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Abstract 
Design and Development of Unicode and its recognition especially 
for Indian script is an active area of research today. An attempt is 
made to identify Tamil- a vernacular of southern India, which is also 
the official language of Tamilnadu. Tamil language present great 
challenges to an OCR designer due to the large number (247 letters) 
in the alphabet, the sophisticated ways in which they combine, and 
the complicated graphemes they result in. The conventional 
programming methods of mapping symbol images into matrices, 
analyzing pixel and/or vector data and trying to decide which 
symbol corresponds to which character would yield little or no 
realistic results. Clearly the needed methodology will be one that can 
detect closeness of graphic representations to known symbols based 
on the character height, character width, the number of horizontal 
lines (long and short), the number of vertical lines (long and short), 
number of slope lines, special dots and based on that the glyphs are 
now set ready for classification. The extracted features are passed to 
neural network where the characters are classified by supervised 
learning of Back Propagation algorithm which compromises 
training, calculation of error, and modifying weights and then testing 
the given image.and make decisions based on this nearness. This 
proposed work has employed the MLP technique to identify the 
symbols, excellent results were obtained for a number of widely 
used Unicode Tamil font types.  
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1. Introduction 

1.1. Artificial Neural Networks 

Artificial Neural networks have seen an explosion of interest 
over the last few years, and are being successfully applied 
across an extraordinary range of problem domains, in areas as 
diverse as finance, medicine, engineering, geology and 
physics. Indeed, anywhere that there are problems of 
prediction, classification or control, neural networks are being 
introduced. To capture the essence of biological neural 
systems, an artificial neuron is defined as follows:  

 It receives a number of inputs (either from original 
data, or from the output of other neurons in the 
neural network). Each input comes via a connection 
that has a strength (or weight); these weights 
correspond to synaptic efficacy in a biological  

 
 
neuron. Each neuron also has a single threshold 
value. The weighted sum of the inputs is formed, 
and the threshold subtracted, to compose the 
activation of the neuron.  

 The activation signal is passed through an activation 
function (also known as a transfer function) to 
produce the output of the neuron.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.1 A Typical Feedforward Network 
 
A typical feedforward network has neurons arranged in a 
distinct layered topology. The input layer is not really neural 
at all: these units simply serve to introduce the values of the 
input variables. The hidden and output layer neurons are each 
connected to all of the units in the preceding layer. Again, it 
is possible to define networks that are partially-connected to 
only some units in the preceding layer; however, for most 
applications fully-connected networks are better.  
 
1.2. The Multi-Layer Perceptron Neural Network 
Model  
 
The Multi-Layer Perceptron Neural Network is perhaps the 
most popular network architecture in use today. The units 
each perform a biased weighted sum of their inputs and pass 
this activation level through an activation function to produce 
their output, and the units are arranged in a layered feed 
forward topology. The network thus has a simple 
interpretation as a form of input-output model, with the 
weights and thresholds (biases) the free parameters of the 
model. Such networks can model functions of almost 
arbitrary complexity, with the number of layers, and the 
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number of units in each layer, determining the function 
complexity. Important issues in Multilayer Perceptrons 
(MLP) design include specification of the number of hidden 
layers and the number of units in each layer. Most common 
activation functions are the logistic and hyperbolic tangent 
sigmoid functions. This work uses the hyperbolic tangent 

function:    (1) 

and derivative: . (2) 
 
1.3. Optical Language - Tamil Symbols 
 
The Tamil script is written from left to right is characterized 
by having its own written symbolic representations, it has 
twelve vowels, eighteen consonants and one character, the 
āytam, which is classified in Tamil grammar as being neither 
a consonant nor a vowel. The script, however, is syllabic and 
not alphabetic. The complete script, therefore, consists of the 
thirty-one letters in their independent form, and an additional 
216 combinant letters representing a total 247 combinations 
of a consonant and a vowel, a mute consonant, or a vowel 
alone. These combinant letters are formed by adding a vowel 
marker to the consonant. Some vowels require the basic 
shape of the consonant to be altered in a way that is specific 
to that vowel. Others are written by adding a vowel-specific 
suffix to the consonant, yet others a prefix, and finally some 
vowels require adding both a prefix and a suffix to the 
consonant. In every case the vowel marker is different from 
the standalone character for the vowel. Like other South 
Asian scripts in Unicode, the Tamil encoding was originally 
derived from the ISCII standard. Both ISCII and Unicode 
encode Tamil as an abugida. In an abugida, each basic 
character represents a consonant and default vowel. 
Consonants with a different vowel or bare consonants are 
represented by adding a modifier character to a base 
character. Each codepoint representing a similar phoneme is 
encoded in the same relative position in each South Asian 
script block in Unicode, including Tamil. Although Unicode 
represents Tamil as an abugida all the pure consonants 
(consonants with no associated vowel) and syllables in Tamil 
can be represented by combining multiple Unicode code 
points. 
 
 
2. Technical Overview 
 
2.1. Introduction 
 
The operations of the network implementation in this project 
can be summarized by the following steps: 
 
Training phase  

 Analyze image for characters  

 Convert symbols to pixel matrices  
 Retrieve corresponding desired output character and 

convert to Unicode  
 Lineraize matrix and feed to network  
 Compute output , Compare output with desired 

output Unicode value and compute error  
 Adjust weights accordingly and repeat process until 

preset number of iterations  
 
Testing phase  

 Analyze image for characters  
 Convert symbols to pixel matrices  
 Compute output  
 Display character representation of the Unicode 

output  
Essential components of the implementation are: 

 Formation of the network and weight initialization 
routine  

 Pixel analysis of images for symbol detection  
 Loading routines for training input images and 

corresponding desired output characters in special 
files  

 Loading and saving routines for trained network 
(weight values)  

 Character to binary Unicode and vice versa 
conversion routines  

 Error, output and weight calculation routines  
 
2.2. Network Formation 
 
The MLP Network implemented for the purpose of this 
project is composed of 3 layers, one input, one hidden and 
one output. The input layer constitutes of 150 neurons which 
receive pixel binary data from a 10x15 symbol pixel matrix. 
The size of this matrix was decided taking into consideration 
the average height and width of character image that can be 
mapped without introducing any significant pixel noise. The 
hidden layer constitutes of 250 neurons whose number is 
decided on the basis of optimal results on a trial and error 
basis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 The Project MLP Network 
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The output layer is composed of 16 neurons corresponding to 
the 16-bits of Unicode encoding. To initialize the weights a 
random function was used to assign an initial random number 
which lies between two preset integers named weight_bias. 
The weight bias is selected from trial and error observation to 
correspond to average weights for quick convergence. 
 
2.3. Symbol image detection 
 
The Process of Character /symbol Recognition of the 
document image mainly involves following phases: 

 Acquisition and Digitization/Binarization of 
Grayscale Image 

 Thinning and Edge Detection 
 Feature Extraction 
 Feed Forward Artificial Neural Network based 

Matching. 
 Recognition of Character based on matching score. 

 
A . Detection 
 
The process of image analysis to detect character symbols by 
examining pixels is the core part of input set preparation in 
both the training and testing phase. Symbolic extents are 
recognized out of an input image file based on the color value 
of individual pixels, which for the limits of this project is 
assumed to be either black RGB(255,0,0,0) or white 
RGB(255,255,255,255). The input images are assumed to be 
in bitmap form of any resolution which can be mapped to an 
internal bitmap. The procedure also assumes the input image 
is composed of only characters and any other type of 
bounding object like a border line is not taken into 
consideration. The procedure for analyzing images to detect 
characters is listed in the following algorithms: 
 
i. Determining character lines 
Enumeration of character lines in a character image is 
essential in delimiting the bounds within which the detection 
can proceed. Thus detecting the next character in an image 
does not necessarily involve scanning the whole image all 
over again. 
Algorithm: 

1. start at the first x and first y pixel of the image and 
lines to 0  

2. scan up to the width of the image on the same y-
component of the image  

3. start at the top of the line found and first x-
component pixel  

4. scan up to the width of the image on the same y-
component of the image  

5. start below the bottom of the last line found and 
repeat steps 1-4 to detect subsequent lines  

6. If bottom of image (image height) is reached stop.  
 
ii. Detecting Individual symbols 

Detection of individual symbols involves scanning character 
lines for orthogonally separable images composed of black 
pixels. 
Algorithm: 

1. start at the first character line top and first x-
component  

2. scan up to image width on the same y-component  
3. start at the top of the character found and first x-

component, pixel(0,character_top)  
4. scan up to the line bottom on the same x-component  
5. start at the left of the symbol found and top of the 

current line, pixel(character_left, line_top)  
6. scan up to the width of the image on the same x-

component  
7. start at the bottom of the current line and left of the 

symbol, pixel(character_left,line_bottom)  
8. scan up to the right of the character on the same y-

component  
 

 
Fig 3. Line and Character boundary detection 

 
From the procedure followed and the above figure it is 
obvious that the detected character bound might not be the 
actual bound for the character in question. This is an issue 
that arises with the height and bottom alignment irregularity 
that exists with printed unicode symbols. Thus a line top does 
not necessarily mean top of all characters and a line bottom 
might not mean bottom of all characters as well. Hence a 
confirmation of top and bottom for the character is needed. 
An optional confirmation algorithm implemented in the 
project is: 

A. start at the top of the current line and left of the 
character  

B. scan up to the right of the character  
1. if a black pixels is detected register y as the 

confirmed top 
2. if not continue to the next pixel 
3. if no black pixels are found increment y and 

reset x to scan the next horizontal line  

 

 
Fig 4. Confirmation of Character boundaries 
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iii. Symbol Image Matrix Mapping 
The next step is to map the symbol image into a 
corresponding two dimensional binary matrix. An important 
issue to consider here will be deciding the size of the matrix. 
If all the pixels of the symbol are mapped into the matrix, one 
would definitely be able to acquire all the distinguishing pixel 
features of the symbol and minimize overlap with other 
symbols. However this strategy would imply maintaining and 
processing a very large matrix (up to 1500 elements for a 
100x150 pixel image). Hence a reasonable tradeoff is needed 
in order to minimize processing time which will not 
significantly affect the separability of the patterns. The 
project employed a sampling strategy which would map the 
symbol image into a 10x15 binary matrix with only 150 
elements. Since the height and width of individual images 
vary, an adaptive sampling algorithm was implemented.  
 
B. Training 
Once the network has been initialized and the training input 
space prepared the network is ready to be trained. Some 
issues that need to be addressed upon training the network 
are: 

 How chaotic is the input space? A chaotic input 
varies randomly and in extreme range without any 
predictable flow among its members.  

 How complex are the patterns for which we train the 
network? Complex patterns are usually characterized 
by feature overlap and high data size.  

 What should be used for the values of:  
o Learning rate  
o Sigmoid slope  
o Weight bias  

 How many Iterations are needed to train the network 
for a given number of input sets?  

 What error threshold value must be used to compare 
against in order to prematurely stop iterations if the 
need arises?  

 
The complexity of the individual pattern data is also another 
issue in character recognition. Each symbol has a large 
number of distinct features that need to be accounted for in 
order to correctly recognize it. Elimination of some features 
might result in pattern overlap and the minimum amount of 
data required makes it one of the most complex classes of 
input space in pattern recognition. Other than the known 
issues mentioned, the other numeric parameters of the 
network are determined in real time. They also vary greatly 
from one implementation to another according to the number 
of input symbols fed and the network topology. 
For the purpose of this project the parameters use are: 

 Learning rate = 170  
 Sigmoid Slope = 0.017  
 Weight bias = 25 (determined by trial and error)  
 Number of Epochs = 200-700 (depends on font )  

 Mean error threshold value = 0.0003 (determined by 
trial and error)  

Algorithm: 
The training routine implemented the following basic 
algorithm 

1. Form network according to the specified topology 
parameters  

2. Initialize weights with random values within the 
specified weight_bias value  

3. load trainer set files (both input image and desired 
output text)  

4. analyze input image and map all detected symbols 
into linear arrays  

5. read desired output text from file and convert each 
character to a binary Unicode value to store 
separately  

6. for each character :  
a. calculate the output of the feed forward 

network  
b. compare with the desired output 

corresponding to the symbol and compute 
error  

c. back propagate error across each link to 
adjust the weights  

7. move to the next character and repeat step 6 until all 
characters are visited  

8. compute the average error of all characters  
9. repeat steps 6 and 8 until the specified number of 

epochs  
a. Is error threshold reached? If so abort 

iteration  
b. If not continue iteration  

 
C. Testing 
 
The testing phase of the implementation is simple and 
straightforward. Since the program is coded into modular 
parts the same routines that were used to load, analyze and 
compute network parameters of input vectors in the training 
phase can be reused in the testing phase as well. The basic 
steps in testing input images for characters can be 
summarized as follows: 
Algorithm: 

 load image file  
 analyze image for character lines  
 for each character line detect consecutive character 

symbols  
o analyze and process symbol image to map 

into an input vector  
o feed input vector to network and compute 

output  
o convert the Unicode binary output to the 

corresponding character and render to a text 
box  
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3 Results and Discussion  
 
The network has been trained and tested for a number of 
widely used font type in Tamil Font style. The necessary 
steps are preparing the sequence of input symbol images in a 
single image file (*.bmp [bitmap] extension), typing the 
corresponding characters in a text file (*.cts [character trainer 
set] extension) and saving the two in the same folder (both 
must have the same file name except for their extensions). 
The application will provide a file opener dialog for the user 
to locate the *.cts text file and will load the corresponding 
image file by itself. Although the results listed in the 
subsequent tables are from a training/testing process of 
symbol images created with a 72pt. font size the use of any 
other size is also straight forward by preparing the 
input/desired output set as explained. The application can be 
operated with symbol images as small as 8pt font size. 
 
A. Results for variation in number of Epochs 
Number of characters=90, Learning rate=150, Sigmoid 
slope=0.014 
 

Font 
Type 

300 600 800 
№ of 
wrong 
characters 

% 
Error

№ of
wrong 
characters

% 
Error

№ of 
wrong 
characters 

% 
Error

Vijaya 4 4.44 3 3.33 1 1.11
Latha 1 1.11 0 0 0 0 

Table 1 
 
B. Results for variation in number of Input characters 
Number of Epochs=100, Learning rate=150, Sigmoid 
slope=0.014 
 

Font 
Type 

20 50 90 
№ of 
wrong 
characters 

% 
Error

№ of 
wrong 
characters 

% 
Error

№ of
wrong 
characters

% 
Error

Vijaya 0 0 6 12 11 12.22
Latha 0 0 3 6 8 8.89

Table 2 
C. Results for variation in Learning rate parameter 
Number of characters=90, Number of Epochs=600, Sigmoid 
slope=0.014 
 

Font 
Type 

50 100 120 
№ of 
wrong 
characters 

% 
Error 

№ of 
wrong 
characters 

% 
Error 

№ of
wrong 
characters

% 
Error

Vijaya 82 91.11 18 20 3 3.33
Latha 56 62.22 11 12.22 1 1.11

Table 3 
 

4. Performance Observation 
 
1. Influence of parameter variation 

i. Increasing the number of iterations has generally a 
positive proportionality relation to the performance 
of the network. However in certain cases further 
increasing the number of epochs has an adverse 
effect of introducing more number of wrong 
recognitions. This partially can be attributed to the 
high value of learning rate parameter as the network 
approaches its optimal limits and further weight 
updates result in bypassing the optimal state. With 
further iterations the network will try to swing back 
to the desired state and back again continuously, 
with a good chance of missing the optimal state at 
the final epoch. This phenomenon is known as over 
learning. 

ii. The size of the input states is also another direct 
factor influencing the performance. It is natural that 
the more number of input symbol set the network is 
required to be trained for the more it is susceptible 
for error. Usually the complex and large sized input 
sets require a large topology network with more 
number of iterations. For the above maximum set 
number of 90 symbols the optimal topology reached 
was one hidden layer of 250 neurons. 

iii. Learning rate parameter variation also affects the 
network performance for a given limit of iterations. 
The less the value of this parameter, the lower the 
value with which the network updates its weights. 
This intuitively implies that it will be less likely to 
face the over learning difficulty discussed above 
since it will be updating its links slowly and in a 
more refined manner. But unfortunately this would 
also imply more number of iterations is required to 
reach its optimal state. Thus a trade of is needed in 
order to optimize the overall network performance. 
The optimal value decided upon for the learning 
parameter is 150.  
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