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Abstract 

Cryptography is always very important in data origin 
authentications, entity authentication, data integrity and 
confidentiality. In recent years, a variety of chaotic 
cryptographic schemes have been proposed. These schemes have 
typical structure which performed the permutation and the 
diffusion stages, alternatively. The random number generators 
are intransitive in cryptographic schemes and be used in the 
diffusion functions of the image encryption for diffused pixels of 
plain image. In this paper, we propose a chaotic encryption 
scheme based on pseudorandom bit padding that the bits be 
generated by a novel logistic pseudorandom image algorithm. To 
evaluate the security of the cipher image of this scheme, the key 
space analysis, the correlation of two adjacent pixels and 
differential attack were performed. This scheme tries to improve 
the problem of failure of encryption such as small key space and 
level of security. 
 
Keywords:  Cryptography, chaos, Image Padding 

1. Introduction 

The Cryptography is always very important in data 
origin authentications, entity authentication, data integrity 
and confidentiality [1-6,28,29,30]. In recent years, the 
cryptographic schemes have suggested some new and 
efficient ways to develop secure image encryption [1]. 
These schemes have typical structure which performed the 
permutation and the diffusion stages alternatively. 
However, most of algorithms be faced with some 
problems such as the lack of robustness and security. The 
random number generators are intransitive in cryptography 
for generation of cryptographic keys, allegorically, secret 
keys utilized in symmetric cryptosystems [2,3] and large 
numbers is intransitive in asymmetric cryptosystems [4,6], 
because of unpredictable, should better be generated 
randomly. In addition, random number generators in many 
cryptographic protocols, such as to create challenges, 
blinding value  are used [7,8,9]. Also, the random number 

generators are used more in the diffusion functions of the 
image encryption for diffused pixels of plain image. 

Random number generators can be classified into 
three classes which are pseudorandom number generators 
(PRNGs),  true random number generators (TRNGs) and 
hybrid random number generators (HRNGs). PRNGs use 
deterministic processes to generate a series of outputs 
from an initial seed state [10,11,12]. TRNGs use of non-
deterministic source (i.e., the entropy source), along with 
some processing function (i.e., the entropy distillation 
process) to generate the random bit sequence [2]. These 
sources consist of physical phenomena such as 
atmospheric noise, thermal noise, radioactive decay and 
even coin-tossing [13]. Many PRNGs using chaotic maps 
have been established. Most of them have very complex 
structures. In this paper, we propose a chaotic encryption 
scheme based on pseudorandom bit  padding that the bits 
be generated by a novel logistic pseudorandom image 
algorithm. The random bit sequences produced by this 
generator are evaluated using the 15 statistical tests 
recommended by U.S. NIST [2]. Experimental results 
show that this PRNG possess good uniformity and 
randomness properties. 

This paper is arranged as follows. In section 2, the 
properties of the logistic map are discussed. In section 3, 
we introduce the proposed random number generators and 
then discuss the uniformity and randomness of the bit 
sequences generated by the Proposed PRNG. In section 4, 
we propose chaotic encryption scheme based on 
pseudorandom bit padding and finally, in Section 5, we 
conclude the paper. 

 
2. The logistic map 

 

The logistic map is one of the most studied discrete 
chaotic maps. It is well-known as very sensitive to both 
system variable and control parameter. In addition, other 
features such as ergodicity, pseudo-randomness and 
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unpredictable behavior. Therefore, it possesses great 
potential for various cryptographic applications such as 
image encryption [15,16], public key cryptography [17], 
key agreement protocol [9], block cipher [3], and hash 
function [18,21,22]. It was first proposed as pseudo 
random number generator by Von Neumann in 1947 partly 
because it had a known algebraic distribution and 
mentioned later, in 1969, by Knuth [23,24]. The simplest 
form of the logistic map is given by: 

 
)x1(rxx nn1n   

Where )1,0(xn  and r are the system variable and 

control parameter, respectively, and n is the number 
of iterations. Thus, given a control parameter r and a 
system value 0x ;  time series of logistic map  0nnx  

is computed. Here, we refer to 0x  and r as the initial 

state of the logistic map. In the following we use the 
chaotic logistic map for cryptographic applications, 
as follows: 

]4,99996.3(rand),1,0(x

)1()x1(rxx

xn

nn1n



  

[25]. As stated in [26],The choice of r  in the 
equation above guarantees the existence of a chaotic 
orbit that can be shadowed by only one map as stated 
in . In addition, the above map is supposed to have 
good qualities as a PRNG when 4r   [25]. 

3. The proposed PRNG and randomness analysis 

3.1 The proposed PRNG using logistic 
pseudorandom image algorithm 

Subheadings In this section, we introduce a proposed 
pseudorandom number generator based on the logistic 
pseudorandom image algorithm. For cryptographic 
purposes, the output of RNGs needs to be unpredictable 
[2]. In this method, we use a black white dynamic image 
because we can use each pixel as a key. On the other hand, 
key space of the PRNG is a black white dynamic image.  

To consider a gray scale image with the size of kk 22   

(here, 88 22  ) pixels (see Fig.1(a)). 

 
Fig. 1 (a) two gray scale images with the size of 88 22   pixels, (b) 

two black white images that the color of all pixels that are smaller than 
the Average Pixel Intensity (API) with black and all pixels that are 
greater than or equal to the API with white are changed, (c) two black 
white dynamic images that are the perfect seeds for PRNG. 

 

We redefined it as a matrix kk 22
C


. This matrix is 

composed of color of the pixels in the uint8 (output range 
0 to 255). Uint8 is a MATLAB built-in function. Matrix 
components corresponding to image pixels can be showed 

as ijc . Then, we can get Average Pixel Intensity (API) 

[5,14]. Hence,  

)2(,
22

c
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2
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
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then, we change the color of all pixels that are smaller than 
the Average Pixel Intensity(API) with black and all pixels 
that are greater than or equal to the API with white (see 
Fig.1(b)). Now, using a two-dimensional chaotic system 
which is defined as follows: 

,...2,1,0n)y(gy

,...2,1,0n)x(fx

1nn
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
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
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that f and ])1,0[I(II:g   are nonlinear maps, 

we get  coordinates of a point )y,x( nn   in two-

dimensional space. Using the following transformation 
can be converted coordinates of a point )y,x( nn in 

two-dimensional continuous space into a point 
))y(u),x(u( nn  in two-dimensional discrete space of 

the image matrix components: 
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where symbol of  []  is the round function. Then, we 
change color of the pixel ijc  with coordinates of 

))y(uj),x(ui( nn   into the opposite color, i.e., if 

color of the pixel be white, it changes black and vice 
versa. In other words, if black and white colors be 
showed 0 and 1, respectively, those can be changed the 
following method, 












 )4(.

01

or

10

cij  

 
We iterate this method (Eq. 3,4) M  times. Matrix 

that is created with this method, we show  kk 22
C


 . The 

$M$ value is related to the two tests. So that, we create 
two bit sequence from the matrix  kk 22

C


 . The first bit 

sequence to join the rows of the matrix is formed and 
the second bit sequence to join the columns of the 
matrix is formed. If  two bit sequences to satisfy 
Monobit Test and Serial Test (see Appendix) 
separately, then, the M value is the correct value. 
Consequently, the resulting black white image (the 
black white image of the matrix  kk 22

C


 ) is the perfect 

seed for PRNG (see Fig.1(c)). For generating random 
bit sequence from this method, we are using a two-
dimensional chaotic system which is defined as follows: 
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that f   and ])1,0[I(II:g   are nonlinear 

maps. Thus, using the transformation of Eq.3, the 

random bit sequence  0nnz  is defined as follows: 
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and because the black white image be a black white 
dynamic image, after each iteration of the Eq. 5 with 
this method adds the following term: 












  )6(.

01

or
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Therefore, we get a black white dynamic image as 

a seed for the proposed PRNG. As an example, we 
consider the logistic map (1) for the functions of  f , 
f   , g and g   

( ]4,99996.3(r,r,r,rand),1,0(y,y,x,x yyxxnnnn   )

(see Fig.2). 

 
Fig. 2. Block diagram of the logistic pseudorandom image algorithm 

for generation pseudorandom bit sequence. 

3.1 Analysis of randomness of number sequences 

We have survey the randomness and uniformity of 
the several bit sequences of large size, generated by the 
proposed PRNG for different sets of control parameter and 
initial conditions of chaotic logistic maps and images. 

Here, we show the results for 202  sized bit sequences 
corresponding to the following parameter values of the 
four sets: 











) 24,  3.99998,0.6, 0.3,  3.99997, 3.99999,0.2, (0.7,=D

) 2 3.99999, 3.99998,0.2, 0.6, 4,  3.99996,0.8, (0.4,=C

) 3.99999,2 3.99997,0.4, 0.8,  3.99996, 3.99998,0.3, (0.7,=B

) 3.99999,2 3.99998,0.5,0.1,  3.99997,4, 0.6, (0.2,=A

17

17

18

18

 
For convenience, these four sets are designated as: 

 )M,r,r,y,x,r,r y,(x,=DC,B,A, yxyx   

that A, B, C and D are related control parameter values of 
PRNG (see Table.1). We have used MATLAB 7.10.0 
(R2010a) running program in a personal computer with a 
Core i3 3.1GHz intel, 4GB memory and 500GB hard-disk 
capacity. The average time used for generating random bit 

sequences with size of 202  bits is shorter than 0.4 s. 
We discuss in the following paragraph of this Section 

the result and conclusions of our study of the different 
statistical tests to observe the randomness and uniformity 
of the bit sequences generated by the proposed PRNG. 
The US NIST statistical test suite  provides 15 statistical 
tests to detect deviations of a bit  
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Table I. Shows that the M  value is the correct value if and only if two bit sequences created of the rows of the matrix 88 22   (1) and the columns of the 

matrix 88 22   (2) pass monobit test and serial test. 

         Parameter                                            Calculated 2   value                                                          Critical  2  value at 05.0  

                                                               Monobit test                 serial test                                                  Monobit test              serial test 
                                                                  (1)           (2)                 (1)              (2)
     A (A. Einstein image)                      0.7985       1.0172         1.8143         1.8871                                      3.8415                       5.9915 
     B (Tree image)                                 1.0378       1.1035         2.0568         2.0270                                      3.8415                       5.9915 
     C (A. Einstein image)                      1.0303       1.0098         2.1246         1.9883                                      3.8415                       5.9915  
     D (Tree image)                                 1.4295       1.4487         2.4115         2.5635                                      3.8415                       5.9915 

 
Table II. Shows the P-values obtained from NIST suite for fifteen different tests. The P-values are obtained for four different sets of parameters for each 

test. 
         NIST Tests                                A (A. Einstein image)          B (Tree image)                C (A. Einstein image)                   D (Tree image) 

 
FT                                               0.979743                             0.600670                          0.956387                                        0.284479 
FTB                                            0.873583                             0.794484                           0.961466                                       0.218437 
RT                                               0.863536                             0.799775                          0.766560                                        0.047121 
LROBT                                       0.953186                             0.643394                          0.928064                                        0.287490 
BMRT                                         0.920326                             0.143269                          0.273873                                       0.649518 
DFTT                                          0.372087                             0.544647                          0.482314                                       0.214210 
NTMT                                         SUCCESS                           SUCCESS                        SUCCESS                                    SUCCESS 
OTMT                                         0.665345                             0.093392                          0.764690                                       0.399512 
MUST                                         0.971350                             0.165435                          0.278815                                       0.218812 
LCT                                            0.869026                              0.424203                          0.246919                                       0.597068 
ST       P1                                    0.176425                             0.807509                          0.038659                                       0.155790 
           P2                                     0.062528                             0.867147                         0.108128                                        0.355935 
AET                                             0.198495                             0.905032                         0.548792                                        0.166571 
CST    (FORWARD)                   0.999421                             0.982586                         0.977552                                        0.460996 
           (REVERSE)                     0.998589                             0.861198                         0.991191                                        0.556137 
RET                                             SUCCESS                           SUCCESS                      SUCCESS                                      SUCCESS 
REVT                                          SUCCESS                           SUCCESS                      SUCCESS                                      SUCCESS 

 
 

 
sequence from randomness. A statistical test is formulated 
to test a null hypothesis which states that the sequence 
being tested is random. There is also an alternative 
hypothesis which states that the sequence is not random. 
For each test, there is an associated reference distribution 

(typically normal distribution or 2   distribution), based 

on which a P-value  is computed from the bit sequence. If 
the P-value is greater than a predefined threshold   which 
is also called significance level, then the sequence would 
be considered to be random with a confidence of 1 , 
and the sequence passes the test successfully. Otherwise, 
the sequence fails this test. A P-value of zero indicates that 
the sequence appears to be completely non-random, and 
the larger the P-value is, the closer a sequence to a perfect 
random sequence. In our experiment, we set   to its 
default value 0.01, which means a sequence passed the test 
is considered as random with  99% confidence. Before 
presenting the test results of our proposed three 
approaches, we would first introduce all 15 statistical tests 
briefly as follows. A more detailed description for those 
tests could be found in [2]. 

The frequency test (FT), the runs test (RT) and the 
cumulative sum test (CST) are recommended that each 

sequence to be tested consist of a minimum of 210  bits 

(i.e., 210n  ). The frequency Test within a Block (FTB) 
is recommended that each sequence to be tested consist of 
a minimum of NM   bits (i.e., MNn  ). The block size 

M  should be selected such that 20M  and 210N  . 
The discrete fourier transform test (DFTT) is 
recommended that each sequence to be tested consist of a 

minimum of 310 bits (i.e., 310n  ). The approximate 
entropy test (AET) is recommended that each sequence to 

be tested consist of  a minimum of 122  bits (i.e., 122n  ). 
The test for the longest run of ones in a block (LROBT) is 
recommended that each sequence to be tested consist of a 
minimum of 6272 bits for M=128. The binary matrix rank 
test (BMRT) is recommended that each sequence to be 

tested consist of a minimum of 510  bits (i.e., 510n  ). 
The non-overlapping template matching test (NTMT), the 
overlapping template matching test (OTMT), the maurer’s 
universal statistical test (MUST), the linear complexity test 
(LCT), the serial test (ST), the random excursions test 
(RET) and the random excursions variant test (REVT) are 
recommended that each sequence to be tested consist of a 

minimum of 202  bits (i.e.,  202n  ).  
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Fig. 3. Images of test results. 

 
The NIST suite tests were performed on four bit   

sequences, each containing 202  bits. The P-value as well 
as final results obtained from the NIST suite for four 
different sets are given in Table 2. The proposed PRNG 
successfully passes all randomness tests of NIST suite. 

4. The proposed encryption scheme and 
security analysis 

4.1 Encryption scheme based on pseudorandom bit 
padding 
 

In the proposed scheme, we create a method to 
encrypt the image using bits padding. To consider a gray 
scale image with the size of NM  . Here, the plain 
image is the image of the example of A that an image with 
the size of 256256   (see Fig. 3(a)). The steps of the 
encryption are shown below: 
 Step 1:  Generate NM8    pseudo-random 

number sequence using the logistic pseudorandom 
image algorithm. 

 Step 2:  Transform the image into NM8   bit 
sequence (image sequence).  

 Step 3: Perform the XOR operation between the 
image sequence and the pseudo-random bit sequence 
to form the cipher sequence.  

 Step 4:  Transform the cipher sequence into image 
matrix  I (ciphered image).  

 Step 5:  Divide the matrix  I into four parts, 
uniformly. Move the odd rows with the even rows  
between the two parts in the main diagonal and 
between the other two parts, respectively.  

 Step 6: Divide the matrix  I into four parts, uniformly. 
Move the odd columns with the even columns 
between the two parts in the main diagonal and 
between the other two parts, respectively. 

 
The ciphered image is shown in fig. 3(b). The grey 

scale histograms are given in figs. 4(a), 4(b). The fig. 4(b) 

shows uniformity in distribution of grey scale of the 
ciphered images. In addition, the average pixel intensity  

 
Fig. 4. Histograms of images. 

 
for plain image is 98.92 and for ciphered image is 127.09. 

4.2 Analysis of security of the proposed encryption 
scheme 

The Security is a major intransitive of a cryptosystem. 
Here, a complete analysis is made on the security of the 
cryptosystem. We have tried to explain that this cipher 
image is sufficiently secure against various 
cryptographical attacks, as shown below: 

 
4.2.1 Key space analysis 
 

Key space size is the total number of different 
keys that can be used in the encryption [20]. Security 
issue is the size of the key space. If it is not large 
enough, the attackers may guess the image with 
brute-force attack.  If the precision is 1410  , the size 
of key space for initial conditions and control 
parameters is 3062 . In addition, we use the black white 
dynamic images derived of Albert Einstein image 
with 256256   pixels. The size of the key space for 
black white dynamic image is no less than 2562 . This 
size is large enough to defeat brute-force by any 
super computer today. 

 
4.2.2 Correlation Coefficient Analysis 
 

The statistical analysis has been performed on 
the encrypted image from example of A. This is 
shown by a test of the correlation between two 
adjacent pixels in plain image and encrypted image. 
We randomly select 2000 pairs of two-adjacent 
pixels (in vertical, horizontal, and diagonal direction) 
from plain images and encrypted images, and 
calculate the correlation coefficients [19,20], 
respectively by using the following two equations 
(see Table 3 and Fig. 5(a) and 5(b)): 
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Where, E(x) is the estimation of mathematical 
expectations of   x,  D(x) is the estimation of variance of   
x, and Cov(x,y) is the estimation of covariance between x 
and y, where x and y are grey scale values of two adjacent 
pixels in the image. 

 

 
Fig. 5. Correlation distributions of two horizontally adjacent pixels 

in the plain image and the ciphered image. 
 
 

Table III. Correlation coefficients of two adjacent pixels in the 
plain image and the ciphered image of example of A. 

 
Direction                           Plain image                        ciphered image 
Horizontal                        0.9341                                 0.0023 
Vertical                             0.9634                                 0.0098 
Diagonal                           0.9402                                 0.0043 

 

 
4.2.3 Differential attack 
 

Attackers try to find out a relationship between the 
plain image and the cipher image, by studying how 
differences in an input can affect the resultant difference at 
the output in an attempt to derive the key [31]. Trying to 
make a slight change such as modifying one pixel of the 
plain image, attacker observes the change of the cipher 
image [31]. To test the influence of one pixel change on 
the whole encrypted image by the proposed scheme, two 
common measures are used: 

 Number of Pixels Change Rate (NPCR) stands for 
the number of pixels change rate while, one pixel of plain 
image is changed. Unified Average Changing Intensity 
(UACI) measures the average intensity of differences 
between the plain image and ciphered image. The NPCR 
and The UACI, are used to test the influence of one pixel 
change on the whole image encrypted by the proposed 
scheme and can be defined as following: 

%100
255

)j,i(C)j,i(C
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1
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where W  and H  are the width and height of 1C  or 2C . 

1C  and 2C  are two ciphered images, whose 

corresponding original images have only one pixel 
difference and also have the same size. The )j,i(C1 and 

)j,i(C2 are grey-scale values of the pixels at grid (i,j). 

The D(i,j)  determined by )j,i(C1  and )j,i(C2 . If  

)j,i(C)j,i(C 21  , then, D(i, j) = 1; otherwise, D(i, j) = 

0. We have done some tests on the proposed scheme (256 
grey scale image of size 256256  ) to find out the extent 
of change produced by one pixel change in the plain 
image.  We have obtained NPCR = 0.43% and UACI = 
0.34%. The results demonstrate that the proposed scheme 
can survive differential attack. 
 

5. Conclusion 

We have proposed a chaotic encryption scheme 
based on pseudorandom bit padding that the bits be 
generated by a novel logistic pseudorandom image 
algorithm. The security of the cipher image of this scheme 
is evaluated by the key space analysis, the correlation of 
two adjacent pixels and differential attack. The 
distribution of the ciphered images is very close to the 
uniform distribution, which can well protect the 
information of the image to withstand the statistical attack.  

Appendix 

 
Monobit Test:  

The goal of this test is to determine whether the 
frequency of 0's and 1's in bit sequences generated by the 
PRNG are approximately same [27]. Let 10 n,n  denote the 

number of 0's and 1's in bit sequences respectively. We 

calculate 2  by using the formula [27]: 

,
n

)nn( 2
102 

  
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which approximately follow a 2  distribution with one 

degree of freedom. The computed results are shown in 

Table 1. The calculated values of 2  are less in compared 

to the critical value of 2  at 05.0  (5% level of 

significance) and 1df (one degree of freedom). It means 
that these bit sequences pass the monobit test and can be 
said to be satisfactorily random with respect to this test 
[27]. 
 
Serial Test:  

The goal of this test is to determine whether the 
number of occurrence of pairs 00, 01, 10 and 11 in the bit 
streams generated by PRNG is approximately same [27]. 
Let 100100 n,n,n  and 11n  denote the number of occurrence 

of pairs 00, 01, 10 and 11 respectively in the bit 

sequences. We calculate 2  by using the formula [27]: 

1)nn(
n

2
)nnnn(

1n

4 2
1

2
0

2
11

2
10

2
01

2
00

2 


  

 
and the computed values are found to follow 

approximately the 2  distribution with 2 degrees of 

freedom. The results are shown in Table 2. The calculated 

values of 2  are less than critical value of 2  at 05.0  

(5% level of significance) and 2df (two degrees of 
freedom). It means that bit sequences pass the serial test 
and are satisfactorily random with respect to this test. 
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