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Abstract

Mutiscale analysis represents multiresolution scrutiny of a signal
to improve its signal quality. Multiresolution analysis of 1D
voice signal and 2D image is conducted using DCT, FFT and
different wavelets such as Haar, Deubachies, Morlet, Cauchy,
Shannon, Biorthogonal, Symmlet and Coiflet deploying the
cascaded filter banks based decomposition and reconstruction.
The outstanding quantitative analysis of the specified wavelets is
done to investigate the signal quality, mean square error, entropy
and peak-to-peak SNR at multiscale stage-4 for both 1D voice
signal and 2D image. In addition, the 2D image compression
performance is significantly found 93.00% in DB-4, 93.68% in
bior-4.4, 93.18% in Sym-4 and 92.20% in Coif-2 during the
multiscale analysis.

Keywords: Quantitative, Multiscale Analysis, Different
Wavelets, One Dimensional Voice Signal, Two Dimensional
Image.

1. Introduction

First generation wavelets transform essentially needs the
Fourier transform and the basis functions which are
dyadically scalable with translation property of one
particular mother basis function. These are the first non-
trivial wavelets developed around 1980s. These include
the Daubechies wavelet, Haar wavelet, Shannon Wavelet,
Coiflets Wavelet and the Meyer wavelet. The major
drawback of the first generation wavelet is that it can be
deployed for infinite or periodic signals and cannot be
optimized in the bounded domain. These wavelets
transforms (WTSs) are used in identifying pure frequencies,
de-noising  signals, detecting discontinuities and
breakdown points, detecting self-similarity and
compressing images.

Second generation wavelets transform originates with
concept of Lifting scheme to maintain the time-frequency
localization and fast algorithms instead of fourier domain
to deploy in geometrical applications. This should replace
translation and dilation as well as any Fourier analysis.
The basic algorithm of the lifting scheme, is to split up
even samples then are adjusted to serve the coarse version
of the original signal data in even set and odd set dilation
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as well as any Fourier analysis. The basic algorithm of
the lifting scheme is to split even samples then are
adjusted to serve the coarse version of the original signal
data in even set and odd set then predict odd signal using
even part to detect the missing parts called details and
update even samples for adjustment to serve the coarse
version of the original signal. These WTs are extensively
used for lossy data compression, in geographical data
analysis, computer graphics and efficient coding in
compression algorithm.

Third generation wavelets transform are the complex
wavelet transform (CWT) with the complex-valued
extension to the standard discrete wavelet transform
(DWT). It is typically two-dimensional wavelet transform
deployed for the multi-resolution, sparse representation,
and useful feature characterization based on the structure
of an image. The major pros are that these WTs do not
exhibit oscillations, lack of directivity, aliasing and degree
of shift-variance in its magnitude. But, the major cons are
that it exhibits two dimension of the signal being
transformed and vyields the redundancy compared to a
separable.

Next generation wavelets transform optimize the PSNR,
error free, lossless and advanced multi level resolution.
These wavelets will be more advanced in terms of
efficiency and performance. These WTs are still under
research and they will focus specific applications such as
human vision characterization, frequency localization,
feature extraction, seismic analysis, bio-medical analysis
and so on.

Multiscale analysis represents the hierarchy of structural
implementation to enhance the physical characteristics of
the signal (both 1D and 2D). When the multiscale stage
(level) is increased then it provides the fine resolution
from coarse resolution. In other words, it is the systematic
process to analyze signal at lower multiscale stage with
coarse resolution and then higher multiscale stage with
fine resolution [1-2]. Thus, higher stage of the multiscale
using wavelets provides significant multiresolution
improving signal quality. This is deployed using different
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kinds of wavelets in signal decomposition and
reconstruction to investigate their performance at stage-3
and stage-4. The Haar wavelet, Deubechies wavelet,
Morlet wavelet, Cauchy wavelet, Shannon wavelet, DCT,
FFT, Biorthogonal wavelet, Symmlet wavelet and Coiflet
wavelet are deployed in 1D signal and 2D image in this

paper.

2. Problem & Proposed Solution

The problem is to analyze and compare the quantitative
mutiscale features of different wavelets transform and
determine the qualitatively suitable wavelets on 1D voice
signal and 2D image for multi-resolution.  This is
addressed by decomposition and reconstruction of 1D
voice signal and 2D image by deploying different wavelets
transform at the third and fourth multi-resolution stage. In
addition, the quantitative analysis of 1D signal and 2D
image is done in terms of SNR, MSE, entropy and PSNR
for different wavelets transform.

The proposed solution includes the following aspects:

e 1D Signal decomposition and reconstruction
at stage-4 using different wavelets

e Quantitative analysis of 1D Signal at stage-4

e 2D Image decomposition and reconstruction
at stage-4 using different wavelets

e Quantitative analysis of 2D Image at stage-4
e 2D Image compression at stage-4

2.1 One Dimensional Signal Decomposition &
Reconstruction

One dimensional discrete wavelet transform is used for 1
D signal decomposition and reconstruction in time-scale
(frequency) representation of non-stationary signals. It is
based on multi-resolution approximation in which a
function uses scaling function at various resolutions so that
the lost details can be recovered using wavelet functions
and the original signal is reconstructed by adding
approximation and detail coefficient. It is deployed by a
sequence of low pass and high pass filters [3-6]. Low pass
(LP) filters are associated with the scaling function and
provide approximation whereas high pass (HP) filters are
associated with the wavelet function and provide detail
lost in approximating the signal.
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2.1.1 1D Signal Analysis (Decomposition) at
Stage-4 using Different Wavelets

1D signal decompoasition is done using a sequence of LP
and HP filter banks at four different stages by cascading at
LP downsample decimated by 2 as shown in Fig-1.

Fig. 1 1D Signal Decomposition at stage- 4

Original Voice signal : NIRAJ.
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Fig. 2 Haar WT Decomposition at stage- 4
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Fig. 3 DB-4 WT Decomposition at stage- 4

1D voice signal is decomposed at stage-3 & stage-4 using
DCT, FFT and different wavelets such as Haar,
Deubachies, Morlet, Cauchy, Shannon, Biorthogonal,
Symmlet and Coiflet as illustrated in Fig. 2 to Fig. 12.
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Fig. 10 1D signal Reconstruction at stage- 4

1D voice signal is reconstructed at stage-3 & stage-4 using
DCT, FFT and different wavelets such as Haar,
Deubachies, Morlet, Shannon, Biorthogonal, Symmlet and
Coiflet as illustrated in Fig. 11 to Fig. 19.
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Fig. 11 DCT Analysis and Synthesis at stage-
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Fig. 12 FFT Analysis and Synthesis at stage- 4
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Original Voice Signal : NIRAJ.
1 T T T T
ol o o iraniifioionlive
.1 | | I
0 1 2 3 4 5 6 7 8

x 10°

Noisy Voice Signal : NIRAJ.
1 T
R G L L
-1 |
0 1 2 3 4 5 6 7 8

X 104

Marlet WT Reconstruction, level 4

8

Coefs at level 4 and determinants X 104

Morlet WT Reconstruction , level 3

8
Coefs at level 3and determinants x10°
Fig. 15 Morlet WT Reconstruction at stage- 4
1JCSI
www.lJCSl.org



IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814

www.lJCSl.org 479
Original Voice Signal : NIRAJ. . ‘ ‘ O”gi”‘a' Voice Signal : NIRAJ. ‘

é T r 0 ﬂ{
1 L L 1 L ‘{ 10 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 « 10

X 10 Noisy Voice Signal : NIRAJ.
. WM - oisy Voice nal : NRAJ. ) { é Wﬂmw MWMWWWW\ "”'“MWWWWW ‘“‘WWWWWW"WWWWW.
0 0 2 5
1
0 1 2 3 4 5 6 7 8 Coiflet WT Reconstruction, level 4 x10
4 2
‘ X 10 0 {
05 Shannon WT Reconstruction, level 4 -20 T 5 3 7 s . ; 8
0 } ' ) i y ‘{ Coefs at level 4 and determinants X 10
05 I 1 1 I 1 I Coiflet WT Reconstruction , level 3
0 1 2 3 4 5 6 7 8 2 : : ‘ ‘ ; ; ‘
Coefs at level 4 and determinants x 10" _g ! . . . | | ! {
Shannon WT Reconstruction , level 3 0 ! 2 3 4 5 h 6 7 8
05 ‘ ‘ ‘ ‘ ‘ Coefs at level 3 and determinants % 10*
_Og L L L L L L ‘{ ) R R
0 1 2 3 4 5 6 7 8 Fig. 19 Coiflet WT Reconstruction at stage- 4
Coefs at level 3and determinants
x 10
2.1.3 Quantitative Analysis of Different Wavelets
Fig. 16 Shannon WT Reconstruction at stage- 4 on 1D Noisy Voice Signa| at stage-4
1 O"gm‘al Voice Signal N‘lRAJ' Table 1: Quantitative Analysis of Different Wavelets on Noisy
0 { Voice Signal at stage-4
_l 1 1 L L
otz 3 s e T8 Different | SNR | MSE | Entropy | PSNR
) x 10 Wavelets (db) (db)
.  Noisy Voce Signal: NRA) Haar 81.39 | 1.4058e | 4.1246 92.6011
ol i e A { -034
-10 ) ‘2 3 . 5 s 7 s DB-4 60.06 1.9053e | 3.8457 28.7194
) -012
x 10 Morlet 71.65 1.3231e | 3.7496 17.1357
biorthogonal-4.4 WT Reconstruction, level 4 013
S ‘ ‘ ‘ ‘ ‘ ‘ | { Cauchy 52.01 | 1.2170e | 3.9384 36.7727
2 L L L L L L L -011
ot 2z 8 45 6 T 8 Shannon | 74.20 | 7.3524e | 3.7494 | 14.5841
Coefs at level 4 and determinants X 10° 014
bionhogonal4.4 WT Reconstruction , level 3 DCT 24.69 6.5711e 4.7578 64.0962
2 T T . . T T T ' : ' '
0 { -009
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ FFT 97.27 1.034% | 4.6210 86.07
0 1 2 3 4 5 . 6 7 8 +004
Coefs at leel 3 and determinants x10° Biorthogo | 72.67 | 1.9379 | 4.4204 88.7932
nal-2.4 -006
Fig. 17 Biorthogonal WT Reconstruction at stage-4 E;?_ngo 75.35 _1(')%36’589 4.4407 88.7885
Original Voice Signal : NIRAJ. Symmlet-8 | 67.54 3(.)4(;66e 3.7608 21.2431
1 , ; . . \ -01
1 Mo ! e Coiflet 5201 | 1.2170e | 3.9384 | 36.7727
0 1 2 3 4 5 6 7 8 011

Noisy Voice Signal : NIRAJ.

i O “WWWWWW WWWW”WWWWWWWWWW

° z 10 From the quantitative analysis on voice signal at stage-4, it
o | Symmiet-8 W Reconstructon, eve 4 ‘ is found that Haar provides highest SNR, as well as lower
o2 ‘ ‘ ' ‘ | { MSE. Similarly, DCT and Bior-4.4 provide highest

0 1 2 e g s ® 7 8 Entropy and Haar provides best PSNR. The average

Symmiet-8 WT Reconstruction , lovel 3 x10 histogram is found approximately 7.3113e+003 in all

05 ‘ ‘ ‘ ‘ ‘ ] cases. Specifically, Haar WT does not have overlapping

05 I > 3 4 5 6 7 p windows, and reflects only changes between adjacent

Coefs at level 3 and determinants x 10° sample pairs. The Haar wavelet uses only two scaling and

wavelet function coefficients, thus calculates pair wise

Fig. 18 Symmlet-8 WT Reconstruction at stage-4 averages and differences. That’s why, Haar is found best
1JCSI

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved. www.lJCSl.org



IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012

ISSN (Online): 1694-0814
www.lJCSl.org

WT for noisy voice and

reconstruction at stage-4.

signal  decomposition

2.2 Two Dimensional Image Decomposition and
Reconstruction

2D discrete wavelet transform is used for 2D image
decomposition and reconstruction using 2D scaling and
wavelet functions which are orthogonal to its own
translation [1-2], [5-6]. It consists of four sets of
coefficients which are known as approximation
coefficients, detail coefficients along the horizontal
direction, detail coefficients along the vertical direction,
detail coefficients along the diagonal direction.

2.2.1 2D Image Analysis (Decomposition) at
stage-4 using Different Wavelets

2D image decomposition is done using a sequence of
combination of LP and HP filter banks in rows and
columns (LL, LH, HL, HH) at four different stages by
cascading at LL downsample decimated by 2 as shown in
Fig. 20 and Fig. 21.
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Fig. 20

Fig. 21 Multiscale Analysis of 2D Image at stage-3

2D finger print image is decomposed at stage-2, stage-3 &
stage-4 using DCT, FFT and different wavelets such as
Haar, Deubachies, Morlet, Biorthogonal, Symmlet and
Coiflet as illustrated in Fig.29, Fig.30 and Fig. 22 to Fig.
27.
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Haar WT on Fingerprint
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Fig. 22 Haar WT Decomposition at stage -4
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Fig. 23 DB-4 WT Decomposition at stage -4
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Fig. 24 Morlet WT Decomposition at stage -4
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Cauchy WT on Fingerprint

a 28.
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ST Decormpo. and Det Coef. (ev. 2 cascading at LL upsample decimated by 2 as shown in Fig.

2D finger print image is reconstructed at stage-2, stage-3
& stage-4 using DCT, FFT and different wavelets such as
Haar, Deubachies, Biorthogonal and Symmlet as
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Fig. 29 FFT Analysis & Synthesis at stage -4
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Fig. 27 Sym-8 WT Decomposition at stage -4

2.2.2 2D Image Synthesis (Reconstruction) at
stage-4 using Different Wavelets Transform

2D image reconstruction is done using a sequence of
combination of LP and HP filter banks in rows and
columns (LL, LH, HL, HH) at four different stages by
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DB-4 WT on Fingerprint SWT Recons. and Det Coef.(lev. 2)

Original Fingerprint signal : NIRAJ.
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Fig. 30 DCT Analysis & Synthesis at stage -4 Fig. 33 DB-4 WT Reconstruction at stage -4
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Fig. 31 Image Synthesis by FFT & DCT at stage -4
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Fig. 32 Haar WT Reconstruction at stage -4 Fig. 35 Sym-8 WT Reconstruction at stage -4
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2.2.3 Quantitative Analysis of Different Wavelets

on 2D Image at Stage'4 Table 6: Compression performance using wavelets
Table 2: Quantitative Analysis of Different Wavelets on 2D Different Coif2 Coif5 Rbio5.5 Dmey
fingerprint image at stage-4 Wavelets
Compression 92.20 88.34 89.70 76.59

Different SNR MSE Entropy | PSNR
Wavelets (db) (db) Daubechies wavelets are seen compactly supported and
Haar 7.3167 | 8.4974 1.6483 | 28.03 h hiah b f ishi h
DB-4 8.4560 | 7.4169 19296 | 26.89 ave highest number of vanishing moments whereas
Morlet 8.9697 | 6.6969 1.7505 | 26.38 Biorthogonal wavelets compactly supported wavelets for
DB-2 10.300 | 6.8423 2.0726 | 25.05 symmetry and exact reconstruction. The time taken is not
Cauchy 75217 | 6.3821 15782 | 21.03 linear for wavelet decomposition and reconstruction. On
S R RETEN RETRRETE the other hand, Symmlets are compactly supported

annen ' ' ' ' wavelets with highest number of vanishing moments and
DCT 7.9153 | 36.606 05591 | 26.13 AN
FET-2 8139 | 37576 05129 | 2536 the best compression is given by Sym-8 [6-8].
Biorthogonal- | 12.552 | 6.1138 1.9846 22.80
24 The original image and compressed image deploying
E"f”hogona" 12.448 | 6.3087 1.8981 | 22.90 different wavelets such as Sym-8, Bior-2.4and Bior-4.4
Symmiet-8 81908 | 73157 1822 | 2716 and Db-4 are illustrated in Fig. 36 and Fig. 37.
Coiflet 10.300 | 6.8423 15726 | 25.05

Uncompressed Fingerprint Image

From above quantitative analysis on 2D Fingerprint Image
at stage-4, it is found that highest SNR and lowest MSE in
Biorthogonal-2.4, higher MSE in Haar WT except FFT-2
& DCT. Similarly DB-2 as well as Bior-2.4 provides the
highest Entropy and Haar as well as Sym-8 provides best
PSNR. The average histogram is found 12.80 in all cases.

3. Two Dimensional Image Compression at
stage-4

The salient compression performance is found 93.00% in
DB-4, 93.68% in bior-4.4, 93.18% in Sym-4 and 92.20%
in Coif-2 deploying hard threshold=30 at 4 stage analysis
on the fingerprint image as illustrated in Tables 3-6.

Table 3: Compression performance using wavelets

Daubechies DB-4 DB-6 DB-8 DB-10
Compression | 93.00 92.21 91.04 90.08

Fig. 36 Image compression by Bior- 4.4 & Bior- 2.4
Table 4: Compression performance using wavelets

Biorthogonal Bior2.4 Bior4.4
Compression 91.47 93.68

Table 5: Compression performance using wavelets

Symmlet Sym4 Sym8 Sym10 Sym25
Compression 93.18 91.53 90.49 84.49
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Uncompressed Fingerprint Image

Fig. 37 Image compression using DB-4 and Sym-8

4. Conclusion

Multiscale analysis concludes that MSE is increased with
the increasing number of stages whereas the SNR
decreases. The quantitative analysis on 1D noisy voice
signal at stage-4, shows that highest SNR and lower MSE
in Haar, highest Entropy in DCT and Bior-4.4 and best
PSNR in Haar. On the other hand, the quantitative analysis
in 2D fingerprint image at stage-4, concurs that highest
SNR and lowest MSE in Biorthogonal-2.4, higher MSE in
Haar WT except FFT-2 & DCT. Similarly DB-2 as well
as Bior-2.4 provides highest Entropy and Haar as well as
Sym-8 provides best PSNR. Furthermore, the simulation
results show the significant image compression. The
salient compression performance is found that 93.00% in
DB-4, 93.68% in bior-4.4, 93.18% in Sym-4 and 92.20%
in Coif-2 deploying hard threshold=30 at stage 4 on the 2D
fingerprint image. Future research will concentrate the
application of next generation of wavelets on video
frames.
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