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Abstract 
The aim of this paper is to present an algorithm which gives all 
the possible paths that start from a specific node to another of a 
weighted multi-graph. This algorithm is intended to be applied 
for the direct topological method. 
Keywords: Electrical circuits analysis, direct topological 
method, graph theory, path, weighted multi-graph, algorithm. 

1. Introduction 

The path notion is one of the most important graph 
traversal concepts. To find a path in a graph, two vertices 
shall be specified as a beginning and an ending vertex. 
The path is the chain that starts from the beginning vertex 
until it reaches the ending node, such that every vertex in 
this chain shall not be crossed twice. As a result, a path is 
a simple graph that does not contain any isolated node. 
 
The path can be used to describe certain characteristics of 
a graph, or to solve other problems related to this latter. It 
can be used for decisional purposes, or for optimization 
needs. In general, many topics in the graph theory are 
based upon the path notion. 
 
For this purpose, many efforts have been done in order to 
give an “optimized” algorithmic form that finds all the 
possible paths that starts from a specific node to another in 
a graph; the most well-known all paths extractor 
algorithms are the BFS (Breadth First Search), and the 
DFS (Depth First Search) and their derivative algorithms 
[1][2][3][4][5]. But since there are multiple classifications 
of graphs, then a path algorithm made for a specified class 
of graphs may or may not be used for the other classes of 
graph. 
 
For electrical circuits -in which this paper is established 
for- the DFS at a first sight may appear as the appropriate 
procedure to find paths of the electrical circuit’ associated 

graph, but since they are considered as weighted multi-
graphs, then DFS becomes ineffective (incompetent). 
Hence, this paper proposes a path algorithm suited for the 
electrical circuits’ analysis, and that can be used 
specifically for the direct topological method DTM; it is 
called: WMGPA. 
 
Before everything, it is better suited to talk about the 
selected electrical circuits’ analysis method in this paper, 
which is the direct topological method DTM. 

2. Direct Topological Method DTM 

The methods of analysis of the electrical circuits are 
divided into two main classes: 
 

 The algebraic methods: based on the resolution of 
the circuits equations, either by conventional 
computations, or through the intermediary of the 
signal flow graph. 

 
 The topological methods:  they study the circuit’s 

structure (topology) to deduct the expression of 
the circuit’s functions. 

 
The direct topological method (D.T.M) -as its name 
indicates- is a method of analysis of the permanent linear 
circuit networks, which permits to write directly the terms 
of the looked for circuit functions, under their definitive 
compact form, by visual examination of the studied circuit 
topology. While reducing the steps to get the result 
without complex computations, by simple application of 
the topological rules. Hence, it permits to solve a problem 
of circuit's analysis with minimum effort and economy of 
time in comparison with the other methods. 
 
D.T.M is based on the graph theory definitions, since it is 
among the topological methods. 
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Any circuit function is rational; D.T.M intends to write 
separately the numerator and the denominator, while with 
the other analysis methods, only the circuit function is 
well determined. The denominator is called the topological 
determinant D; for the case of transfer functions, the 
numerator is called the topological transfer numerator N, 
both of these two parameters are called: the circuit’s 
topological functions [6]. 
 
This method analyzes many types of electrical networks: 
passive or active circuits, circuits with dependent or 
independent sources, circuits containing one or many 
mutual inductances as well as ideal transformers. This 
method analyzes also circuits with distributed parameters 
as transmission lines. All of these circuits require -in one 
or many phases of their analysis process- the analysis of 
RLC circuits. 
 
Before introducing how to analyze RLC circuits by the 
D.T.M, one should know some graph theory definitions. 

3. Graph theory 

Graph theory is the study of the properties of graph 
structures. It provides us with a language with which to 
talk about graphs. The key to solve many problems is 
identifying the fundamental graph-theoretic notion 
underlying the situation and then using classical 
algorithms to solve the resulting problem. 
 
Graph theory is very wide domain, in constant evolution in 
either fundamental or applicative research; the 
applications are very numerous, which justifies an 
important research in algorithmic. 
 
The graph theory offers a certain educational interest on 
the other hand. Indeed, the definitions are simple, and real 
problems of research can be posed as "mathematical 
games" whose playful formulation can cover big 
difficulties. 
 
As the graph models very numerous situations, the 
proposed problems are of more "natural" form [7]. 
 
The multiplicity of the applications also explains the 
variety of the definitions, or of the variants of definitions. 
So an article of graph theory always must "fix the 
definitions"[8]. 

3.1 Relative definitions to topological graphs 

1) node (vertex):  A node "v" is an extremity point or an 
intersection point between branches. 
 

2) Branch:  A branch "e" is a link between two nodes; 
there are two types of branches, oriented branches (it is 
called in this situation by arc) and non-oriented branches 
(it is called in this situation by edge) . 
 
3) Graph:  A graph "G" (v, e) is constituted from "v", a 
nonempty set of nodes, and from "e", a set of branches, 
where each branch from "e" is a connection between two 
nodes from "v"; nodes number is denoted |v|, and the 
branches number is |e| [3]. 
 
There exist many classifications for graphs; such as: 
 
a) Embedded vs. Topological graph:  A graph is 
embedded if the vertices and branches have been assigned 
geometric positions. Thus any drawing of a graph is an 
embedding, which may or may not have algorithmic 
significance. Occasionally, the structure of a graph is 
completely defined by the geometry of its embedding. 
 
b) Simple graph vs. Multi-graph:  A simple graph is a 
graph having no loops or multiple branches. In this case, 
each branch in E(G) can be specified by its endpoints u; v 
in V(G). 
 
In contrast, a multi-graph is a graph that it may contain 
loops and at least one multiple branches (two adjacent 
vertices are connected via multiple branches) 
 
c) Directed graph (digraph / oriented graph):  a 
directed graph (digraph) is a graph where at least one 
branch in it is oriented (arcs). 
 
d) Weighted graph:  In weighted graphs, each branch (or 
vertex) of G is assigned a numerical (or symbolical) value, 
or weight. 
 
e) Labeled vs. Unlabeled graph:  In labeled graphs, each 
vertex is assigned a unique name or identifier to 
distinguish it from all other vertices [7]. 
 
4) Node’s degree of a non-oriented graph:  it is the 
number of non-looped branches connected to this node. 

3.2 Links and attributes 

1) Loop:  There is a loop when the branch extremities 
correspond to the same node. 
2) Cycle:  A cycle is a closed path. A loop is a cycle with 
a single node and branch. 
 
3) Supplement:  supplement of a branch set [e1, e2,…, en] 
in a graph "G" is the resulted graph from the elimination 
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of these branches, each one is followed by the coincidence 
of correspondent extremities. 
 
4) Connected graph:  A graph "G" is called connected, if 
it is possible to find at least a path joining two arbitrary 
nodes from it. A non-connected graph is a degenerated 
one [6]. 
 
5) Transfer Graph: 
 
a) Transfer cycle:  There are two distinct branches from a 
graph; "g" is called: the transmitter, and "h" is called the 
receptor; these two branches form a couple K = (g , h) 
called the transfer couple. Each cycle from a graph 
containing at the same time "g" and "h" is a transfer cycle 
joining "g" and "h", noted (g  h). A graph containing 
transfer couples is a transfer graph. 
 
b) Sign of the cycle:  The sign of the transfer cycle 
joining g to h is +1 or -1 depending on whether g and h are 
in the same direction or in an opposite direction in the 
cycle. 

4. Analysis of RLC circuits by the D.T.M 

The analysis process is subdivided into many steps which 
depend on the specified network function: if it is a transfer 
function, than a calculus of a topological transfer 
numerator and a topological determinant is required. If it 
is a driving point function (input function) than two 
topological determinants are needed. 
 
Both of the circuit’s topological functions are calculated 
by following a set of steps, these steps vary according to 
the complexity of their associated graphs, if the graph is 
complex, then further rules and theorems are executed. 
 
These rules and theorems are specified to extract either the 
topological determinant or the topological transfer 
numerator, for either of these two situations, some of these 
rules and theorems are elementary (like rule n°1 and 
theorem n°1), some are executed for special topologies, 
others are general. 
 
In order to identify the procedure to obtain the topological 
functions, the class of these graphs shall be identified as 
well. The classification is important. The class of the 
graph implies the procedure to process it (this includes the 
algorithm(s) to apply). The two previously mentioned 
graphs to be extracted are both labeled and weighted 
topological multi-graphs. In the case of the transfer 
numerator’s graph, it is considered as a directed graph, in 
contrast with the topological determinant’s graph (it is a 
non-directed graph). 

4.1 Topological Determinant D 

To calculate the topological determinant of a RLC circuit, 
we consider the graph of its non-excited circuit (hence it is 
non-directed graph). The excitation sources in the circuit 
have to be replaced by short-circuits for voltage 
generators, and by opened circuits for current generators 
[6]. 
 
Afterwards, the circuit’s topology is processed; it includes 
also the verification of the circuit’s complexity. 
 
If the graph is simple, than a table of elementary 
topological determinants (TED) is consulted, if this table 
does not contain this graph, or the graph is complex, than 
further rules and theorems are needed. 
 
In this paper, we introduce only two rules [9]: 
 
1) Rule n° 1:  An inductance "L" must be considered as 
impedance "LS', and a capacitance "C" must be considered 
as admittance "CS". A resistance could be considered as 
impedance "R", or admittance "G". 
 
2) Rule n° 3:  The determinant of a degenerated circuit is 
null. 
 
A circuit is degenerated when it is not connected, or when 
it contains a cycle which all its branches have a null 
impedance. This cycle corresponds to a degenerated node 
of the graph of the circuit. 

4.2 Transfer Numerator 

To get the transfer function, we must have besides the 
determinant the transfer numerator. Contrary to the 
determinant that only depends on the non-excited circuit, 
the transfer numerator depends not only on the placement 
of the excitation source, but also to the one of the output 
response. Therefore, we have then to consider the circuit’s 
graph with the excitation source and the output response. 
This graph differs from the non-excited circuit's graph by 
the existence of a transmitter branch, which represents the 
excitation source, and a receiver branch, which represents 
the output response, which both of them are oriented 
branches. Therefore, this is the transfer graph of a single 
transfer couple; it can contain several transfer cycles 
joining the source excitation to the output response. 
In this paper, we introduce only one theorem. 
 
Theorem n°3:  The transfer numerator of a RLC circuit is 
the algebraic sum of the circuit's transfer cycles values [9]. 
 
The value of the transfer cycle, as a definition, equals the 
multiplication of: 
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 The cycle’s sign. 
 Admittances being part of the cycle. 
 The cycle's supplement determinant of the 

circuit. 

5. Specification of the data structures 

As already said, the graphs classification have a major 
impact on the choice of the procedure/algorithm to be 
applied. This also have an important role for the choice of 
the most appropriate data structures to be selected. 
 
Since the previously mentioned graphs to be extracted are 
both labeled and weighted topological multi-graphs, then 
the proposed data structures in this case are as follows: 
 
a) Vertex list:  This list holds the data of every vertex in 
the graph; they are the vertex’s label (numerical value) and 
degree. 
 
b) Non-looped branches list:  This list holds the data of all 
the non-looped branches in the graph. 
 
c) Looped branches list:  Since the multi-graphs may 
contain looped branches, thus it will be much more 
appropriate to put them in their own list. 
 
For both non-looped and looped branches lists, the 
vertex’s labels in which these branches are connected to 
shall be included in both of them.  
 
The branch’s orientation defines whether the branch is 
directed (true) or non-directed (false). It is to note that for 
the directed branches, the order of the branch’s vertices 
always indicates the positive direction. 
 
The name of the branch is composed from the nature of 
the component in which it is represented by this branch, 
plus the index of the component which differs between the 
components with the same nature. For example: if the 
branch represents a resistor with the index 1, then its name 
will be: R1. 
 
According to rule n°1, the RLC components have an 
affinity to be impedances or admittances, so this affinity 
will be indicated as the category of the branch. Hence, 
every branch shall have a category name that is obtained 
from the association of the component’s affinity, and an 
index to differ between components with the same 
category. For example: if G have the following 
components: R1, L1, C1 and C2, their category names are 
(respectively): Z1, Z2, Y1 and Y2. 
 

The weight of the branch is the category of the 
component. It can be defined by both of the branch’s 
category name and type name. 
 
The previous mentioned data structures for the branches 
are made to store the data of each branch without to 
consider its connection with the rest of the branches, this 
connection gives a look at the topology of the graph. So to 
illustrate it, the adjacency-incidence list is defined. 
 
d) Adjacency-incidence list: In this representation, the 
graph’s data are represented by using linked lists to store 
the entire incident branches (looped branches are 
excluded) to each vertex in the graph. In the same process, 
the neighbored vertices to each actual vertex which is 
connected to those branches are stored as well. Typically 
to construct this list, all the branches of the graph -through 
the non-looped branches list- are swept (in coordination 
with the vertex list), and the adjacency-incidence list is 
updated. As a result, one can identify the adjacent 
branches to a specific branch, and in the same time one 
can identify all the incident branches to a specific node. 
 
Example:  Let us make the adjacency-incidence list of the 
following circuit (Fig.1). 
 

 

Fig. 1  Example of a circuit. 

The graph associated to this circuit is called G. 
 

This graph has one looped branch, so the looped branches 
list is as presented in Table 1. 
 
Its Non-looped branches list as presented in Table 2. 

Table 1: Looped branches list of graph G 

Vertex Label 
Component’s 

Category Name 
Component’s 
Nature Name 

2 Y2 C2

 

 

 

R1

L1C1

1 

3 2
C2

R2
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Table 2: Non-looped branches list of graph G 

Branch’s 
1st Node 

Branch’s 
2nd Node 

Branch’s 
Orientation 

Branch’s 
Nature 
Name 

Branch’s 
Category 

Name 

1 2 false C1 Y1 
1 3 false L1 Z3 
2 3 false R1 Z1 
1 3 false R2 Z2 

 
This graph has three nodes, so the vertex list is as 
illustrated in Table 3. 

Table 3: Vertex list of graph G 

Vertex 
Label 

Vertex 
Degree 

1 3 
2 2 
3 3 

 
Then, the Adjacency-incidence list is as presented in Table 
4. 

Table 4: Adjacency-incidence list of graph G 

Vertex data Adjacency-incidence list data 

Label Degree Adjacent Vertex  Incident Branch’s 
Nature Name / Category Name 

1 3 2  C1/Y1 ; 3  L1/Z3 ; 3  R2/Z2 
2 2 1  C1/Y1 ; 3  R1/Z1  
3 3 1  L1/Z3 ; 1  R2/Z2 ; 2  R1/Z1 

 
Now, let us discuss the path’s algorithm. 

6. The weighted multi-graph’s path algorithm 
WMGPA 

The weighted multi-graph path algorithm WMGPA needs 
as a principal element for its development the adjacency-
incidence list, because this list is simply a list of very 
elementary paths which contain only the beginning and 
ending nodes. From this remark, the WMGPA is as 
follows: 
 
 
 
WMGPA ( BgnNd , EndNd, GRAPH ) 
{ 

if ( BgnNd == EndNd ) { 
Printf ( “Error ! Beginning node shall be different than 

the ending node.”) ; } 
else { 
TempPathCounter = Degree of BgnNd ; 

Creating path copies containg BgnNd in the temporary path 
array TempPath with a number equal to TempPathCounter ; 

   
for ( i = 0 ; i < TempPathCounter ; i++ ) 
{ 

Search in the Adjacency-incidence List of GRAPH for a 
match between data of the last node in TempPath[i]; 

 
if ( last node in TempPath[i] == EndNd) { 

Save TempPath[i] in the PathList array ;   
Delete TempPath[i] ; 
Decrement TempPathCounter by 1 ; }  

else if ( last node degree in TempPath[i] == 1 ) { 
Delete TempPath[i] ; 
Decrement TempPathCounter by 1 ; } 

} 
 
for ( i = 0 ; i < TempPathCounter ; i++ ) 
{ 

Counter = Degree of the last node in TempPath [i]; 
 
Create path copies from TempPath[i] , with a number 

equal to Counter and store them in TempPathAnalyzer ; 
 
Search in the Adjacency-incidence List for a match 

between data of the last node in TempPathAnalyzer ; 
 
Save the data of each neighboured element to the last 

node in the last position of each path stored in 
TempPathAnalyzer ; 

   
for ( j = 0 ; j < Counter ; j++ ) 
{ 

if ( last node in TempPathAnalyzer[j] is EndNd ) 
{ 

Save TempPathAnalyzer[j] in the PathList;  
Mark TempPathAnalyzer[j] as unwanted ; } 

else if ( last node in TempPathAnalyzer[j] is repeated 
in it ) { 

Mark TempPathAnalyzer[j] as unwanted ; } 
else if ( Degree of the last node in 

TempPathAnalyzer[j] == 1 ) { 
Mark TempPathAnalyzer[j] as unwanted ; } 

else { 
Save TempPathAnalyzer [j] in TempPath ; 
Increment TempPathCounter by 1 ; 
Mark TempPathAnalyzer [j] as unwanted ; } 

} 
        } 
    } 
} 
 

6.1 Description of the algorithm 

This algorithm is intended to extract all the possible paths 
which start with the beginning vertex BgnNd and the 
ending vertex EndNd from a graph GRAPH. 
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As a first step, the algorithm processes the before 
mentioned vertices to make sure that they are not the 
same. Afterwards, it builds an array that stores the 
temporary paths called TempPath, and an array that stores 
the positively verified paths PathList. 
 
There are two stages in this process: 
 
As a first stage, TempPath stores BgnNd, then it starts to 
process -through the “adjacency-incidence” list- the 
neighboured nodes to this latter (without to forget their 
connecting branch). If the node to be processed is 
effectively EndNd, then this temporary path is verified as 
a complete path and it is stored in PathList (and eliminated 
from the temporary path array). If this is not the case, then 
if this node has a degree of one, then this temporary path 
is rejected due to the fact that this node can not pass to any 
other node anymore, then it can not pass to the ending 
node. If this condition is not correct, then this path is 
verified as temporary, and it may lead in the next “hop” to 
the ending node. 
 
In the second stage, the last vertex is selected in order to 
get its neighboured vertices  (and the branch connecting 
these two) by the mean of the adjacency-incidence list, 
then, another array arises which is TempPathAnalyzer, 
which presents a table that stores the established 
temporary “temporary paths” from the TempPath array, 
and the same procedure as in the first stage is set with an 
extra condition, which is the test of the pre-existence of 
this additional node in the temporary path, which means in 
other words that this node is repeated, and so it results in a 
rejection of this possibility. This process keeps looping 
until the temporary path array becomes void, at this state, 
all the possibilities have been considered and the 
algorithm finishes. 

7.  Application of the weighted multi-graph 
path algorithm in the DTM 

The direct topological method may use WMGPA in many 
of its stages. One of its applications which is explicit and 
presents one of its most useful benefits is its ability to study 
the connectivity of the graph. As already mentioned in part 
III.B.4, if there is no way to find any path joining two 
nodes in a graph, then this graph is degenerated and as rule 
n°3 states, the determinant of a degenerated graph is null. 
One of its implicit uses is when it is molded to become the 
cycle’s algorithm, this algorithm can be used –in one of its 
applications– as a transfer cycle to calculate the topological 
transfer numerator according to the third theorem of this 
method (part IV.B). 

8.  Conclusion 

In this paper, we proposed a new path algorithm that finds 
all the possible paths that start from a specific node to 
another in a graph. This algorithm is suited to the weighted 
multi-graphs; it can be considered as an extended DFS 
algorithm. It can be used to develop algorithm for DTM in 
order to analyze electrical circuits. 
 
References 
 
 [1]  D. Narsingh, Graph theory with applications to engineering 

and computer science, Prentice-hall inc, 1974. 
[2] M. C. Golumbic, Algorithmic graph theory and perfect 

graphs, Academic Press, 1980. 
[3]   R. Sedgwick, Algorithms in Java, Addison Wesley, third 

edition, 2003, part 5 : graph algorithms. 
[4]  D. Jungnickel, Graphs, networks and algorithms, Springer, 

third edition, 2007. 
[5] H. Nagamochi and T. Ibaraki, Algorithmic Aspects of Graph 

Connectivity-Encyclopedia of Mathematics and its 
Applications, Cambridge University Press, 2008. 

[6] S. Hoang, Direct topological method, Course document, 
Telecommunications institute of Oran; Chapter4 : Theory of 
topological graph , Chapter 6 : The direct topological method 
for circuits analysis, page 177, 1984. 

[7] S. S. Skeina and M. A. Revilla, Programming challenges, the 
programming contest training manual, springer, 2003. 

[8] B. Courcelle, Introduction à la théorie des graphes : 
Définitions, applications et techniques de preuves, Université 
Bordeaux 1, LaBRI (CNRS UMR 5800), April 20th 2004. 

[9] S. Hoang, "Direct topological method for analysis of 
networks without magnetic coupling", Arch Electrotech 
(Poland), 1974, 22(2) pp. 387-405. 

 
 
Abderrahmane Euldji is a state engineer from the National 
Institute of Telecommunications and ICT (INT-TIC) since 2008. He 
is preparing for the magister degree in telecommunications, option: 
network systems and ICT. His current interest is computer science 
and algorithmic. 
 
Abderrahim Tienti had his state engineer degree in 
telecommunications in 1983 from the National Institute of 
Telecommunications and ICT, a DEA in automatics from ENSIEG 
of INPG (Gronoble, France) in 1990 and his magister degree in 
robotics from University of Sciences and Technology of Oran 
(Algeria) in 1998. He is a lecturer at INT-TIC. His current interest is 
the analysis and synthesis of electrical circuits (especially in DTM), 
electronic switching systems, signaling system SS7, xDSL, ISDN. 
He has contributed in many papers in many national and 
international conferences. 
 
Amine Boudghene Stambouli is a graduate of the University of 
Sciences and Technology of Oran (Algeria) in 1983. He received 
his master's degree in modern electronics (1985) and his PhD in 
optoelectronics (1989) at the University of Nottingham in England. 
He joined the University of Sciences and Technology of Oran in 
1989. His studies started in the field of High Field 
Electroluminescence and optoelectronics and lately changed to 
environmental friendly production of energy. His research interests 
include at present: Photovoltaics, Fuel cells, hybrid systems, and 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 253

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



environment impacts. He is a full Professor of optoelectronics and 
material science for environment and energy applications at the 
Department of Electronics. Prof. Amine Boudghene Stambouli is 
United Nations consultant (Index 382958), member of many 
scientific and industrial organizations and director of several 
doctoral courses. He served as the head of the electronics 
department, vice rector of the university for almost two years and 
later the president of the scientific council of the electrical and 
electronics engineering faculty. Prof. Amine Boudghene Stambouli 
has been chairing five international conferences in the field of 
electrical engineering and was chairman at numerous sessions of 
international conferences. His studies are documented by 1 book, 
3 polycopies and several papers mainly published on International 
Journals and on Proceedings of International and National 
Conferences. He is a reviewer and an Editorial Board Membership 
of several International Journals. He is actively collaborating with 
research group world wide (Algeria, Italy, Japan, France, USA, 
Turkey, England, Saudi Arabia, Jordan and Syria). He was Co-
responsible, with Pr. Enrico travera, of the research team « 
Photovoltaics and fuel cells » between the university of Roma Tor 
Vergata and the university of Sciences and Technology of Oran. 
He was awarded the prise of the best publication of the year 2009, 
delivered by CDER and the ministry of higher education and 
scientific research of Algeria. He is Co-responsible (Algerian side) 
of the Sahara Solar Breeder (SSB) project along with Pr. Koinuma 
(Japan side). Founder of the Sahara Solar Breeder Foundation.  
 
 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 254

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




