
Design and Development of Artificial Neural Network Based
Tamil Unicode Symbols Identification System

A.B.Karthick Anand Babu1

1 Assistant Professor, Department of Software Engineering , Periyar Maniammai University,
Vallam,Thanjavur, Tamilnadu,India

Abstract
Design and Development of Unicode and its recognition especially
for Indian script is an active area of research today. An attempt is
made to identify Tamil- a vernacular of southern India, which is also
the official language of Tamilnadu. Tamil language present great
challenges to an OCR designer due to the large number (247 letters)
in the alphabet, the sophisticated ways in which they combine, and
the complicated graphemes they result in. The conventional
programming methods of mapping symbol images into matrices,
analyzing pixel and/or vector data and trying to decide which
symbol corresponds to which character would yield little or no
realistic results. Clearly the needed methodology will be one that can
detect closeness of graphic representations to known symbols based
on the character height, character width, the number of horizontal
lines (long and short), the number of vertical lines (long and short),
number of slope lines, special dots and based on that the glyphs are
now set ready for classification. The extracted features are passed to
neural network where the characters are classified by supervised
learning of Back Propagation algorithm which compromises
training, calculation of error, and modifying weights and then testing
the given image.and make decisions based on this nearness. This
proposed work has employed the MLP technique to identify the
symbols, excellent results were obtained for a number of widely
used Unicode Tamil font types.

Keywords:
Artifical Neural Network , MLP , Unicode , Weights

1. Introduction

1.1. Artificial Neural Networks

Artificial Neural networks have seen an explosion of interest
over the last few years, and are being successfully applied
across an extraordinary range of problem domains, in areas as
diverse as finance, medicine, engineering, geology and
physics. Indeed, anywhere that there are problems of
prediction, classification or control, neural networks are being
introduced. To capture the essence of biological neural
systems, an artificial neuron is defined as follows:

 It receives a number of inputs (either from original
data, or from the output of other neurons in the
neural network). Each input comes via a connection
that has a strength (or weight); these weights
correspond to synaptic efficacy in a biological

neuron. Each neuron also has a single threshold
value. The weighted sum of the inputs is formed,
and the threshold subtracted, to compose the
activation of the neuron.

 The activation signal is passed through an activation
function (also known as a transfer function) to
produce the output of the neuron.

Fig.1 A Typical Feedforward Network

A typical feedforward network has neurons arranged in a
distinct layered topology. The input layer is not really neural
at all: these units simply serve to introduce the values of the
input variables. The hidden and output layer neurons are each
connected to all of the units in the preceding layer. Again, it
is possible to define networks that are partially-connected to
only some units in the preceding layer; however, for most
applications fully-connected networks are better.

1.2. The Multi-Layer Perceptron Neural Network
Model

The Multi-Layer Perceptron Neural Network is perhaps the
most popular network architecture in use today. The units
each perform a biased weighted sum of their inputs and pass
this activation level through an activation function to produce
their output, and the units are arranged in a layered feed
forward topology. The network thus has a simple
interpretation as a form of input-output model, with the
weights and thresholds (biases) the free parameters of the
model. Such networks can model functions of almost
arbitrary complexity, with the number of layers, and the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 388

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

number of units in each layer, determining the function
complexity. Important issues in Multilayer Perceptrons
(MLP) design include specification of the number of hidden
layers and the number of units in each layer. Most common
activation functions are the logistic and hyperbolic tangent
sigmoid functions. This work uses the hyperbolic tangent

function: (1)

and derivative: . (2)

1.3. Optical Language - Tamil Symbols

The Tamil script is written from left to right is characterized
by having its own written symbolic representations, it has
twelve vowels, eighteen consonants and one character, the
āytam, which is classified in Tamil grammar as being neither
a consonant nor a vowel. The script, however, is syllabic and
not alphabetic. The complete script, therefore, consists of the
thirty-one letters in their independent form, and an additional
216 combinant letters representing a total 247 combinations
of a consonant and a vowel, a mute consonant, or a vowel
alone. These combinant letters are formed by adding a vowel
marker to the consonant. Some vowels require the basic
shape of the consonant to be altered in a way that is specific
to that vowel. Others are written by adding a vowel-specific
suffix to the consonant, yet others a prefix, and finally some
vowels require adding both a prefix and a suffix to the
consonant. In every case the vowel marker is different from
the standalone character for the vowel. Like other South
Asian scripts in Unicode, the Tamil encoding was originally
derived from the ISCII standard. Both ISCII and Unicode
encode Tamil as an abugida. In an abugida, each basic
character represents a consonant and default vowel.
Consonants with a different vowel or bare consonants are
represented by adding a modifier character to a base
character. Each codepoint representing a similar phoneme is
encoded in the same relative position in each South Asian
script block in Unicode, including Tamil. Although Unicode
represents Tamil as an abugida all the pure consonants
(consonants with no associated vowel) and syllables in Tamil
can be represented by combining multiple Unicode code
points.

2. Technical Overview

2.1. Introduction

The operations of the network implementation in this project
can be summarized by the following steps:

Training phase

 Analyze image for characters

 Convert symbols to pixel matrices
 Retrieve corresponding desired output character and

convert to Unicode
 Lineraize matrix and feed to network
 Compute output , Compare output with desired

output Unicode value and compute error
 Adjust weights accordingly and repeat process until

preset number of iterations

Testing phase

 Analyze image for characters
 Convert symbols to pixel matrices
 Compute output
 Display character representation of the Unicode

output
Essential components of the implementation are:

 Formation of the network and weight initialization
routine

 Pixel analysis of images for symbol detection
 Loading routines for training input images and

corresponding desired output characters in special
files

 Loading and saving routines for trained network
(weight values)

 Character to binary Unicode and vice versa
conversion routines

 Error, output and weight calculation routines

2.2. Network Formation

The MLP Network implemented for the purpose of this
project is composed of 3 layers, one input, one hidden and
one output. The input layer constitutes of 150 neurons which
receive pixel binary data from a 10x15 symbol pixel matrix.
The size of this matrix was decided taking into consideration
the average height and width of character image that can be
mapped without introducing any significant pixel noise. The
hidden layer constitutes of 250 neurons whose number is
decided on the basis of optimal results on a trial and error
basis.

Fig. 2 The Project MLP Network

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 389

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The output layer is composed of 16 neurons corresponding to
the 16-bits of Unicode encoding. To initialize the weights a
random function was used to assign an initial random number
which lies between two preset integers named weight_bias.
The weight bias is selected from trial and error observation to
correspond to average weights for quick convergence.

2.3. Symbol image detection

The Process of Character /symbol Recognition of the
document image mainly involves following phases:

 Acquisition and Digitization/Binarization of
Grayscale Image

 Thinning and Edge Detection
 Feature Extraction
 Feed Forward Artificial Neural Network based

Matching.
 Recognition of Character based on matching score.

A . Detection

The process of image analysis to detect character symbols by
examining pixels is the core part of input set preparation in
both the training and testing phase. Symbolic extents are
recognized out of an input image file based on the color value
of individual pixels, which for the limits of this project is
assumed to be either black RGB(255,0,0,0) or white
RGB(255,255,255,255). The input images are assumed to be
in bitmap form of any resolution which can be mapped to an
internal bitmap. The procedure also assumes the input image
is composed of only characters and any other type of
bounding object like a border line is not taken into
consideration. The procedure for analyzing images to detect
characters is listed in the following algorithms:

i. Determining character lines
Enumeration of character lines in a character image is
essential in delimiting the bounds within which the detection
can proceed. Thus detecting the next character in an image
does not necessarily involve scanning the whole image all
over again.
Algorithm:

1. start at the first x and first y pixel of the image and
lines to 0

2. scan up to the width of the image on the same y-
component of the image

3. start at the top of the line found and first x-
component pixel

4. scan up to the width of the image on the same y-
component of the image

5. start below the bottom of the last line found and
repeat steps 1-4 to detect subsequent lines

6. If bottom of image (image height) is reached stop.

ii. Detecting Individual symbols

Detection of individual symbols involves scanning character
lines for orthogonally separable images composed of black
pixels.
Algorithm:

1. start at the first character line top and first x-
component

2. scan up to image width on the same y-component
3. start at the top of the character found and first x-

component, pixel(0,character_top)
4. scan up to the line bottom on the same x-component
5. start at the left of the symbol found and top of the

current line, pixel(character_left, line_top)
6. scan up to the width of the image on the same x-

component
7. start at the bottom of the current line and left of the

symbol, pixel(character_left,line_bottom)
8. scan up to the right of the character on the same y-

component

Fig 3. Line and Character boundary detection

From the procedure followed and the above figure it is
obvious that the detected character bound might not be the
actual bound for the character in question. This is an issue
that arises with the height and bottom alignment irregularity
that exists with printed unicode symbols. Thus a line top does
not necessarily mean top of all characters and a line bottom
might not mean bottom of all characters as well. Hence a
confirmation of top and bottom for the character is needed.
An optional confirmation algorithm implemented in the
project is:

A. start at the top of the current line and left of the
character

B. scan up to the right of the character
1. if a black pixels is detected register y as the

confirmed top
2. if not continue to the next pixel
3. if no black pixels are found increment y and

reset x to scan the next horizontal line

Fig 4. Confirmation of Character boundaries

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 390

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

iii. Symbol Image Matrix Mapping
The next step is to map the symbol image into a
corresponding two dimensional binary matrix. An important
issue to consider here will be deciding the size of the matrix.
If all the pixels of the symbol are mapped into the matrix, one
would definitely be able to acquire all the distinguishing pixel
features of the symbol and minimize overlap with other
symbols. However this strategy would imply maintaining and
processing a very large matrix (up to 1500 elements for a
100x150 pixel image). Hence a reasonable tradeoff is needed
in order to minimize processing time which will not
significantly affect the separability of the patterns. The
project employed a sampling strategy which would map the
symbol image into a 10x15 binary matrix with only 150
elements. Since the height and width of individual images
vary, an adaptive sampling algorithm was implemented.

B. Training
Once the network has been initialized and the training input
space prepared the network is ready to be trained. Some
issues that need to be addressed upon training the network
are:

 How chaotic is the input space? A chaotic input
varies randomly and in extreme range without any
predictable flow among its members.

 How complex are the patterns for which we train the
network? Complex patterns are usually characterized
by feature overlap and high data size.

 What should be used for the values of:
o Learning rate
o Sigmoid slope
o Weight bias

 How many Iterations are needed to train the network
for a given number of input sets?

 What error threshold value must be used to compare
against in order to prematurely stop iterations if the
need arises?

The complexity of the individual pattern data is also another
issue in character recognition. Each symbol has a large
number of distinct features that need to be accounted for in
order to correctly recognize it. Elimination of some features
might result in pattern overlap and the minimum amount of
data required makes it one of the most complex classes of
input space in pattern recognition. Other than the known
issues mentioned, the other numeric parameters of the
network are determined in real time. They also vary greatly
from one implementation to another according to the number
of input symbols fed and the network topology.
For the purpose of this project the parameters use are:

 Learning rate = 170
 Sigmoid Slope = 0.017
 Weight bias = 25 (determined by trial and error)
 Number of Epochs = 200-700 (depends on font)

 Mean error threshold value = 0.0003 (determined by
trial and error)

Algorithm:
The training routine implemented the following basic
algorithm

1. Form network according to the specified topology
parameters

2. Initialize weights with random values within the
specified weight_bias value

3. load trainer set files (both input image and desired
output text)

4. analyze input image and map all detected symbols
into linear arrays

5. read desired output text from file and convert each
character to a binary Unicode value to store
separately

6. for each character :
a. calculate the output of the feed forward

network
b. compare with the desired output

corresponding to the symbol and compute
error

c. back propagate error across each link to
adjust the weights

7. move to the next character and repeat step 6 until all
characters are visited

8. compute the average error of all characters
9. repeat steps 6 and 8 until the specified number of

epochs
a. Is error threshold reached? If so abort

iteration
b. If not continue iteration

C. Testing

The testing phase of the implementation is simple and
straightforward. Since the program is coded into modular
parts the same routines that were used to load, analyze and
compute network parameters of input vectors in the training
phase can be reused in the testing phase as well. The basic
steps in testing input images for characters can be
summarized as follows:
Algorithm:

 load image file
 analyze image for character lines
 for each character line detect consecutive character

symbols
o analyze and process symbol image to map

into an input vector
o feed input vector to network and compute

output
o convert the Unicode binary output to the

corresponding character and render to a text
box

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 391

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3 Results and Discussion

The network has been trained and tested for a number of
widely used font type in Tamil Font style. The necessary
steps are preparing the sequence of input symbol images in a
single image file (*.bmp [bitmap] extension), typing the
corresponding characters in a text file (*.cts [character trainer
set] extension) and saving the two in the same folder (both
must have the same file name except for their extensions).
The application will provide a file opener dialog for the user
to locate the *.cts text file and will load the corresponding
image file by itself. Although the results listed in the
subsequent tables are from a training/testing process of
symbol images created with a 72pt. font size the use of any
other size is also straight forward by preparing the
input/desired output set as explained. The application can be
operated with symbol images as small as 8pt font size.

A. Results for variation in number of Epochs
Number of characters=90, Learning rate=150, Sigmoid
slope=0.014

Font
Type

300 600 800
№ of
wrong
characters

%
Error

№ of
wrong
characters

%
Error

№ of
wrong
characters

%
Error

Vijaya 4 4.44 3 3.33 1 1.11
Latha 1 1.11 0 0 0 0

Table 1

B. Results for variation in number of Input characters
Number of Epochs=100, Learning rate=150, Sigmoid
slope=0.014

Font
Type

20 50 90
№ of
wrong
characters

%
Error

№ of
wrong
characters

%
Error

№ of
wrong
characters

%
Error

Vijaya 0 0 6 12 11 12.22
Latha 0 0 3 6 8 8.89

Table 2
C. Results for variation in Learning rate parameter
Number of characters=90, Number of Epochs=600, Sigmoid
slope=0.014

Font
Type

50 100 120
№ of
wrong
characters

%
Error

№ of
wrong
characters

%
Error

№ of
wrong
characters

%
Error

Vijaya 82 91.11 18 20 3 3.33
Latha 56 62.22 11 12.22 1 1.11

Table 3

4. Performance Observation

1. Influence of parameter variation

i. Increasing the number of iterations has generally a
positive proportionality relation to the performance
of the network. However in certain cases further
increasing the number of epochs has an adverse
effect of introducing more number of wrong
recognitions. This partially can be attributed to the
high value of learning rate parameter as the network
approaches its optimal limits and further weight
updates result in bypassing the optimal state. With
further iterations the network will try to swing back
to the desired state and back again continuously,
with a good chance of missing the optimal state at
the final epoch. This phenomenon is known as over
learning.

ii. The size of the input states is also another direct
factor influencing the performance. It is natural that
the more number of input symbol set the network is
required to be trained for the more it is susceptible
for error. Usually the complex and large sized input
sets require a large topology network with more
number of iterations. For the above maximum set
number of 90 symbols the optimal topology reached
was one hidden layer of 250 neurons.

iii. Learning rate parameter variation also affects the
network performance for a given limit of iterations.
The less the value of this parameter, the lower the
value with which the network updates its weights.
This intuitively implies that it will be less likely to
face the over learning difficulty discussed above
since it will be updating its links slowly and in a
more refined manner. But unfortunately this would
also imply more number of iterations is required to
reach its optimal state. Thus a trade of is needed in
order to optimize the overall network performance.
The optimal value decided upon for the learning
parameter is 150.

5. Reference

1. Artificial Intelligence and cognitive science

2006, Nils J. Nilsson Stanford AI Lab

2. Off-line Handwriting Recognition Using

Artificial Neural Networks 2000, Andrew T.

Wilson University of Minnesota, Morris

3. Using Neural Networks to Create an Adaptive

Character Recognition System

2002, Alexander J. Faaborg Cornell University,

Ithaca NY

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 392

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4. Hand-Printed Character Recognizer using

Neural Network

 2000, Shahzad Malik

5. Neural Networks and Fuzzy Logic. 1995, Rao, V.,

Rao, H.MIS Press, New York

6. “Character Recognition by Neural Network,” in

Proc. IEEE International Conference on Automatic

Face and Gesture Recognition, 2000, pp. 196–201

G. Guodong, S. Li, and C. Kapluk

7. “A Devnagari OCR and A Brief Overview of

OCR for Indian Script”, PROC Symposium on

Transaction support System (STRANS 2001), Feb.

15-17, 2001, Kanpur, India Veena Bansal and

R.M.K. Sinha, “A Devnagari OCR and A Brief

Overview of OCR for Indian Script”, PROC

Symposium on Transaction support System (STRANS

2001),Feb. 15-17, 2001, Kanpur, India.

8. http://en.wikipedia.org/wiki/Tamil_alphabet
9. ABOUT THE AUTHOR

10.

A.B.Karthick Anand Babu working as
Assistant Professor in the department of
Software Engineerin, Periyar
Maniammai
University,Vallam,Thanjavur. He is
currently working in the area of effective
teaching and easy learning methodology.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 393

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

