
Automated Text Summarization Base on Lexicales Chain
and graph Using of WordNet and Wikipedia Knowledge

Base

Mohsen Pourvali and Mohammad Saniee Abadeh

Department of Electrical & Computer Qazvin Branch Islamic Azad University
Qazvin, Iran

Department of Electrical and Computer Engineering at Tarbiat Modares University

Tehran, Iran

Abstract

The technology of automatic document summarization is
maturing and may provide a solution to the information overload
problem. Nowadays, document summarization plays an important
role in information retrieval. With a large volume of documents,
presenting the user with a summary of each document greatly
facilitates the task of finding the desired documents. Document
summarization is a process of automatically creating a
compressed version of a given document that provides useful
information to users, and multi-document summarization is to
produce a summary delivering the majority of information content
from a set of documents about an explicit or implicit main topic.
The lexical cohesion structure of the text can be exploited to
determine the importance of a sentence/phrase. Lexical chains are
useful tools to analyze the lexical cohesion structure in a text .In
this paper we consider the effect of the use of lexical cohesion
features in Summarization, And presenting a algorithm base on
the knowledge base. Ours algorithm at first find the correct sense
of any word, Then constructs the lexical chains, remove Lexical
chains that less score than other ,detects topics roughly from
lexical chains, segments the text with respect to the topics and
selects the most important sentences. The experimental results on
an open benchmark datasets from DUC01 and DUC02 show that
our proposed approach can improve the performance compared to
sate-of-the-art summarization approaches.
Keywords: text Summarization, Data Mining, Text mining, Word
Sense Disambiguation

1. Introduction

The technology of automatic document summarization is
maturing and may provide a solution to the information
overload problem. Nowadays, document summarization
plays an important role in information retrieval (IR). With a
large volume of documents, presenting the user with a
summary of each document greatly facilitates the task of
finding the desired documents. Text summarization is the
process of automatically creating a compressed version of a
given text that provides useful information to users, and
multi-document summarization is to produce a summary

delivering the majority of information content from a set of
documents about an explicit or implicit main topic [14].
Authors of the paper [10] provide the following definition
for a summary: “A summary can be loosely defined as a
text that is produced from one or more texts that conveys
important information in the original text(s), and that is no
longer than half of the original text(s) and usually
significantly less than that. Text here is used rather loosely
and can refer to speech, multimedia documents, hypertext,
etc. The main goal of a summary is to present the main
ideas in a document in less space. If all sentences in a text
document were of equal importance, producing a summary
would not be very effective, as any reduction in the size of
a document would carry a proportional decrease in its in
formativeness. Luckily, information content in a document
appears in bursts, and one can therefore distinguish
between more and less informative segments. Identifying
the informative segments at the expense of the rest is the
main challenge in summarization”. assumes a tripartite
processing model distinguishing three stages: source text
interpretation to obtain a source representation, source
representation transformation to summary representation,
and summary text generation from the summary
representation. A variety of document summarization
methods have been developed recently. The paper [4]
reviews research on automatic summarizing over the last
decade. This paper reviews salient notions and
developments, and seeks to assess the state-of-the-art for
this challenging natural language processing (NLP) task.
The review shows that some useful summarizing for
various purposes can already be done but also, not
surprisingly, that there is a huge amount more to do.
Sentence based extractive summarization techniques are
commonly used in automatic summarization to produce
extractive summaries. Systems for extractive
summarization are typically based on technique for
sentence extraction, and attempt to identify the set of
sentences that are most important for the overall
understanding of a given document. In paper [11] proposed

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 343

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

paragraph extraction from a document based on intra-
document links between paragraphs. It yields a text
relationship map (TRM) from intra-links, which indicate
that the linked texts are semantically related. It proposes
four strategies from the TRM: bushy path, depth-first path,
segmented bushy path, augmented segmented bushy path.
 In our study we focus on sentence based extractive
summarization. In this way we to express that The lexical
cohesion structure of the text can be exploited to
determine the importance of a sentence. Eliminate the
ambiguity of the word has a significant impact on the
inference sentence. In this article we will show that the
separation text into the inside issues by using the correct
concept Noticeable effect on the summary text is created.
The experimental results on an open benchmark datasets
from DUC01 and DUC02 show that our proposed approach
can improve the performance compared to state-of-the-art
summarization approaches.
 The rest of this paper is organized as follows: Section 2
introduces related works, Word sense disambiguation is
presented in Section 3, clustering of the lexical chains is
presented in Section 4, text segmentation base on the inner
topics is presented in Section 5, The experiments and
results are given in Section 6. Finally conclusion presents
in section 7.

2. Related work

Generally speaking, the methods can be either extractive
summarization or abstractive summarization. Extractive
summarization involves assigning salience scores to some
units (e.g.sentences, paragraphs) of the document and
extracting the sentences with highest scores, while
abstraction summarization
(e.g.http://www1.cs.columbia.edu/nlp/newsblaster/) usually
needs information fusion, sentence compression and
reformulation [14].
 Sentence extraction summarization systems take as input
a collection of sentences (one or more documents) and
select some subset for output into a summary. This is best
treated as a sentence ranking problem, which allows for
varying thresholds to meet varying summary length
requirements. Most commonly, such ranking approaches
use some kind of similarity or centrality metric to rank
sentences for inclusion in the summary – see, for example,
[1].The centroid-based method [3] is one of the most
popular extractive summarization methods. MEAD
(http://www.summarization.com/mead/) is an
implementation of the centroid-based method for either
single-or-multi-document summarizing. It is based on
sentence extraction. For each sentence in a cluster of
related documents, MEAD computes three features and
uses a linear combination of the three to determine what
sentences are most salient. The three features used are

centroid score, position, and overlap with first sentence
(which may happen to be the title of a document). For
single-documents or (given) clusters it computes centroid
topic characterizations using tf–idf-type data. It ranks
candidate summary sentences by combining sentence
scores against centroid, text position value, and tf–idf
title/lead overlap. Sentence selection is constrained by a
summary length threshold, and redundant new sentences
avoided by checking cosine similarity against prior ones. In
the past, extractive summarizers have been mostly based on
scoring sentences in the source document. In paper [12]
each document is considered as a sequence of sentences
and the objective of extractive summarization is to label the
sentences in the sequence with 1 and 0, where a label of 1
indicates that a sentence is a summary sentence while 0
denotes a non-summary sentence. To accomplish this task,
is applied conditional random field, which is a state-of-the-
art sequence labeling method .In paper [15] proposed a
novel extractive approach based on manifold–ranking of
sentences to query-based multi-document summarization.
The proposed approach first employs the manifold–ranking
process to compute the manifold–ranking score for each
sentence that denotes the biased information-richness of the
sentence, and then uses greedy algorithm to penalize the
sentences with highest overall scores, which are deemed
both informative and novel, and highly biased to the given
query. The summarization techniques can be classified into
two groups: supervised techniques that rely on pre-existing
document-summary pairs, and unsupervised techniques,
based on properties and heuristics derived from the text.
Supervised extractive summarization techniques treat the
summarization task as a two-class classification problem at
the sentence level, where the summary sentences are
positive samples while the non-summary sentences are
negative samples. After representing each sentence by a
vector of features, the classification function can be trained
in two different manners [7]. One is in a discriminative way
with well-known algorithms such as support vector
machine (SVM) [16]. Many unsupervised methods have
been developed for document summarization by exploiting
different features and relationships of the sentences – see,
for example [3] and the references therein. On the other
hand, summarization task can also be categorized as either
generic or query-based. A query-based summary presents
the information that is most relevant to the given queries
[2] and [14] while a generic summary gives an overall
sense of the document’s content [2] , [4] , [12] , [14]. The
QCS system (Query, Cluster, and Summarize) [2] performs
the following tasks in response to a query: retrieves
relevant documents; separates the retrieved documents into
clusters by topic, and creates a summary for each cluster.
QCS is a tool for document retrieval that presents results in
a format so that a user can quickly identify a set of
documents of interest. In paper [17] are developed a
generic, a query-based, and a hybrid summarizer, each with

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 344

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

differing amounts of document context. The generic
summarizer used a blend of discourse information and
information obtained through traditional surface-level
analysis. The query-based summarizer used only query-
term information, and the hybrid summarizer used some
discourse information along with query-term information.
The article [18] presents a multi-document, multi-lingual,
theme-based summarization system based on modeling text
cohesion (story flow).

3. Word Sense Disambiguation

For extracting lexical chains in a document, all words and
correct senses of these words should be known. Humans
disambiguate words by the current context. Lexical
chaining algorithms depend on an assumption, and this
assumption is that correct sense of words has stronger
relations with other word senses. Using this assumption,
lexical chaining algorithms first try to disambiguate all
word occurrences. For this reason, word sense
disambiguation (WSD) is an immediate application of
lexical chains and an extrinsic evaluation methodology.

3.1 generating and traversing the WordNet graph

The algorithm presented in this paper is based on lexical
chains therefore the system needs to deeply analyze the
text. Per word has a sense based on it’s position in the
sentence. For instance, the word bank in the follow
sentences has different senses:”Beautiful bank of river” and
“Bank failures were a major disaster”. In first sentence
bank means river’s coast, but in the second sentence it
means economic bank. The most appropriate sense must be
chosen for this word and it cause increasing the
connectedness in a lexical chain. In the algorithm presented
in this paper , word sense are calculated locally . in this
way the best word sense is extracted .we also use WordNet
as an external source for disambiguation

Fig. 1 Diagram of algorithm’s steps

 let wi be a word in the document ,and wi have n senses
	൛ݓ௜భ, ,௜మݓ … , ,௜ೖݓ … , ௜೙ൟ.in this procedure for finding theݓ
meaning of two words related locally together and placed
in the same sentence , we assume all of the possible
meanings and senses of per word as the first level of the
traversing word tree then we process every sense in a
returning algorithm .Next , we connect all the relations for
that sense as it’s descendants ,and these descendants are
generated through relations that are Hypernym ,... . We do
this process in a returning manner for n levels. Next, every
first level sense of the one word compare with all the first
level senses of the other word .Afterwards, the numbers of
equalities are considered in integer digit .the same
comparison is done for another word .if there isn’t any
equality, for each word we choose first sense that is most
common.

Fig. 2 Sample graph built on the 2 words

 In the above figure, we illustrate the relations of the tree
.the root of the tree is considered as the target word, and the
first level nodes as the senses of the target words. The
nodes of the second, third,...levels are senses related with
the first level nodes with Hypernym ,… relations. This tree
is generated using returning functions and traversing of the
tree is in the returning manner.

Function Hyp(ref Node t,int level)
 string[] sp

for i = 0 to EndOfFile(wn_hyp) do
 ReadLine_From_File(wn_hyp)
 sp=Split_String_base_of('(', ',', ')')
 if t.index == sp[1]
 tnew=Create New Nod(sp[2])
 Call Hyp(ref tnew,level-1)
 Add_New_Nod_ToList(tnew)
 end if
end for

Fig. 3 Algorithm for creation WordNet graph

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 345

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The above algorithm is one of the functions used for
producing WordNet graph .this function is the part of the
graph related with Hypernym relation .We use the great
encyclopedia of Wikipedia because of the lack of special
names in knowledge base of WordNet. This is done using
the 3.5G XML file that is downloaded from
dumps.wikipedia.org site. We have created a Xml_Reader
for this file, and then goal word abstract is extracted.
Extracted abstract is used same of the Glosses of another
sentence’s word we use creating the graph and traversing of
it just for the first ,middle ,and last sentences ,and it is
useful because these sentences usually encompass concise
expression of the concept of the paragraph in most of the
documents .in this manner we decrease the space of
interpretation and therefore the time of calculation and the
space of memory because we just need to keep some
highlight sentences related with each other. After clarifying
the actual senses of the all words in the prominent
sentences and with the similarities and relations between
every pair of the words, we put them in incessant lexical
chains. For example in the tree of two words, and through
the traversing of the first word, we put these two words in
the same lexical chain as soon as we reach the first
common sense between the subordinate graph of the first
word and the first level nodes of the second word .For each
lexical chain LCi , ݓଷ

ଵ symbolizes that this word occur in
the first sentence and the third sense of this word is chosen
as the best sense. lexical chains created at first are
generated from highlight sentences, and we use different
algorithm for putting other words of sentences in the
relevant lexical chains. in this algorithm with some changes
in Lesk algorithm ,we use gloss concepts to represent
similarities and differences of two words. let w1 , w2 are
two words in text .firstly we extract senses of per word in
normal Lesk algorithm from knowledge base

1ݏ ∈ 	2ݏ	1ሻܽ݊݀ݓሺ	݁ݏ݊݁ݏ ∈ 2ሻݓሺ	݁ݏ݊݁ݏ (1)

then we find overlaps between gloss concepts

,1ݏ௟௘௦௞ሺ݁ݎ݋ܿݏ 2ሻݏ ൌ |2ሻݏሺݏݏ݋݈݃⋂1ሻݏሺݏݏ݋݈݃| (2)

And every two concepts that have more similarities are
chosen as the target words. Moreover, we use not only uni-
gram (sequence of one word) overlaps , but also bi-gram
(sequence of two words) overlaps .if there is one of the
senses the first word in gloss concepts of the second word,
we give one special score to this two senses. We do this
because two concepts may have common words that are not
related with their similarities and it causes increasing in
scores of that two senses and makes a mistake in choosing
related word as a result. Considering the word sense in
gloss concept of the second word’s sense, we can award an
additional chance to this sense to be chosen in process of
choosing words for chains from words that are not
semantically related in fact.

݂݅൫s1 ∈ gloss	ሺs2ሻ	or		s2 ∈ gloss	ሺs1ሻ൯ (3)

,1ݏሺ	݁ݎ݋ܿݏ			 2ሻݏ ൌ 	 ,1ݏ௟௘௦௧ሺ݁ݎ݋ܿݏ 2ሻݏ ൅ ߣ

λ is an additional score, and considering average existed
words in sense’s gloss concept and experimental tests, we
find that the best value for λ is 5 . it is important in
surveying gloss concepts to survey just existed names and
existed verbs. At first, there are lexical chains generated
from highlight sentences with traversing the graph, and
with assuming LCi as one of the lexical chains generated
from last step and Wj as one of the other sentence’s words
and with using the above algorithm , Wj is compared with
members of lexical chain LCi .if the similarity’s score of Wj
with one of the members of LCi is more than threshold T ,
Wj is added to LCi and from now on, other residual words
are investigated based on their similarities with members
of LCi and Wj ,too.

Function (Word1,Word2)
H=0 , WordInGloss = 0
For i=0 to CountOfSenseWord1
 For j=0 to CountOfSenseWord2
 For s=0 to CSG1[i]
 For k=0 to 1
 If s+k == s
 N = WSG1[s]
 elseIf s <> CSG1[i]
 n = WSG1[s] + “ “ + WSG2[s + k]
 else break
 if GlossWord2[j].Contains(n)
 H++
 End if
 End for
 End for
 If GlossWord2[j].Contains(Word1) or
GlossWord2[i].Contains(Word1)
 WordInGloss = 5
 End if
 F = H + WordInGloss
 ed = new edge(SenseWord1[i], SenseWord2[j], f)
 AllEdge.Add(ed)
 End for
End for

Fig. 4 Compare algorithm for Glosses

4. Clustring Lexical Chains

After lexical chains are constructed for the text, there will
be some weak lexical chains formed of single word senses.
 For each lexical chain LCi, a sentence occurrence vector
Vi is formed. ݒ௜ ൌ ൛ݏଵ೔, … , ,௞೔ݏ … , ௡೔ൟݏ where n is the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 346

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

number of sentences in the document. Each ݏ௞೔ is the
number of LCi members in the sentence k. If sentence k has
3 members of LCi then ݏ௞೔ is 3. Two lexical chains LCi and
LCj go into the same cluster if their sentence occurrence
vectors Vi and Vj are similar.
Our clustering algorithm, starts from an initial cluster
distribution, where each lexical chain is in its own cluster.
Thus, our clustering algorithm starts with n clusters, where
n is the number of lexical chains. Iteratively the most
similar cluster pair is found and they are merged to form a
single cluster. Clustering stops when the similarity between
the most similar clusters is lower than a threshold value. for
this purpose we used the well known formula from Linear
Algebra:

ሻߠሺݏ݋ܥ ൌ

௩೔ା௩ೕ

ห|௩೔|หቚห௩ೕหቚ
 (4)

In the equation ห|ݒ௜|ห represents the Euclidean Length for
the vector.

5. Sequence Extraction

In our algorithm, the text is segmented from the perspective
of each lexical chain cluster, finding the hot spots for each
topic. For each cluster, connected sequences of sentences
are extracted as segments. Sentences that are cohesively
connected are usually talking about the same topic. For
each lexical chain cluster Clj , we form sequences
separately. For each sentence Sk, if sentence Sk has a lexical
chain member in Clj , a new sequence is started or the
sentence is added to the sequence. If there is no cluster
member in Sk, then the sequence is ended. By using this
procedure, text is segmented with respect to a cluster,
identifying topic concentration points. Figure 5 is an
example of Text Segmentation.

v1={ 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 }
v2={ 0 0 0 0 0 0 0 1 0 1 2 1 1 0 0 0 0 }

Fig. 5 example of Text Segmentation

Each sequence is scored using the formula in Equation (5).

௜ሻ݁ܿ݊݁ݑݍሺܵ݁݁ݎ݋ܿܵ ൌ ௜ሻ݈ܥሺ݁ݎ݋ܿܵ ∗ ݈௜ ∗

ሺଵାௌ௅஼೔ሻ∗௉௅஼೔
௙మ

 (5)

Where li is the number of sentences in the sequencei. SLCi
is the number of lexical chains that starts in sequencei.
PLCi is the number of lexical chains having a member in
sequencei and f is the number of lexical chains in cluster.
Score of the cluster score(Cli), is the average score of the
lexical chains in the cluster. Our scoring function tries to
model the connectedness of the segment using this cluster
score.

6. Experiments and Results

In this section, we conduct experiments to test our
summarization method empirically.

6.1 Datasets

For evaluation the performance of our methods we used
two document datasets DUC01 and DUC02 and
corresponding 100-word summaries generated for each of
documents. The DUC01 and DUC02 are an open
benchmark datasets which contain 147 and 567 documents-
summary pairs from Document Understanding Conference
(http://duc.nist.gov). We use them because they are for
generic single-document extraction that we are interested in
and they are well preprocessed. These datasets DUC01 and
DUC02 are clustered into 30 and 59 topics, respectively. In
those document datasets, stop words were removed using
the stop list provided in ftp://ftp.cs.cornell.e-
du/pub/smart/english.stop and the terms were stemmed
using Porter’s scheme [9], which is a commonly used
algorithm for word stemming in English.

6.2 Evaluation metrics

There are many measures that can calculate the topical
similarities between two summaries. For evaluation the
results we use two methods. The first one is by precision
(P), recall (R) and F1-measure which are widely used in
Information Retrieval. For each document, the manually
extracted sentences are considered as the reference
summary (denoted by Summref). This approach compares
the candidate summary (denoted by Summcand) with the
reference summary and computes the P, R and F1-measure
values as shown in formula (8) [12].

ܲ ൌ
ห௦௨௠௠ೝ೐೑∩௦௨௠௠೎ೌ೙೏ห

|௦௨௠௠೎ೌ೙೏|
 (6)

ܴ ൌ
ห௦௨௠௠ೝ೐೑∩௦௨௠௠೎ೌ೙೏ห

ห௦௨௠௠ೝ೐೑ห
					 (7)

ଵܨ ൌ
ଶ௉ோ

௉ାோ
			 (8)

The second measure we use the ROUGE toolkit [5] , [6] for
evaluation, which was adopted by DUC for automatically
summarization evaluation. It has been shown that ROUGE
is very effective for measuring document summarization. It
measures summary quality by counting overlapping units
such as the N-gram, word sequences and word pairs
between the candidate summary and the reference
summary. The ROUGE-N measure compares N-grams of
two summaries, and counts the number of matches. The
measure is defined by formula (9) [5] , [6].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 347

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

ROUGE െ N ൌ

∑ ∑ େ୭୳୬୲ౣ౗౪ౙ౞ሺ୒ି୥୰ୟ୫ሻొషౝ౨౗ౣ∈౏౏∈౩౫ౣౣ౨౛౜

∑ ∑ େ୭୳୬୲ሺ୒ି୥୰ୟ୫ሻొషౝ౨౗ౣ∈౏౏∈౩౫ౣౣ౨౛౜
 (9)

where N stands for the length of the N-gram, Countmatch (N-
gram) is the maximum number of N-grams co-occurring in
candidate summary and a set of reference–summaries.
Count(N _ gram) is the number of N-grams in the reference
summaries. We use two of the ROUGE metrics in the
experimental results, ROUGE-1 (unigram-based) and
ROUGE-2 (bigram-based).

6.3 Simulation strategy and parameters

The parameters of our method are set as follows: depth of
tree that is created for any word, n=3; extra value for Lesk
algorithm, 5= ߣ; Finally, we would like to point out that
algorithm was developed from scratch in C#.net 2008
platform on a Pentium Dual CPU, 1.6 GHz PC, with 512
KB cache, and 1 GB of main memory in Windows XP
environment.

6.4 Performance evaluation and discussion

We compared our method with four methods CRF [12],
NetSum [13], Manifold–Ranking [15] and SVM [16].
Tables 1 and 2 show the results of all the methods in terms
ROUGE-1, ROUGE-2, and F1-measure metrics on DUC01
and DUC02 datasets, respectively. As shown in Tables 1
and 2, on DUC01 dataset, the average values of ROUGE-1,
ROUGE-2 and F1 metrics of all the methods are better than
on DUC02 dataset. As seen from Tables 1 and 2 Manifold–
Ranking is the worst method, In the Tables 1 and 2
highlighted (bold italic) entries represent the best
performing methods in terms of average evaluation metrics.
Among the methods NetSum, CRF, SVM and Manifold–
Ranking the best result shows NetSum.
 We use relative improvement ሺ௢௨௥	௠௘௧௛௢ௗି௢௧௛௘௥	௠௘௧௛௢ௗ௦ሻ

௢௧௛௘௥	௠௘௧௛௢ௗ௦
ൈ

100 for comparison. Compared with the best method
NetSum, on DUC01 (DUC02) dataset our method improves
the performance by 2.65% (3.62%), 4.26% (10.25%) and
1.81% (3.27%) in terms ROUGE-1, ROUGE-2 and F1,
respectively.

Table 1:
Average values of evaluation metrics for summarization methods (DUC01

dataset).
Av.F1-
measure

Av.ROUGE-2 Av.ROUGE-1 Methods

0.48124 0.18451 0.47656 Our method
0.47267 0.17697 0.46427 NetSum
0.46435 0.17327 0.45512 CRF
0.45357 0.17018 0.44628 SVM

0.44368 0.16635 0.43359
Manifold–
Ranking

Table 2:
Average values of evaluation metrics for summarization methods (DUC02

dataset).
Av.F1-
measure

Av.ROUGE-2 Av.ROUGE-1 Methods

0.47790 0.12312 0.46590 Our method
0.46278 0.11167 0.44963 NetSum
0.46046 0.10924 0.44006 CRF
0.43095 0.10867 0.43235 SVM

0.41657 0.10677 0.42325
Manifold–
Ranking

7. Conclusion

We have attacked single document summarization. our
algorithm is able to select sentences that human
summarizers prefer to add to their summaries. our
algorithm relies on WordNet which is theoretically domain
independent, and also we have used Wikipedia for some of
the words that do not exist in the WordNet. For
summarization, we aimed to use more cohesion clues than
other lexical chain based summarization algorithms. Our
results were competitive with other summarization
algorithms and achieved good results. Using co-occurrence
of lexical chain members, our algorithm tries to build the
bond between subject terms and the object terms in the text.
With implicit segmentation, we tried to take advantage of
lexical chains for text segmentation. It might be possible to
use our algorithm as a text segmenter.

References
[1] Alguliev, R. M., & Alyguliev, R. M. (2007). Summarization

of text-based documents with a determination of latent
topical sections and information-rich sentences. Automatic
Control and Computer Sciences , 41, 132–140.

[2] Dunlavy, D. M., O’Leary, D. P., Conroy, J. M., &
Schlesinger, J. D. (2007). QCS: A system for querying,
clustering and summarizing documents. Information
Processing and Management , 43, 1588–1605.

[3] Erkan, G., & Radev, D. R. (2004). Lexrank: Graph-based
lexical centrality as salience in text summarization. Journal
of Artificial Intelligence Research , 22, 457–479.

[4] Jones, K. S. (2007). Automatic summarizing: The state of the
art. Information Processing and Management , 43, 1449–
1481.

[5] Lin, C. -Y. (2004). ROUGE: A package for automatic
evaluation summaries. In Proceedings of the workshop on
text summarization branches out, (pp. 74–81). Barcelona,
Spain.

[6] Lin, C. -Y., & Hovy, E. H. (2003). Automatic evaluation of
summaries using N-gram co-occurrence statistics. In
Proceedings of the 2003 conference of the north american
chapter of the association for computational linguistics on
human language technology (HLT-NAACL 2003), (pp. 71–
78). Edmonton, Canada.

[7] Mihalcea, R., & Ceylan, H. (2007). Explorations in
automatic book summarization. In Proceedings of the 2007
joint conference on empirical methods in natural language
processing and computational natural language learning
(EMNLP-CoNLL 2007), (pp. 380–389). Prague, Czech
Republic.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 348

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[8] Navigli, R., & Lapata, M. (2010). An Experimental Study of
Graph Connectivity for Unsupervised Word Sense
Disambiguation. IEEE Computer Society , 32.

[9] Porter, M. (1980). An algorithm for suffix stripping.
Program , 14, 130–137.

[10] Radev, D., Hovy, E., & McKeown, K. (2002). Introduction
to the special issue on summarization. omputational
Linguistics , 22, 399–408.

[11] Salton, G., Singhal, A., Mitra, M., & Buckley, C. (1997).
Automatic text structuring and summarization. Information
Processing and Management , 33, 193–207.

[12] Shen, D., Sun, J. -T., Li, H., Yang, Q., & Chen, Z. (2007).
Document summarization using onditional random fields. In
Proceedings of the 20th international joint conference on
artificial intelligence (JCAI 2007), (pp. 2862–2867).
Hyderabad, India.

[13] Svore, K. M., Vanderwende, L., & Burges, C. J. C.
Enhancing single-document summarization by combining
RankNet and third-party sources. In Proceedings of the 2007
joint conference on empirical methods in natural language
processing and computational natural language learning
(EMNLP-CoNLL 2007), (pp. 448–457). Prague, Czech
Republic.

[14] Wan, X. (2008). Using only cross-document relationships for
both generic and topic-focused multi-document
summarizations. Information Retrieval , 11, 25–49.

[15] Wan, X., Yang, J., & Xiao, J. (2007). Manifold-ranking
based topic-focused multidocument summarization. In
Proceedings of the 20th international joint conference on
artificial intelligence (IJCAI 2007), (pp. 2903–2908).
Hyderabad, India.

[16] Yeh, J-Y., Ke, H-R., Yang, W-P., & Meng, I-H. (2005). Text
summarization using a trainable summarizer and latent
semantic analysis. Information Processing and Management
, 41, 75–95.

[17] McDonald, D. M., & Chen, H. (2006). Summary in context:
Searching versus browsing. ACM Transactions on
Information Systems, 24, 111–141.

[18] Fung, P., & Ngai, G. (2006). One story, one flow: Hidden
Markov story models for multilingual multi document
summarization. ACM Transaction on Speech and Language
Processing, 3, 1–16.

[19] Cilibrasi, R. L., & Vitanyi, P. M. B. (2007). The Google
similarity measure. IEEE Transaction on Knowledge and
Data Engineering, 19, 370–383.

MOHSEN POURVALI received him B.S. degree from the
Department of Computer Engineering at Razi University, in
2007.Currently; he is pursuing his M.S. degree in the Department of
Electrical & Computer Qazvin University. His research areas
include Data mining and Text mining.

MOHAMMAD SANIEE ABADEH received his B.S. degree in
Computer Engineering from Isfahan University of Technology,
Isfahan, Iran, in 2001, the M.S. degree in Artificial Intelligence from
Iran University of Science and Technology, Tehran, Iran, in 2003
and his Ph.D. degree in Artificial Intelligence at the Department of
Computer Engineering in Sharif University of Technology, Tehran,
Iran in February 2008. Dr. Saniee Abadeh is currently a faculty
member at the Faculty of Electrical and Computer Engineering at
Tarbiat Modares University. His research has focused on
developing advanced meta-heuristic algorithms for data mining and
knowledge discovery purposes. His interests include data mining,
bio-inspired computing, computational intelligence, evolutionary
algorithms, fuzzy genetic systems and memetic algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 349

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

