute of Oran; Chapter4 : Theory of
topological graph , Chapter 6 : The direct topological method
for circuits analysis, page 177, 1984.

[7] S. S. Skeina and M. A. Revilla, Programming challenges, the
programming contest training manual, springer, 2003.

[8] B. Courcelle, Introduction à la théorie des graphes :
Définitions, applications et techniques de preuves, Université
Bordeaux 1, LaBRI (CNRS UMR 5800), April 20th 2004.

[9] S. Hoang, "Direct topological method for analysis of
networks without magnetic coupling", Arch Electrotech
(Poland), 1974, 22(2) pp. 387-405.

Abderrahmane Euldji is a state engineer from the National
Institute of Telecommunications and ICT (INT-TIC) since 2008. He
is preparing for the magister degree in telecommunications, option:
network systems and ICT. His current interest is computer science
and algorithmic.

Abderrahim Tienti had his state engineer degree in
telecommunications in 1983 from the National Institute of
Telecommunications and ICT, a DEA in automatics from ENSIEG
of INPG (Gronoble, France) in 1990 and his magister degree in
robotics from University of Sciences and Technology of Oran
(Algeria) in 1998. He is a lecturer at INT-TIC. His current interest is
the analysis and synthesis of electrical circuits (especially in DTM),
electronic switching systems, signaling system SS7, xDSL, ISDN.
He has contributed in many papers in many national and
international conferences.

Amine Boudghene Stambouli is a graduate of the University of
Sciences and Technology of Oran (Algeria) in 1983. He received
his master's degree in modern electronics (1985) and his PhD in
optoelectronics (1989) at the University of Nottingham in England.
He joined the University of Sciences and Technology of Oran in
1989. His studies started in the field of High Field
Electroluminescence and optoelectronics and lately changed to
environmental friendly production of energy. His research interests
include at present: Photovoltaics, Fuel cells, hybrid systems, and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 253

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

environment impacts. He is a full Professor of optoelectronics and
material science for environment and energy applications at the
Department of Electronics. Prof. Amine Boudghene Stambouli is
United Nations consultant (Index 382958), member of many
scientific and industrial organizations and director of several
doctoral courses. He served as the head of the electronics
department, vice rector of the university for almost two years and
later the president of the scientific council of the electrical and
electronics engineering faculty. Prof. Amine Boudghene Stambouli
has been chairing five international conferences in the field of
electrical engineering and was chairman at numerous sessions of
international conferences. His studies are documented by 1 book,
3 polycopies and several papers mainly published on International
Journals and on Proceedings of International and National
Conferences. He is a reviewer and an Editorial Board Membership
of several International Journals. He is actively collaborating with
research group world wide (Algeria, Italy, Japan, France, USA,
Turkey, England, Saudi Arabia, Jordan and Syria). He was Co-
responsible, with Pr. Enrico travera, of the research team «
Photovoltaics and fuel cells » between the university of Roma Tor
Vergata and the university of Sciences and Technology of Oran.
He was awarded the prise of the best publication of the year 2009,
delivered by CDER and the ministry of higher education and
scientific research of Algeria. He is Co-responsible (Algerian side)
of the Sahara Solar Breeder (SSB) project along with Pr. Koinuma
(Japan side). Founder of the Sahara Solar Breeder Foundation.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 254

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

