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Abstract 
This paper examines two methods of computing 
fundamental group which are covering space method and 
the Van Kampen theory method. Van Kampen theory 
method is more analytical than the cover space method; 
the idea is used to solve a geometrical problem of global 
nature by first reducing it to homotopy theory problem 
which in turn reduces to an algebraic problem and solves 
as such.  In 2001, H. Fausk et al [1] and Hu [2] showed 
the isomorphism between left and right adjoint theory and 
its application to homotopy categories, bearing in mind 
that homotopy group are higher dimension of fundamental 
group. In this paper detail explanations of fundamental 
group and homotopy group will be given. Various 
definitions and explanation of concepts, which are directly 
or indirectly related, will also be considered with 
illustration on how fundamental group can be calculated. 
This paper also reviews that in principle any space that can 
be broken up into pieces can have its fundamental group 
described by generators and relations via Van Kampen’s 
theorem 
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1. Introduction 

The theory of fundamental groups and covering spaces is 
one of the few parts of algebraic topology that has 
probably reached definitive form, and it has not be 
generally treated in many sources. This review paper will 
explore its rudiments in actual sense. 
 
In algebraic topology, homotopy theory is the study of 
homotopy groups, more generally of the category of 
topological spaces and homotopy classes of continuous 
mapping at an intuitive level, a homotopy class is a 
connected component of a function space, while homotopy 
group is said to be a higher dimension of fundamental 
group. Fundamental group is denoted as (X, ) which 

consists of all equivalence classes of loops based at  and 
the product operation between them.  
 
May J.P [3,4] defined topological space X as a set in 
which there is a notion of nearness of points, given a 
collection of open subsets of X which is closed under 
finite intersections and arbitrary unions. It is then suffice 
to imagine that metric spaces connotes open sets that are 
the arbitrary unions of finite intersections of 
neighbourhoods 
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Uε(x) = {y|d(x, y) < ε}. 
A function p: X −→ Y is continuous if it takes nearby 
points to nearby points, p−1(U) is open if U is open. If X 
and Y are metric spaces, this means that, for any x ∈ X 
and ε > 0, there exists δ > 0 such that p(Uδ(x)) ⊂ Uε(p(x)). 
Algebraic topology assigns discrete algebraic invariants to 
topological spaces and continuous maps.  
 
 
1.1 General topology 
Let  be a non-empty set. A class  of subset of  is a 

topology on  (point topology) iff  satisfied the 
following axioms: 
[01] X and  belong to  i.e., X,   . 

[02] The arbitrary union of any number of sets in  

belongs to . 

[03] The finite intersection of any two sets in  belongs 

to . 

Therefore the pair (X,  ) is called a topological space. 
 
1.2 Category 
A category C consists of the following: 
(a) A class of objects (family of set) 
(b) For every ordered pair of objects A and B, a set Mov 
(A, B) of “Morphisms” 

Iff  f  Mov (A, B) we write: F: A   B or A  B 
(c) For every ordered triple of objects A, B and C, a 
function is associated to a pair of morphisms f: A  B and 

g: B  C their “composite” 

g  f : A  C i.e. f  Mov(A,B), g  Mov(B,C) then g  f 

 Mov(A,C). 
 
1.3  Covariant Functor 
Let C and D be categories respectively, a covariant functor 
is a map : C   D consisting of object function which 

assigns to every object A  C, an object T (A)  D and 
morphism function which assigns to every 
f  Mov (A, B)  C a morphism T (f)  Mov (T(A), 
T(B)) Such that: 
1. T (1A) = 1T (A) identity goes to identity 
2. T (g   f) = T (g) · T (f) composite goes to composite. 
 
1.4  Contravariant functor 
If C and D be categories respectively, a Contravariant 
functor is a map  : C   D consist of an object which 

assign to every object A  C an object S(A)  D and a 
morphism function which assigns to every 
f  Mov (A, B)  C a morphism S(f)  Mov(S(B), S(A)) 
in D Such that: 

1. S (1A) = 1S (A) identity goes to identity 
2. S (g  f) = S (f) · S (g) composites goes to composite. 
 
1.5 Exact sequence 
An exact sequence consists of family Aq, q  Z of 
algebraic structure together with morphisms fq : Aq  
Aq+1 such that we have a long sequence: 

· · ·Aq−1   Aq  Aq+1  Aq+2   · · · 
which is exact at every point of the sequence i.e. Im fq = 
kerfq+1  q. 
 
1.6 Homotopy 
Let X, Y  C, denoted by  = {f: X  Y/f is a map} 

which is continuous f, g   are said to be homotopic if 
there exist a map 
f: X × I  Y, I = [0, 1] the unit interval such that: 

F ( , 0) = f ( )    X 

F ( , 1) = g ( )    X; 

then F is said to be homotopy written as f  g (f is 
homotopic to g). 
 
1.7 Definition of Arc or Path 
A path in a topological space X is a continuous map of 

some closed interval into X i.e. f    f: I  X such 

that:  = f(0) to  = f(1).  and 1 are initial and 
terminal point respectively. 
 
Let X be a space and X1 andX2 are paths in X 
respectively such that 
X1(1) = X2(0). Then the composite path X1 · X2 is given 
by 
 

X1 · X2 =  

 
A space X is called arcwise connected or Pathwise 
connected if any two Points of X can be joined by an arc. 
 
The path components of X are the maximal arcwise 
connected subsets of X (i.e. ordinary components of X). 
 
If the map f: I  X is a path such that f (0) = f (1) is called 

a loop which is based at a point   X. 
 
1.8 Retract and Deformation Retract 
A is said to be a retract of X if the identity map of A, 1A 
can be extended 

to map r: X  A i.e. A X  A. 
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Let A ⊂ ⊂ B  X, A is called a deformation retract of B 
over X if 1B  a 

Retract r: B  A. 
 
1.9 Covering Spaces 
Let X be a topological space, a covering space is a space 

 and a map 

 :   X such that: 

(1)  Is onto 

(2)    X  a neighbourhood V of �: (V) is 
disjoint union of Open 
Sets each f which is mapped homeomorphically onto V by 

 where X is the base space and  is the total space. 
 
Examples of covering space are: 

(1)  :    given by ( ) =  covering space 
of n fold covering. 
(2)  :    × · · · ×  given by (X1. . . Xn) = 

( . . . ) 

(3)  : [0, 1] ×   [0, 1] ×  

(s, t) = (s, ) 

[0, 1] ×  Identity with {( , y)  R2|1   +   
4} 

If:   X is a covering space such that  is simply 
connected then the Covering space is called a universal 
covering space. 
 
A connected space X is a space which is pathwise 
connected and whose fundamental group is trivial i.e. 

(X) = 0. 
 
1.10 Fundamental group 
The class of map (homotopy class of map) (X, ) is 

referred to as the fundamental group for   X. It is the 
set of all the loops based at ݔ  which 

For a group (X, ) = [I, (X, )] {0, 1}. 

If P: I  X then P (0) = P (1) it is a loop. 
 
 
2.0 Calculating Fundamental Groups 
Lewis et al [5] and May J.P [4] have supported that 
fundamental group can be analyzed and calculated by 
using two approaches:  
 
2.1 Conversion of fundamental group problems 
to algebraic problems and solve as such, it is 

often achieved by putting algebraic structure on 
sets of homotopy. 
 
Considering two methods of calculating fundamental 
group, the first method which is the covering spaces 
method is quite geometric and connections between the 
spaces is not necessary because it allow working based on 
intuition to the answer. The second method is the Van 
Kampen theorem which is analytical and some what used 
to show that the space is the map e:    given by e (t) 

=  e is periodic of period 1.We think of a spiral 
connected of this space into a circle. 
 
For the calculation of fundamental group there is need to 
relate it with the structure of covering spaces with the path 
lifting property. 
 
Path lifting property 

Given P: I  X and a   such that: 

(a) = P (0). 

There is a unique Path   : I   such that   = P and P 
(0) = a. 
 
Example using covering space 
Homomorphism ( ): n   is an 

isomorphism the formula n  determines a 

homomorphism ( ) then show that loop  

s : I   starting at 1 is homotopic to  if the path  : 

I  covering s and starting at 0  end s at x . 

Also that  is null homotopic if n = 0. 
 
Solution 
The map ( ) is well defined 

homomorphism, by map s: I   it is an epimorphism 

and by map   : I  it is a monomorphism, therefore 
it is an isomorphism. 
 If n   and K  , then n + k   =   

Թ is connected, the paths   and  are homotopic 

therefore the the path S and  are homotopic. [S] = [ ] 

= . But if n  0 then the path is not a loop and loop  
is not null – homotopic. 
 
 This method is not analytical enough; therefore, we 
describe a tool for calculating (X, ). 

Assume X = X1  X2 and X1  X2  then choosing  
 X1  X2 

We have: 
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 : (X1  X2, )  (X1, ) and 

 : (X1  X2, )  (X2, ) which is homorphisms, 
making a general group construction. 
Let G1 and G2 be groups f1 : G  G1 and f2 : G  G2 
homorphism. The amalgamation of G1 and G2 over G is 
the smallest group generated by G1 and G2 with f1 ( ) = 

f2 ( ) for   G. 
If F is the free group generated by G1  G2 then: 

 · y is three products in F 

F is of the form   . . .   ,  = ±1 and X  G1  G2. 

The Van Kampen theorem allows the calculation of (X, 
) provided (X1), (X2) and (X1  X2) are known. 

 
2.1 Van Kampen Theory  
The statement and prove of the theorem Van Kampen 
theorem are as follows: 
As X1 and X2 are connected space open subsets of X such 
that X = X1 X2 and X1  X2 =  and are connected, 
choosing a base points   X1  X2 for all (X, ) 
under consideration. 

 
Theorem 2.1.1: Let H be any group and P1, P2, P3 are the homomorphism 
 
Such that: 

    ( )  

   ↗  ↘  

 (   )       H 

    

        ↘  ↗  

    ( ) 
 

There exists a unique homomorphism (X)  H such that the diagrams 
is commutative 
   

              
  

 ↗       ↗ 

    ↓          ( )   ↓  

    ( ) 
  

    ↘        ↘ 
       H       H 
 
 
       

 
      

    ↗  

   (  )     ↓   
 

    ↘      
         H 
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The prove of this theorem is to show that (X) is a 
characterized up to Isomorphism by the theorem i.e 
  : (X)  H 
 
Proof: 
To achieve this we show that it is 
 Homorphism, it is one-on-one and onto. 
Assume ;   H. 

Then  : (X)  H is well defined, 

then (( )( )) = ( ) : ( ) by definition 

(( )( )) = (( , )) 

= ( , ) 

= (( ))(( )) 

= ( ) · ( ) 
Therefore, it is homorphism. 
 
Assume ( ) = ( ) 

If  =  then it is 1 – 1. 

Given ( ) = ( ) 

⇒  ≃  

⇒  =  hence it is 1 − 1 
 
Let   H to determine   (x) such that ( ) = . 

Consider  =  a loop at . Then 

( ) = ( ) 

= ( ( ) ) 

= 1 ·  · 1 

= . 
Hence it is isomorphism. 
 
The most general version of Van Kampen theorem consist 
of covering Space X by any number of open sets which is 
not just two open sets. This Open set must be arcwise 
connected; also the intersection of any finite number must 
be arcwise connected containing the base point. 
 
Illustration of Van Kampen method 
Let X be a space X = A [B, A \ B = { } and A and B are 
each Homeomorphic to circle S0, X may be visualized as 
follows 
Let X1 = A1, X2 = B to determine the 
Structure ( ) but A and B is not open. 

Let a  A and b  B: a   and b  . 
Let X1 = X − {b} and X2 = X − {a}, X1 and X2 are 
homeomorphic to a 
Circle X1 \ X2 = X − {a, b} is contractible. 
Hence they are simply connected. 

Thus ( ) is a free product of the group ( ) and 

( ). 

Thus (A) and (B) are infinite cyclic group. 
 
2.2 Interpolation of Fundamental Group and 
Covering space 
Suppose Z is a space, and * a point of Z. We define 

1(Z,*) as homotopy classes of maps f:[0,1] --> Z, such 
that f(0) = f(1) = *. 
 
Shmuel [6] proved that the boundary conditions are 
absolutely critical for getting a nontrivial theory. 1 (Z,*) 
is a group using concatenation of paths; the constant path 
is the identity and “going backwards is the inverse. 1 
(Z,*) is referred to as the fundamental group of Z. (If Z is 
path connected, the choice of * is irrelevant. 
 
Example: If Z is the circle S1 = {u in C | |u| = 1}, we can 
define a map 1 (S1,1) -> Z (the integers) by sending a 
map f to  
(log(f)(1) – log(f)(0))/2 i.  
 
Definition. A map p: A -> B is a covering space, if:around 
each point b in B, there is a neighborhood N of b, so that 
p-1 (N) is a disjoint union of sets Ai each of which is 
mapped homeomorphically onto N by p. 
The map exp: R -> S1 considered before is a good 
example. 
 
Examples: The 2-sphere S2 is simply connected. The 
projective plane RP2 has fundamental group Z/2Z since it 
is the quotient of S2 by making the identifications x = -x. 
The projection map is a covering map, and the group of 
covering transformations is just Z/2Z = {id, x -> -x}. The 
nontrivial element in the fundamental group of RP2 can 
be thought of 
as the quotient of a great chord on S2 that connects the 
north pole to the south pole. 
 
2.3 Computation of Fundamental Group. 
Fundamental group discussed earlier has two 
popularilities; the first being its connection to covering 
space theory. The second is that it is quite computable that 
is Van Kampen theory 
Example: If X is contractible then the fundamental group 
is trivial. 
Example: If one sees the universal cover and group of 
deck transformations, then one also knows the 
fundamental group. 
 
The practical tool of this computation is Van Kampen’s 
theorem.  
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Van Kampen’s theorem. Let Z denote the union of A and 
B, and X denote their intersection. If A, B, and X are all 
connected (and nonempty), and then 1 (Z,x) is generated 
by 1 (A,x) and 1 (B,x). The only relations among the 
elements of 1 (A,x) and 1 (B,x) are the ones forced by 
the fact that the elements of 1 (C,x) can be thought of as 
elements of both of these groups. 
 
Examples. 
1. If A and B are simply connected, and their intersection 
is connected, then their union is simply connected. 
2. If X is simply connected, then 1 (Z,x) is the free 
product 

1 (A,x)* 1 (B,x). The elements of the free products are 
just finite strings of elements of 1 (A,x) and 1 (B,x), and 
one multiplies strings by concatenting them, ignoring the 
identity, and combining contiguous elements of the same 
group. 
 
3. These groups can be tricky if 1 (X,x) is nontrivial. The 
group described is called a free product with 
amalgamation and is denoted by 1(A,x)* 1 (X,x) 1 
(B,x). 
 
Interpretation of this is that the elements of this look like 
when the induced maps of 1 (X,x) into the other two 
pieces are injective, but without this it can get 
complicated. As a simple example suppose that X is a 
circle and that 1 (A,x) = Z/2Z and 1 (B,x) = Z/3Z, so 

that the induced homomorphisms are the obvious 
surjections. Hence, space is established and that Van 
Kampen’s theorem tells us that Z is simply connected.  
 
The fundamental groups of both A and B are generated by 
that of the circle, i.e. there is one generator, say g. From A 
we learn that g2 = e and from B we learn that g3 = e. So in 
the amalgamated free product (i.e. 1 (Z,x)) g = e, so the 
who group vanishes. 
 
 
Conclusion 
Fundamental group have been treated geometrically, it 
was formulated in a simple way with algebraic convention 
and some of its concepts and theorems such as: concept 
relating homotopy maps with homotopy group were 
briefly reviewed. The higher dimension of this 
fundamental group is applicable to spaces such as: Real 
projective spaces, Complex projective spaces, Moore 
space M ( , n) etc., but for this paper calculation of 
fundamental group was only discussed because this is 
necessary before the application. In principle any space 
that can be broken up into pieces can have its fundamental 
group described by generators and relations via Van 
Kampen’s theorem and then calculated appropriately. 
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