
Analyzing the Complexity of Java Programs using Object -
Oriented Software Metrics

Arti Chhikara1and R.S.Chhillar2

1Maharaja Agrasen College, Delhi, India.
2Deptt. Of Computer Sc. And Applications, Rohtak, India.

Abstract
 Object-oriented technology has rapidly become accepted
as the preferred paradigm for large-scale system design.
With the help of this technology we can develop software
product of higher quality and lower maintenance cost. It is
evident that the available traditional software metrics are
inadequate for case of object-oriented software, as a result
a set of new object oriented software metrics came into
existence. Object Oriented Metrics are the measurement
tools adapted to the Object Oriented paradigm to help
manage and foster quality in software development.
 Measurement of software complexity has been of great
interest to researchers in software engineering for some
time. Software complexity has been shown to be one of the
major contributing factors to the cost of developing and
maintaining software. In this research paper we investigate
several object oriented metrics proposed by various
researchers. These object oriented metrics are than applied
to several java programs to analyze the complexity of
software product.

Keywords: Object Oriented Software Development,
Software Metric, Software Product, Java.

1. Introduction:

Object-oriented technologies reflect a natural view of
the world. Object-oriented software is easier to
maintain because its structure is inherently
decoupled. Object Oriented Analysis and Design of
software provide many benefits to both the program
designer and the user. This technology promises
greater programmer productivity, better quality of
software and lesser maintenance cost [1,2].
OO approaches control complexity of a system by
supporting hierarchical decomposition through both
data and procedural abstraction [3]. However, as
Brooks points out, “The complexity of software is an
essential property, not an accidental one" [4]. The
OO decomposition process merely helps control the
inherent complexity of the problem; it does not
reduce or eliminate the complexity. Measurement of
the software complexity of OO systems has the
potential to aid in the realization of these expected
benefits. Software complexity has been shown to be

one of the major contributing factors to the cost of
developing and maintaining software [6]. According
to Coad and Yourdon [5], a good OO design is one
that allows trade-offs of analysis, design,
implementation and maintenance costs throughout
the lifetime of the system so that the total lifetime
costs of the system are minimized. Software
complexity measurement can contribute to making
these cost trade-offs in two ways. These are:
1) To provide a quantitative method for predicting
how difficult it will be to design, implement, and
maintain the system.
2) To provide a basis for making the cost trade-offs
necessary to reduce costs over the lifetime of the
system.
 In this research paper different java programs are
studied and object oriented software metrics are
applied to them and a study of complexity is made
based on the results obtained by applying object
oriented metrics to different java programs.
The rest of the paper is organized as follows. Section
2 give a brief overview of object oriented metrics that
we have used in our paper. Section 3 presents an
example of java source code. Section 4 presents
results obtained by applying object oriented metrics
to java source code. Section 5 presents conclusion.

2. Literature Research

2.1 Object Oriented Metrics

One of the most widely referenced sets of object-
oriented software metrics has been proposed by
Chidamber and Kemerer [7,11]. At the 1991 Object
Oriented Programming Systems, Languages and
Applications conference (OOPSLA), Shyam
Chidamber and Chris Kemerer presented a paper [7]
outlining six metrics for use with object-oriented
programming languages. The metrics used in this
study are given below:

1 Weighted Method per Class(WMC): WMC is
defined as the sum of the complexities of all methods
of a class. If there are n methods of complexities

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 364

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

c1,c2,……………..,cn are defined for a class C. The
specific complexity metric that is chosen should be
normalized so that nominal complexity for a method
takes on a value of 1.0 [16].

 WMC = ∑ci for i=1 to n

The number of methods and their complexity are
reasonable indicators of the
amount of effort required to implement and test a
class. In addition, the larger the number of methods,
the more complex is the inheritance tree (all
subclasses inherit the methods of their parents).
Finally, as the number of methods grows for a given
class, it is likely to become more and more
application specific, thereby limiting potential reuse.
For all of these reasons, WMC should be kept as low
as is reasonable [16].

2 Depth of Inheritance Tree(DIT): This metric is “a
measure of how many ancestor classes can
potentially affect this class.” [7,10] The deeper a
class is in the inheritance the more behavior it is
likely to inherit from its superclassses. Deep
inheritance trees are indicative of complex designs.
This metric is useful as a design aid in designing
classes that make use of inherited methods.

3 Number of Children(NOC): The NOC is the
number of immediate subclasses in the hierarchy.
High NOC indicates high reuse. But, if there are a
large number of children of a class, then the
abstraction level of that parent class is reduced. If a
class has too many children, it may indicate misuse
of sub-classing. The number of children gives an idea
of the potential influence a class has on the design. If
a class has a large number of children, it may require
more testing[7,10].

4 Response For a Class (RFC): This metric is a
count of all member functions called by any member
function in the class being measured. Member
functions in the class and member functions of other
classes are both counted equally. It is “considered a
measure of attributes of an object. Since it
specifically includes methods called from outside the
object, it is also a measure of communication
between objects.” [7]

Several studies have been conducted to validate CK’s
metrics. Their metrics have been criticized, specially
the LCOM metric, for being too ambiguous for
practical applications and for not being language
independent [12]. Basili et al. [13] presented the
results of an empirical validation of CK’s metrics.

Tang et al. [14] validated CK’s metric suit using real
time systems.
 Li, et al. have also empirically evaluated C&K's
metrics as being predictors of maintenance effort
[15]. In addition, Li, et al. [15] proposed new metrics
that were used in their study including:

5 Message passing coupling: The Message Passing
Coupling metric measures the number of method
calls defined in methods of a class to methods in
other classes, and therefore the dependency of local
methods to methods implemented by other classes. It
allows for conclusions on the message passing
(method calls) between objects of the involved
classes. This allows for conclusions on reusability,
maintenance and testing effort.

6 Data abstraction coupling: Data abstraction
coupling is a count of total number of instances of
other classes within a given class. It is the count of
total number of external classes the given classes
uses.

7 Number of local subunits: The number of local
subunits is the total number of functions and
procedures defined for a class. Classes with large
number of operations are harder to maintain and are
more fault prone.

Morris [8,9] in 1989 made some important
observations on OO code and proposed candidate
metrics for productivity measurement:

8 Inheritance Dependencies: This metric is intended
to reflect characteristics of the inheritance tree.
Morris suggests that “it may be possible to determine
a range of values within which the inheritance tree
depth should be maintained.”[9]:

This metric is calculated using the following

equation:

Inheritance tree depth = max (inheritance tree path
length)

9 Factoring Effectiveness: Morris states that
“inheritance hierarchies are optimized via a process
called factoring. The purpose of factoring is to
minimize the number of locations within an
inheritance hierarchy in which a particular method is
implemented.”[9]
It is calculated as below:

Factoring Effectiveness = Number of unique methods
/ Total number of methods

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 365

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

10 Reuse Ratio: The reuse ratio, RR is given by
[18]:
 Reuse Ratio = Number of Superclasses/Total
number of Classes

11 Specialization Index: Specialization Ratio (SR):
Specialization ratio, SR is given as [18]:
 Specialization Index = Number of
Subclasses/Number of Superclasses

3. Definition of Metric

To better define and understand how these metrics
are calculated using java source code example is
used.

 3.1: Java source code[1,2]

import java.io.*;
public class employee
//employee class
{
 DataInputStream in=new
DataInputStream(System.in);
 private String name;
//employee name
 public int number;
//employee number
 public void getinfo()
 {
 System.out.println(“Enter name:”);
 name= in.readLine();
 System.out.println (”enter number :”) ;
 number=Integer.parseInt(in.readLine()) ;
 }
 public void putinfo()
 {
 System.out.println(“The name is:” +name);
 System.out.println (“Number=” +number);
 }
public void show()
{
 System.out.println(“End of Employee Class”);
}
}
public class generalmanager extends employee
//generalmanager class
{
 private String title ;
 private double dues ;
 private int count;
 count = total
 public void getinfo()
 {
 super.getinfo();
 System.out.println(”enter title :”);

 title=in.readLine();
 Console.WriteLine(“enter golf club dues:”);
 dues=double.parseDouble(in.readLine());
 }
public void putinfo()
 {
 super.putinfo();
 System.out.println(count);
 System.out.println (“title:” +title);
 System.out.println(“dues:”+dues);
 }
 public void show1()
 {
System.out.println(“End of manager class”);
 }}
public class engineer extends employee
// engineer class
{
 private int pubs ;
 public void getinfo()
 {
 super.getdata();
 System.out.println (”enter number of pubs:”) ;
 pubs=Integer.parseInt(in.readLine());
 }
 public void putinfo()
 {
 super.putinfo();
 System.out.println (“number of pubs:” +pubs);
 }
}
public class worker extends employee
// worker class
{
 private int a;
 public int hours;
 public void getinfo()
 {
 super.getdata();
 System.out.println (“Enter number of hours:”) ;
 hours=Integer.parseInt(in.readLine());
 }
 public void calculate()
{
 int total=0;
 total = LEN*40;
}
public void putinfo()
{
 super.putinfo();
 System.out.println (“number of hours :” +hours) ;
 System.out.println (“Total:” +total);
 }
}
public class hourlyemployee extends worker
//hourlyemployee class

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 366

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

{
 private double sal;
 public void getinfo()
{
 super.getinfo();
 System.out.println (”enter number of hours:”) ;
 hours=Integer.parseInt(in.readLine());
 }
 public void salary()
{
 sal=super.hours*250;
 // calling superclass instance variable
 }
 public void putinfo()
{
 super.putinfo();
 System.out.println (“The salary is: “ +sal);
 }
public static void main(String args[])
//main method
{
 generalmanager m1 = new generalmanager();
 generalmanager m2 = new generalmanager();
 technician s1= new scientist();
 worker L1 = new worker();
 hourlyemployee h1 = new hourlyemployee();
 System.out.println (“Enter data for manager 1”);
//get data for several employees
 m1.getinfo();
 System.out.println (“Enter data for manager 2”);
 m2.getinfo();
 System.out.println (“Enter data for scientist 1”);
 s1.getinfo();
 System.out.println (“Enter data for laborer 1”);
 L1.getinfo();
System.out.println (“Enter data for hourlyemployee
1”);
 h1.getinfo();
 System.out.println (“Data on manager 1”);
 m1.putinfo();
 System.out.println (“Data on manager 2 “);
 m2.putinfo();
 System.out.println (“Data on scientist 1”);
 s1.putinfo();
 System.out.println (”Data on Laborer 1”);
 L1.putinfo();
 System.out.println (“Data on hourly employee”);
 h1.putinfo();
}

3.2 Class Diagram for java source code:

Fig 1: Class Diagram

3.3 Object Oriented Software Metrics
Applied on Example 1:

1. WMC (Weighted Method per Class): WMC is
calculated by counting the number of methods in
each class [4].

 Metric Employee
class

Manager
Class

Engineer
class

Laborer
class

Hourlyemployee
class

WMC

3

3

2

3

3

2. RFC (Response for a Class): The RFC is the
number of functions or procedures that can be
potentially be executed in a class. Specifically, this is
the number of operations directly invoked by member
operations in a class plus the number operations
themselves [4].

Metri
c

Employ
ee class

Manag
er
Class

Engine
er class

Work
er
class

Hourlyemplo
yee class

RFC 3 5 4 5 7

Employee class
name, number
getinfo()
putinfo()
show()

 Worker class
a, hours
getinfo()
putinfo()
calculate()

 Generalmanager class
title, dues, count
getinfo()
putinfo()
show1()

 Engineer class
pubs
getinfo()
putinfo()

 Hourlyemployee
class
sal
getinfo()
putinfo()
salary()

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 367

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. DIT (Depth of Inheritance tree): The depth of

inheritance is defined to be the level of the
 class in the inheritance hierarchy, with the root class

being Zero [4].

Metri
c

Employ
ee class

Manag
er
Class

Engine
er class

Labor
er
class

Hourlyemplo
yee class

DIT 0 1 1 1 2

4. NOC (Number of Children): The number of
children is the number of direct descendents for
 a class [4].

Metri
c

Employ
ee class

Manag
er
Class

Engine
er class

Labor
er
class

Hourlyemplo
yee class

NOC 3 0 0 1 0

5. MPC (Massage Passing Coupling): Message
Passing coupling is the count of total number of
function and procedure calls made to external units
[7].

Metri
c

Employ
ee class

Manag
er
Class

Engine
er class

Labor
er
class

Hourlyemplo
yee class

MPC 0 2 2 2 4

6. DAC (Data Abstraction Coupling): Data
Abstraction coupling is the count of total number of
instances of other classes within a given class [7].

Metri
c

Employ
ee class

Manag
er
Class

Engine
er class

Labor
er
class

Hourlyemplo
yee class

DAC 0 1 0 1 0

7. NUS (Number of Subunits): The number of
subunit is the total number of functions and
procedures defined for the class [7].

Metri
c

Employ
ee class

Manag
er
Class

Engine
er class

Labor
er
class

Hourlyemplo
yee class

NUS 3 3 2 3 3

8. Inheritance dependencies(ID): This metric is
calculated using the following equation:

Inheritance tree depth=max(inheritance tree path
length)
So referring the above class diagram
Inheritance tree depth = 3

9.Factoring effectiveness(FE): This metric is
calculated using the following equation:

Factoring effectiveness = No. of unique methods
/ Total no. of methods
 = 4/14
 = 0.29

 10.Specialization index(SI): This metric is
calculated using the following equation:
 Specialization index= Total no. of subclasses /
total no. of superclasses
 From the above class diagram
 Specialization index =5/2
 = 2.5

11.Reuse ratio(RR): This metric is calculated using
the following equation:
 Reuse ratio=Total no. of superclasses / Total no
of classes
 Referring above class diagram
 Reuse ratio =2/5
 =0.4

4. Study of the complexity of Java
programs

These metrics were calculated and tested on 20 Java
programs and following results are obtained.

Table 1 shows the metric value for 20 java programs
and Table 2 shows the statistical values calculated for
the metric values obtained from 20 java programs

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 368

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: Metric Values Calculated for JAVA Programs

Metrics
Type

 Program Number

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

WMC 3.00 2.25 1.65 2.00 2.00 1.25 2.25 2.00 2.00 1.65 3.33 1.50 2.00 2.00 1.00 1.67 2.00 3.33 2.00 2.00

RFC 2.00 3.00 3.33 2.00 3.33 3.33 2.67 3.00 4.48 1.50 3.00 3.33 2.50 2.00 3.33 3.33 2.00 4.10 3.00 2.00

DIT 2.00 1.00 1.00 1.00 0.50 2.00 0.50 0.33 1.00 1.00 0.75 0.50 0.50 1.00 1.00 2.25 0.33 0.33 0.50 0.50

NOC 2.00 0.75 0.50 1.00 0.50 1.50 0.50 0.50 0.50 0.65 0.65 1.00 1.00 1.00 0.75 1.75 0.67 0.50 0.50 0.50

MPC 2.00 0.33 0.20 0.33 0.00 0.00 0.20 0.00 0.00 0.00 0.50 0.50 0.33 0.33 0.33 0.00 0.00 0.33 0.00 0.00

DAC 0.30 0.00 0.00 0.40 0.67 0.00 0.00 0.00 0.33 0.50 0.67 0.50 0.50 0.67 0.00 0.33 0.33 0.30 0.30 0.40

NUS 3.00 2.00 1.65 1.65 2.00 2.00 2.00 1.67 1.67 1.33 1.50 1.50 1.50 2.50 2.00 1.67 1.67 2.50 2.00 2.00

ID 2.00 1.00 0.50 0.50 1.00 0.33 2.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 2.00 2.25 2.00 0.50 0.50 0.33

FE 0.50 0.50 0.30 0.30 0.50 0.67 0.67 0.67 1.25 0.50 0.33 0.67 0.67 0.33 0.33 0.33 0.50 0.67 0.50 0.50

SI 2.00 2.00 1.00 1.00 1.00 3.00 2.00 2.00 1.00 1.00 2.00 3.00 1.00 1.00 1.00 2.00 3.00 2.00 2.00

RR 0.25 0.33 0.25 0.25 0.50 0.50 0.33 0.33 0.30 0.33 0.25 0.75 0.50 0.50 0.30 0.25 0.25 0.30 0.50 0.30

Table2: Statistical Values Calculated for JAVA Programs

Metric Type Minimum Maximum Mean Median Stand. Deviation

WMC

1.00

3.33

2.04

2.00

0.59

RFC

1.50

4.48

2.86

3.00

0.77

DIT

0.33

2.25

0.89

0.87

0.57

NOC

0.50

2.00

0.83

0.66

0.44

MPC

0.00

2.00

0.26

0.20

0.44

DAC

0.00

0.67

0.31

0.33

0.23

NUS

1.33

3.00

1.89

1.83

0.40

ID

0.33

2.25

1.04

1.00

0.64

FE

0.30

1.25

0.53

0.50

0.21

SI

1.00

3.00

1.75

2.00

0.71

RR

0.25

0.75

0.36

0.31

0.13

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 369

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

After analyzing the Table 1 and Table 2 following
points are observed regarding complexity of the
java programs
1 Weighted Method per Class metric predicts time
and effort that is required to build and maintain a
class. A high value of WMC has been found to lead
to more faults. Classes with large number of methods
are likely to be more application specific, limiting
the possibility of reuse. A study of 20 java programs
suggest that an increase in the average WMC
increases the complexity and decreases quality. As
programs with large number of methods are more
prone to bugs and complex to understand.

2 The RFC metric is the count of the set of all
methods that can be invoked in response to a message
to an object of the class or by some methods in the
class. This includes all methods accessible within the
class hierarchy. This metric looks at the combination
of the complexity of a class through the number of
methods and the amount of communication with
other classes. The larger the number of methods that
can be invoked from a class through messages, the
greater the complexity of the class. From our study
we found that Java programs are less complex as the
mean value of this metric is low for java programs.

3 The depth of a class within the inheritance
hierarchy is the maximum number of steps from the
class node to the root of the tree and is measured by
the number of ancestor classes. The deeper a class is
in the hierarchy, the more methods it is likely to
inherit, making it more complex. Deeper trees
constitute greater design complexity, since more
methods and classes are involved, but at the same
time reusability also get increase due to inheritance.
Java programs have intermediate value for DIT
metric.

4 The number of children is the number of immediate
subclasses subordinate to a class in the hierarchy. It is
an indicator of the potential influence a class can
have on the design and on the system. The greater the
number of children, the greater the likelihood of
improper abstraction of the parent and may be a case
of misuse of subclassing. However high NOC
indicates high reuse, since inheritance is a form of
reuse.. A class with many children may also require
more testing. High NOC has been found to indicate
fewer faults. This may be due to high reuse, which is
desired. In Java the value of this metric depends on
program to program. All classes do not have the same
number of sub-classes. However, it is observed that
for better results, classes higher up in the hierarchy
should have more sub-classes then those lower down.

5 Message passing coupling metric measures the
numbers of messages passing among objects of the
class. A larger number indicates increased coupling
between this class and other classes in the system.
This makes the classes more dependent on each other
which increases the overall complexity of the system
and makes the class more difficult to change. The
assumption behind this metric is that classes
interacting with many other classes are harder to
understand and maintain. When we applied object
oriented metrics on several java programs, we
observed that the value of Message Passing Coupling
(MPC) metric is low for java programs.

6 Data Abstraction Coupling metric measures the
coupling complexity caused by Abstract Data Types
(ADTs). This metric is concerned with the coupling
between classes representing a major aspect of the
object oriented design, since the reuse degree, the
maintenance and testing effort for a class are
decisively influenced by the coupling level between
classes. It is the count of total number of external
classes the given classes uses. Software complexity
increases with increasing DAC.As Java is an object
oriented language so data is given more importance
than procedures. Data is hidden from the outside
world. The value of this metric is low for java
programs.

7 The Number of Subunit metric is the total number
of functions and procedures defined for the class. As
the number of functions and procedures grow, class
become more fault prone. The complexity also get
increase with increase value of local subunits metric.
The value of this metric is found to be low for java
programs.

8 Inheritance Dependencies metric is intended to
reflect characteristics of the inheritance tree. Morris
suggests that “it may be possible to determine a range
of values within which the inheritance tree depth
should be maintained. inheritance tree depth is likely
to be more favorable than breadth in terms of
reusability via inheritance. However, A deeper tree is
more difficult to test than a broader one. The greater
the value of this metric, more will be the complexity
of programs. Comprehensibility may be diminished
with a large number of inheritance layers.

9 Morris states that “inheritance hierarchies are
optimized via a process called factoring. The purpose
of factoring is to minimize the number of locations
within an inheritance hierarchy in which a particular
method is implemented.”[9] Highly factored
applications are more reliable for reasons similar to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 370

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

those that argue that such applications are more
maintainable. The smaller the number of
implementation locations for the average task, the
less likely that errors were made during coding. The
more highly factored an inheritance hierarchy is the
greatest degree to which method reuse occurs. The
more highly factored an application is, the smaller the
number of implementation locations for the average
method.

10 Specialization Index metric measures the extent to
which subclasses override their ancestors classes.
This index is the ratio between the number of
overridden methods and total number of methods in a
Class, weighted by the depth of inheritance for this
class. This metric was developed specifically to
capture the point that classes are structured in
hierarchy which reuse code and specialize code of
their superclasses. It is well-defined, not ambiguous
and easy to calculate. However, it is missing
theoretical and empirical validation. It is commonly
accepted that the more the Specialization Index is
elevated, the more difficult is the class to maintain.
The value of this metric is high for java programs, as
java classes are more usable.

11 Reuse ratio measures reuse via inheritance. A high
value of this metric indicates a deep class hierarchy
with high reuse. Reuse ratio is the percentage of
classes that are derived from. Reuse ratio varies in
the range {0,1}. When the value of this metric is
zero, there is no inheritance. As the value of this
metric approaches 1, the inheritance tree deepens in a
chain form with exactly one root and one leaf. When
this metric is applied to several java programs we got
intermediate results.

5 Conclusion and Future Work

The primary objective of this study was to investigate
the applicability of Object–Oriented software
metrics to measure the complexity of a Java software
application. Complexity of Java applications can be
evaluated at several dimensions(
Size,method,class,inheritance,cohesion etc) using a
variety of available software metrics from Software
Engineering Domain. In this research paper we have
presented a set of eleven well established object-
oriented metrics that can be used to rank programs
on their complexity values, to assess testability and
maintainability of the programs. From this study we
conclude that there should be a compromise among
internal software attributes in order to maintain a
high degree of reusability while keeping the degree
of complexity and coupling as low as possible.

However it is still insufficient, needs further in depth
study and future work will focus on empirical
validation of object oriented metrics in multi
languages environment. But we still expect that our
analysis can be used as a reference by software
developers for building a fault free, reliable, and easy
to maintain software product in Java

References:

[1] Patrick Naughton & Herbert Schildt “java:The
complete reference”, McGraw-Hill Professional,
UK, 2008.

[2] Er. V.K. Jain. “The Complete Guide to java
programming”, First Edition, 2001.

 [3] G. Booch, Object-Oriented Design with
Applications (The Benjamin/Cummings Publishing
Company, Redwood City, CA , 1991; ISBN: 0-8053-
0091-0).

[4] F.P. Brooks, No Silver Bullets: Essence and
Accidents of Software Engineering, Computer, Vol.
20, No. 4 (Apr 1987) 10-19.

[5] P. Coad and E. Yourdon, Object-Oriented Design
(Yourdon Press, Englewood Cliffs, NJ, 1991; ISBN:
0-13-630070-7).

[6] R.B. Grady, Practical Software Metrics for
Project Management and Process Improvement
(Prentice Hall, Englewood Cliffs, NJ, 1992; ISBN: 0-
13-720384-5).

[7] S. Chidamber, and C. Kemerer, “Towards a
Metrics Suite for Object Oriented Design,’’ Object
Oriented Programming Systems, Languages and
Applications (OOPSLA), Vol 10, 1991, pp 197-211

[8] Michael W. Cohn, William S. Junk, “Empirical
Evaluation of a Proposed Set of Metrics for
Determining Class Complexity in Object-Oriented
Code”, A Thesis, College of Graduate Studies
University of Idaho, April 1994

[9]K. Morris, “Metrics for Object-oriented Software
Development Environments,” Masters Thesis, MIT,
1989.

[10]Chidamber, S. and Kemerer, C.” A Metrics Suite
for Object Oriented Design”, IEEE Transactions on
Software Engineering, vol. 20, no. 6, pp. 476-
493,1994.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 371

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[11]Chidamber, S., Darcy, D., Kemerer, C.”
Managerial use of Metrics for Object Oriented
Software”: an Exploratory Analysis, IEEE
Transaction on Software Engineering, vol. 24, no. 8,
pp. 629-639,1998.

[12] Churcher, N.I. and M.J. Shepperd, “Towards a
Conceptual Framework for Object-Oriented Metrics,”
ACM Software Engineering Notes, vol. 20, no. 2,
April 1995,pp. 69–76.

[13] Basli VR, Briand LC, Melo WL. “A validation
of object oriented design metrics as quality
indicators”. Technical Report, University of
Maryland, Department of Computer Science,1-24,
1995.

[14] Tang MH, Kao MH. “An empirical study on
object-oriented metrics”. Proceedings 23rd Annual

International Computer Software and Application
Conference. IEEE Computer Society, 242-249,1999.

[15] Li. W. “Another Metric suit for object-oriented
programming”. The journal of system and software
44(2),155-162,1998.

[16] Roger S. Pressman: Software Engineering, A

practioner’s Approach, Fifth Edition,2001.

[17] R. Kolewe, “Metrics in Object-Oriented Design
and Programming,’’ Software Development, Vol. 1,
No. 4, October 1993, pp. 53-62.

[18] Jacobson Ivar : Object Oriented Software
Engineering: A Use Case Driven Approach, Addison-
Wesley Publishing Company,1993

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 372

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

